Evaluation of Increasing Concentrations of Supplemental Choline Chloride on Modern Broiler Chicken Growth Performance and Carcass Characteristics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Diet Formulation
2.2. Broiler Husbandry
2.3. Broiler Growth Performance and Carcass Part Yields
2.4. Wooden Breast and White Striping Scoring
2.5. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Characteristics
3.3. Wooden Breast and White Striping
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quillin, E.C.; Combs, G.F.; Creek, R.D.; Romoser, G.L. Effect of choline on the methionine requirements of broiler chickens. Poult. Sci. 1961, 40, 639–645. [Google Scholar] [CrossRef]
- Kettunen, H.; Peuranen, S.; Tiihonen, K.; Saarinen, M. Intestinal uptake of betaine in vitro and the distribution of methyl groups from betaine, choline, and methionine in the body of broiler chicks. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2001, 128, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Pinotti, L.; Baldi, A.; Dell’Orto, V. Comparative mammalian choline metabolism with emphasis on the high-yielding dairy cow. Nutr. Res. Rev. 2002, 15, 315–332. [Google Scholar] [CrossRef]
- Li, Z.; Vance, D.E. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 2008, 49, 1187–1194. [Google Scholar] [CrossRef]
- Stekol, J.A.; Hsu, P.T.; Weiss, S.; Smith, P. Labile methyl group and its synthesis de novo in relation to growth in chicks. J. Biol. Chem. 1953, 203, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Pillai, P.B.; Fanatico, A.C.; Blair, M.E.; Emmert, J.L. Homocysteine remethylation in broilers fed surfeit choline or betaine and varying levels and sources of methionine from eight to twenty-two days of age. Poult. Sci. 2006, 85, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- Buchman, A.L.; Dubin, M.D.; Moukarzel, A.A.; Jenden, D.J.; Roch, M.; Rice, K.M.; Gornbein, J.; Ament, M.E. Choline deficiency: A cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation. Hepatology 1995, 22, 1399–1403. [Google Scholar] [CrossRef] [PubMed]
- Michel, V.; Singh, R.K.; Bakovic, M. The impact of choline availability on muscle lipid metabolism. Food Funct. 2011, 2, 53–62. [Google Scholar] [CrossRef]
- Corbin, K.D.; Zeisel, S.H. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr. Opin. Gastroenterol. 2012, 28, 159–165. [Google Scholar] [CrossRef]
- Aziza, A.E.; Awadin, W.; Cherian, G. Impact of choline supplementation on hepatic histopathology, phospholipid content, and tocopherol status in layer hens fed flaxseed. J. Appl. Poult. Res. 2019, 28, 679–687. [Google Scholar] [CrossRef]
- Rama Rao, S.V.; Sunder, G.S.; Reddy, M.R.; Praharaj, N.K.; Raju, M.V.; Panda, A.K. Effect of supplementary choline on the performance of broiler breeders fed on different energy sources. Br. Poult. Sci. 2001, 42, 362–367. [Google Scholar] [CrossRef]
- Rahnama, M.; Bouyeh, M.; Kadim, I.; Seidavi, A.; Elghandour, M.; Reddy, P.R.K.; Monroy, J.C.; Salem, A.Z.M. Effect of dietary inclusion of lecithin with choline on physiological stress of serum cholesterol fractions and enzymes, abdominal fat, growth performance, and mortality parameters of broiler chickens. Anim. Biotechnol. 2020, 31, 483–490. [Google Scholar] [CrossRef]
- Jahanian, R.; Ashnagar, M. Effects of dietary supplementation of choline and carnitine on growth performance, meat oxidative stability and carcass composition of broiler chickens fed diets with different metabolisable energy levels. Br. Poult. Sci. 2018, 59, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ren, M.; Ren, K.; Jin, Y.; Yan, M. Heat stress impacts on broiler performance: A systematic review and meta-analysis. Poult. Sci. 2020, 99, 6205–6211. [Google Scholar] [CrossRef] [PubMed]
- Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef] [PubMed]
- Ratriyanto, A.; Mosenthin, R. Osmoregulatory function of betaine in alleviating heat stress in poultry. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1634–1650. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Azarfar, A.; Khosravinia, H. Partial replacement of dietary methionine with betaine and choline in heat-stressed broiler chickens. J. Poult. Sci. 2018, 55, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Saarinen, M.T.; Kettunen, H.; Pulliainen, K.; Peuranen, S.; Tiihonen, K.; Remus, J. A novel method to analyze betaine in chicken liver: effect of dietary betaine and choline supplementation on the hepatic betaine concentration in broiler chicks. J. Agric. Food Chem. 2001, 49, 559–563. [Google Scholar] [CrossRef]
- Kpodo, K.R.; Smith, M.O.; Beckford, R.C. Response of heat stressed broilers to dietary choline and betaine: II. Choline metabolites and intestinal morphology. In Proceedings of the Poultry Science Association Annual Meeting, Louisville, Kentucky, 27–30 July 2015. [Google Scholar]
- Gregg, C.R.; Tejeda, O.J.; Spencer, L.F.; Calderon, A.J.; Bourassa, D.V.; Starkey, J.D.; Starkey, C.W. Impacts of increasing additions of choline chloride on growth performance and carcass characteristics of broiler chickens reared to 66 days of age. Animals 2022, 12, 1808. [Google Scholar] [CrossRef]
- Gregg, C.R.; Tejeda, O.J.; Spencer, L.F.; Calderon, A.J.; Bourassa, D.V.; Starkey, J.D.; Starkey, C.W. Effect of dietary choline chloride supplementation on growth performance and carcass characteristics of broiler chickens reared to 32 days of age. Poultry 2022, 1, 66–73. [Google Scholar] [CrossRef]
- Ross Broiler Nutrition Specifications. Available online: https://en.aviagen.com/assets/Tech_Center/Ross_Broiler/RossBroilerNutritionSpecs2019-EN.pdf (accessed on 12 August 2022).
- Tejeda, O.J.; Meloche, K.J.; Starkey, J.D. Effect of incubator tray location on broiler chicken growth performance, carcass part yields, and the meat quality defects wooden breast and white striping. Poult. Sci. 2021, 100, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Kpodo, K.R.; Beckford, R.C.; Smith, M.O. Performance of heat-stressed broilers supplemented with dietary choline and betaine. Int. J. Poult. Sci. 2020, 19, 282–293. [Google Scholar] [CrossRef]
- Waldroup, P.W.; Motl, M.A.; Yan, F.; Fritts, C.A. Effects of betaine and choline on response to methionine supplementation to broiler diets formulated to industry standards. J. Appl. Poult. Res. 2006, 15, 58–71. [Google Scholar] [CrossRef]
- Li, W.; Li, B.; Lv, J.; Dong, L.; Zhang, L.; Wang, T. Choline supplementation improves the lipid metabolism of intrauterine-growth-restricted pigs. Asian-Australas J Anim Sci 2018, 31, 686–695. [Google Scholar] [CrossRef]
- Petracci, M.; Soglia, F.; Madruga, M.; Carvalho, L.; Ida, E.; Estevez, M. Wooden-Breast, White Striping, and Spaghetti Meat: Causes, consequences and consumer perception of emerging broiler meat abnormalities. Compr. Rev. Food Sci. Food Saf. 2019, 18, 565–583. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.R.; Suyemoto, M.M.; Sarsour, A.H.; Cordova, H.A.; Oviedo-Rondon, E.O.; Wineland, M.; Barnes, H.J.; Borst, L.B. Temporal characterization of wooden breast myopathy (“woody breast”) severity and correlation with growth rate and lymphocytic phlebitis in three commercial broiler strains and a random-bred broiler strain. Avian Pathol. 2019, 48, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, A.; Ruff, J.; Maynard, C.J.; Forga, A.J.; Senas-Cuesta, R.; Greene, E.S.; Latorre, J.D.; Vuong, C.N.; Graham, B.D.; Hernandez-Velasco, X.; et al. Experimental cyclic heat stress on intestinal permeability, bone mineralization, leukocyte proportions and meat quality in broiler chickens. Animals 2022, 12, 1273. [Google Scholar] [CrossRef] [PubMed]
- Teyssier, J.R.; Preynat, A.; Cozannet, P.; Briens, M.; Mauromoustakos, A.; Greene, E.S.; Owens, C.M.; Dridi, S.; Rochell, S.J. Constant and cyclic chronic heat stress models differentially influence growth performance, carcass traits and meat quality of broilers. Poult. Sci. 2022, 101, 101963. [Google Scholar] [CrossRef]
Ingredients, % (As Fed) 1 | Feeding Phase | ||
---|---|---|---|
Starter, d 0 to 15 | Grower, d 16 to 28 | Finisher, d 29 to 41 | |
Corn | 72.34 | 67.45 | 68.17 |
SBM | 22.00 | 25.00 | 23.00 |
DDGS | -- | 2.00 | 4.00 |
Soybean oil | 0.10 | 0.75 | 0.75 |
Dicalcium phosphate | 2.36 | 1.94 | 1.61 |
Calcium carbonate | 0.90 | 0.82 | 0.77 |
Sodium chloride | 0.40 | 0.40 | 0.35 |
L-Lysine hydrochloride | 0.59 | 0.52 | 0.33 |
DL-Methionine | 0.19 | 0.14 | 0.10 |
L-Threonine | 0.42 | 0.29 | 0.21 |
Mineral premix | 0.10 | 0.10 | 0.10 |
Vitamin premix | 0.10 | 0.10 | 0.10 |
Choline chloride premix 2 | 0.50 | 0.50 | 0.50 |
Calculated Nutrient Content of Basal Diet | |||
Choline ion, mg per kg | 985.19 | 1065.76 | 1065.962 |
Betaine, mg per kg | 39.98 | 44.68 | 46.80 |
Digestible Methionine, % | 0.42 | 0.39 | 0.35 |
Digestible Lysine, % | 1.26 | 1.26 | 1.04 |
Crude protein, % | 16.07 | 17.65 | 17.12 |
Calcium, % | 0.95 | 0.84 | 0.75 |
Available phosphorus, % | 0.48 | 0.42 | 0.37 |
AMEn, kcal per kg | 2860.00 | 2849.74 | 2870.01 |
Analyzed Nutrient Content of Basal Diet | |||
Methionine, % | 0.42 | 0.42 | 0.37 |
Choline ion, mg per kg | 910.00 | 977.00 | 987.00 |
Betaine, mg per kg | 41.73 | 40.13 | 36.70 |
Feeding Phase | Dietary Treatment | |||||
---|---|---|---|---|---|---|
Analyzed Dietary Choline Ion Values, mg per kg of Feed (as Fed) | ||||||
0 | 400 | 800 | 1200 | 1600 | 2000 | |
Starter, d 0 to 15 | 910 | 1120 | 1400 | 1650 | 1950 | 2330 |
Grower, d 16 to 28 | 977 | 1190 | 1500 | 1750 | 2050 | 2380 |
Finisher, d 29 to 41 | 987 | 1230 | 1550 | 1880 | 2060 | 2270 |
Variable 2 | Added Choline Chloride, mg per kg “as Fed” | SEM 3 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 400 | 800 | 1200 | 1600 | 2000 | |||
d 0 BW, g | 41 | 41 | 41 | 42 | 41 | 41 | 0.2 | 0.3505 |
d 15 BW, g | 394 x | 380 y | 387 xy | 377 y | 378 y | 385 xy | 5 | 0.0824 |
d 28 BW, g | 1295 | 1279 | 1273 | 1266 | 1256 | 1273 | 11 | 0.2049 |
d 41 BW, g | 2511 | 2491 | 2518 | 2491 | 2509 | 2507 | 23 | 0.9349 |
d 0 to 15 MCBWG, g | 351 x | 337 y | 343 xy | 333 y | 334 y | 342 xy | 5 | 0.0543 |
d 16 to 28 MCBWG, g | 901 | 897 | 886 | 882 | 878 | 888 | 7 | 0.2186 |
d 29 to 41 MCBWG, g | 1215 | 1209 | 1244 | 1234 | 1253 | 1255 | 16 | 0.2305 |
d 0 to 41 MCBWG, g | 2444 | 2411 | 2438 | 2416 | 2424 | 2461 | 25 | 0.7408 |
d 0 to 15 MCFI, g | 510 a | 489 b | 494 b | 493 b | 489 b | 489 b | 5 | 0.0115 |
d 16 to 28 MCFI, g | 1324 x | 1303 xy | 1315 x | 1296 xy | 1281 y | 1296 xy | 11 | 0.0830 |
d 29 to 41 MCFI, g | 2175 a | 2135 ab | 2142 ab | 2116 b | 2119 b | 2109 b | 15 | 0.0229 |
d 0 to 41 MCFI, g | 3995 a | 3908 b | 3925 ab | 3871 b | 3862 b | 3896 b | 29 | 0.0217 |
d 0 to 15 MCFCR | 1.4533 abc | 1.4550 abc | 1.4383 bc | 1.4836 a | 1.4633 ab | 1.4333 c | 0.01 | 0.0220 |
d 16 to 28 MCFCR | 1.4700 b | 1.4517 c | 1.4850 a | 1.4600 bc | 1.4655 b | 1.4592 bc | 0.01 | <0.0001 |
d 29 to 41 MCFCR | 1.7908 a | 1.7667 a | 1.7233 b | 1.7175 b | 1.6917 b | 1.6950 b | 0.01 | <0.0001 |
d 0 to 41 MCFCR | 1.6309 a | 1.6217 a | 1.6100 ab | 1.5936 bc | 1.5942 bc | 1.5850 c | 0.01 | 0.0017 |
Variable | Added Choline Chloride, mg per kg of Feed | SEM 2 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 400 | 800 | 1200 | 1600 | 2000 | |||
d 0 to 15 Mortality, % | 1.08 | 2.42 | 2.15 | 1.34 | 2.15 | 1.61 | 0.83 | 0.7548 |
d 16 to 28 Mortality, % | 1.09 | 0.28 | 0.46 | 0.53 | 0.38 | 0.27 | 0.53 | 0.6220 |
d 29 to 41 Mortality, % | 0.55 | 1.66 | 1.39 | 1.10 | 1.66 | 1.10 | 0.64 | 0.8019 |
d 0 to 41 Mortality, % | 2.69 | 4.30 | 4.30 | 3.50 | 4.30 | 2.96 | 1.10 | 0.7657 |
Variable 2 | Added Choline Chloride, mg per kg of Feed | SEM 3 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 400 | 800 | 1200 | 1600 | 2000 | |||
Hot WOG WT, g | 1912 y | 1919 y | 1950 xy | 1945 xy | 1957 xy | 1978 x | 17 | 0.0735 |
Chilled WOG WT, g | 1940 y | 1947 y | 1977 xy | 1974 xy | 1985 xy | 2006 x | 17 | 0.0681 |
Fat Pad WT, g | 29 | 27 | 29 | 27 | 27 | 27 | 1 | 0.1394 |
Breast WT, g | 475 c | 502 b | 519 b | 548 a | 548 a | 553 a | 8 | <0.0001 |
Tender WT, g | 104 | 107 | 107 | 107 | 107 | 107 | 1 | 0.4928 |
Wing WT, g | 213 | 212 | 212 | 210 | 210 | 212 | 2 | 0.6100 |
Thigh WT, g | 346 a | 337 b | 336 b | 326 bc | 329 bc | 332 c | 3 | 0.0002 |
Drumstick WT, g | 266 a | 259 b | 258 bc | 252 c | 255 bc | 255 bc | 2 | 0.0009 |
Hot WOG, % of FLBW | 73.36 e | 73.83 d | 74.60 c | 75.05 ab | 74.93 b | 75.26 a | 0.11 | <0.0001 |
Hot WOG, % of chilled WOG | 98.57 | 98.58 | 98.63 | 98.57 | 98.56 | 98.59 | 0.07 | 0.9799 |
Fat Pad, % of chilled WOG | 1.48 a | 1.4 ab | 1.44 ab | 1.35 bc | 1.38 abc | 1.33 c | 0.04 | 0.0293 |
Breast, % of chilled WOG | 24.48 c | 25.76 b | 26.24 b | 27.76 a | 27.62 a | 27.59 a | 0.26 | <0.0001 |
Tender, % of chilled WOG | 5.34 | 5.50 | 5.40 | 5.41 | 5.40 | 5.34 | 0.06 | 0.4665 |
Wing, % of chilled WOG | 10.99 a | 10.89 ab | 10.72 bc | 10.63 cd | 10.54 d | 10.57 cd | 0.07 | <0.0001 |
Thigh, % of chilled WOG | 17.82 a | 17.33 b | 17.00 c | 16.52 d | 16.58 d | 16.54 d | 0.09 | <0.0001 |
Drumstick, % of chilled WOG | 13.75 a | 13.30 b | 13.04 c | 12.79 d | 12.83 cd | 12.69 d | 0.09 | <0.0001 |
Wooden Breast score 0, % | 36.75 a | 21.01 b | 17.39 b | 9.40 b | 11.02 b | 9.48 b | 5.83 | 0.0009 |
Wooden Breast score 1, % | 42.79 ab | 47.9 a | 41.74 ab | 29.91 bc | 27.12 c | 30.17 bc | 4.82 | 0.0095 |
Wooden Breast score 2, % | 20.51 y | 26.05 xy | 29.57 xy | 38.46 x | 37.29 x | 35.34 x | 5.22 | 0.0909 |
Wooden Breast score 3, % | 0.00 a | 5.04 b | 11.30 b | 22.22 c | 24.58 c | 25.00 c | 3.74 | 0.0004 |
White Striping score 0, % | 16.24 | 8.40 | 5.22 | 10.26 | 10.17 | 6.03 | 3.54 | 0.1121 |
White Striping score 1, % | 53.85 | 52.94 | 51.30 | 51.28 | 52.54 | 52.59 | 4.60 | 0.9986 |
White Striping score 2, % | 23.08 | 32.77 | 30.43 | 29.91 | 25.42 | 27.59 | 4.19 | 0.5741 |
White Striping score 3, % | 6.84 z | 5.88 z | 13.04 xy | 8.55 xyz | 11.86 xyz | 13.79 x | 2.63 | 0.0763 |
Mean Wooden Breast score | 0.91 d | 1.25 cd | 1.33 bc | 1.75 a | 1.83 a | 1.67 ab | 0.13 | <0.0001 |
Mean White Striping score | 1.08 | 1.42 | 1.58 | 1.25 | 1.50 | 1.50 | 0.14 | 0.1138 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregg, C.R.; Hutson, B.L.; Flees, J.J.; Lowman, Z.S.; Estes, K.A.; Starkey, J.D.; Starkey, C.W. Evaluation of Increasing Concentrations of Supplemental Choline Chloride on Modern Broiler Chicken Growth Performance and Carcass Characteristics. Animals 2023, 13, 1445. https://doi.org/10.3390/ani13091445
Gregg CR, Hutson BL, Flees JJ, Lowman ZS, Estes KA, Starkey JD, Starkey CW. Evaluation of Increasing Concentrations of Supplemental Choline Chloride on Modern Broiler Chicken Growth Performance and Carcass Characteristics. Animals. 2023; 13(9):1445. https://doi.org/10.3390/ani13091445
Chicago/Turabian StyleGregg, Caroline R., Brittany L. Hutson, Joshua J. Flees, Zachary S. Lowman, Kari A. Estes, Jessica D. Starkey, and Charles W. Starkey. 2023. "Evaluation of Increasing Concentrations of Supplemental Choline Chloride on Modern Broiler Chicken Growth Performance and Carcass Characteristics" Animals 13, no. 9: 1445. https://doi.org/10.3390/ani13091445
APA StyleGregg, C. R., Hutson, B. L., Flees, J. J., Lowman, Z. S., Estes, K. A., Starkey, J. D., & Starkey, C. W. (2023). Evaluation of Increasing Concentrations of Supplemental Choline Chloride on Modern Broiler Chicken Growth Performance and Carcass Characteristics. Animals, 13(9), 1445. https://doi.org/10.3390/ani13091445