Does Keeping Cows for More Lactations Affect the Composition and Technological Properties of the Milk?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Collection of Milk Samples
2.2. Milk Sample Preparation
2.3. Analysis of Milk pH and Gross Composition
2.4. Micro-Cheese Production and Determination of Casein Content and Curd Yield
2.5. Rheology Measurements
2.6. Ethanol Stability Test
2.7. Plasmin and Plasminogen-Derived Activity
2.8. Total Proteolysis
2.9. Casein and Whey Protein Profiles in Milk
2.10. Statistical Analyses
3. Results
3.1. Composition and Technological Properties of Milk in Relation to Cow Age
3.2. Total Variation in the Composition and Technological Properties of Milk as Influenced by Cow Age and Breed
3.3. Variables Contributing to Differences in the Composition and Technological Properties of Milk between Young and Older Cows
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, M.P.; Strandberg, E.; Emanuelson, U.; Grandinson, K.; Roth, A. The Effect of Veterinary-Treated Clinical Mastitis and Pregnancy Status on Culling in Swedish Dairy Cows. Prev. Vet. Med. 2007, 80, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M. Mjölkkor. Andra Utgåvans Första Tryckning; BMM Förlag: Vinninga, Sweden, 2017; ISBN 978-91-639-2958-8. Available online: https://www.google.com/search?client=firefox-b-d&q=Nilsson%2C+M.+%282017%29.+Mj%C3%B6lkkor.+Andra+utg%C3%A5vans+f%C3%B6rsta+tryckning.+Vinninga%3A+BMM+F%C3%B6rlag.+ISBN%3A+978-91-639-2958-8.++ (accessed on 19 July 2022).
- Barbano, D.M.; Rasmussen, R.R.; Lynch, J.M. Influence of Milk Somatic Cell Count and Milk Age on Cheese Yield. J. Dairy Sci. 1991, 74, 369–388. [Google Scholar] [CrossRef]
- Smith, R. Regulation (EC) No 883/2004 of the European Parliament and of the Council of 29 April 2004. In Core EU Legislation; Macmillan Education UK: London, UK, 2015; pp. 288–318. ISBN 978-1-137-54501-5. [Google Scholar]
- Barbano, D.M.; Ma, Y.; Santos, M.V. Influence of Raw Milk Quality on Fluid Milk Shelf Life. J. Dairy Sci. 2006, 89, E15–E19. [Google Scholar] [CrossRef] [PubMed]
- Salsberg, E.; Meek, A.H.; Martin, S.W. Somatic Cell Counts: Associated Factors and Relationship to Production. Can. J. Comp. Med. 1984, 48, 251–257. [Google Scholar] [PubMed]
- Dallago, G.M.; Wade, K.M.; Cue, R.I.; McClure, J.T.; Lacroix, R.; Pellerin, D.; Vasseur, E. Keeping Dairy Cows for Longer: A Critical Literature Review on Dairy Cow Longevity in High Milk-Producing Countries. Animals 2021, 11, 808. [Google Scholar] [CrossRef] [PubMed]
- Boulton, A.C.; Rushton, J.; Wathes, D.C. An Empirical Analysis of the Cost of Rearing Dairy Heifers from Birth to First Calving and the Time Taken to Repay These Costs. Animals 2017, 11, 1372–1380. [Google Scholar] [CrossRef] [PubMed]
- Langford, F.; Stott, A. Culled Early or Culled Late: Economic Decisions and Risks to Welfare in Dairy Cows. Anim. Welf. 2012, 21, 41–55. [Google Scholar] [CrossRef]
- Othmane, M.H.; Carriedo, J.A.; de la Fuente Crespo, L.F.; San Primitivo, F. An Individual Laboratory Cheese-Making Method for Selection in Dairy Ewes. Small Rumin. Res. 2002, 45, 67–73. [Google Scholar] [CrossRef]
- Högberg, M. Keeping Goats and Kids Together. Available online: https://pub.epsilon.slu.se/13332/ (accessed on 19 July 2022).
- White, J.C.D.; Davies, D.T. 712. The Relation between the Chemical Composition of Milk and the Stability of the Caseinate Complex: I. General Introduction, Description of Samples, Methods and Chemical Composition of Samples. J. Dairy Res. 1958, 25, 236–255. [Google Scholar] [CrossRef]
- De Vries, R.; Brandt, M.; Lundh, Å.; Holtenius, K.; Hettinga, K.; Johansson, M. Short Communication: Influence of Shortening the Dry Period of Swedish Dairy Cows on Plasmin Activity in Milk. J. Dairy Sci. 2016, 99, 9300–9306. [Google Scholar] [CrossRef]
- Wiking, L.; Frost, M.B.; Larsen, L.B.; Nielsen, J.H. Effects of Storage Condi- Tions on Lipolysis, Proteolysis and Sensory Attributes in High Quality Raw Milk. Milk Wissenschaft. 2002, 57, 190–194. Available online: https://www.google.com/search?client=firefox-b-d&q=Wiking+L,+Frost+MB,+Larsen+LB+%26+Nielsen+JH+2002+Effects+of+storage+condi-+tions+on+lipolysis,+proteolysis+and+sensory+attributes+in+high+quality+raw+milk.+Milk+Wissenschaft+57+190%E2%80%93194&spell=1&sa=X&ved=2ahUKEwjxuKW3nqX5AhXhQvEDHTlyCL4QBSgAegQIARA8&biw=1483&bih=839&dpr=2 (accessed on 1 August 2022).
- Johansson, M.; Lundh, Å.; de Vries, R.; Sjaunja, K.S. Composition and Enzymatic Activity in Bulk Milk from Dairy Farms with Conventional or Robotic Milking Systems. J. Dairy Res. 2017, 84, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.; Åkerstedt, M.; Li, S.; Zamaratskaia, G.; Lund, Å. Casein Breakdown in Bovine Milk by a Field Strain of Staphylococcus aureus. J. Food Prot. 2013, 76, 1638–1642. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Bylesjö, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. OPLS Discriminant Analysis: Combining the Strengths of PLS-DA and SIMCA Classification. J. Chemom. 2006, 20, 341–351. [Google Scholar] [CrossRef]
- Blackburn, P.S. The Variation in the Cell Count of Cow’s Milk throughout Lactation and from One Lactation to the Next. J. Dairy Res. 1966, 33, 193–198. [Google Scholar] [CrossRef]
- Ng-Kwai-Hang, K.F.; Hayes, J.F.; Moxley, J.E.; Monardes, H.G. Association of Genetic Variants of Casein and Milk Serum Proteins with Milk, Fat, and Protein Production by Dairy Cattle. J. Dairy Sci. 1984, 67, 835–840. [Google Scholar] [CrossRef]
- Persson Waller, K.; Bengtsson, B.; Lindberg, A.; Nyman, A.; Ericsson Unnerstad, H. Incidence of Mastitis and Bacterial Findings at Clinical Mastitis in Swedish Primiparous Cows- Influence of Breed and Stage of Lactation. Vet. Microbiol. 2009, 134, 89–94. [Google Scholar] [CrossRef]
- Sheldrake, R.F.; Hoare, R.J.; McGregor, G.D. Lactation Stage, Parity, and Infection Affecting Somatic Cells, Electrical Conductivity, and Serum Albumin in Milk. J. Dairy Sci. 1983, 66, 542–547. [Google Scholar] [CrossRef]
- Natzke, R.P.; Everett, R.W.; Postle, D.S. Normal milk somatic cell counts. J. Milk Food Technol. 1972, 35, 261–263. [Google Scholar] [CrossRef]
- Wanasinghe, D.D.; Frost, A.J. The Prevalence of Udder Infection and Mastitis in Herds Producing Bulk Milk with Either Consistently High or Low Cell Count. Aust. Vet. J. 1979, 55, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Ismail, B.; Nielsen, S.S. Invited Review: Plasmin Protease in Milk: Current Knowledge and Relevance to Dairy Industry. J. Dairy Sci. 2010, 93, 4999–5009. [Google Scholar] [CrossRef] [PubMed]
- Silanikove, N.; Shapiro, F.; Merin, U.; Leitner, G. Tissue-Type Plasminogen Activator and Plasminogen Embedded in Casein Rule Its Degradation under Physiological Situations: Manipulation with Casein Hydrolysate. J. Dairy Res. 2013, 80, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Ismail, B.; Choi, L.H.; Were, L.M.; Nielsen, S.S. Activity and Nature of Plasminogen Activators Associated with the Casein Micelle. J. Dairy. Sci. 2006, 89, 3285–3295. [Google Scholar] [CrossRef] [PubMed]
- Politis, I. Plasminogen Activator System: Implications for Mammary Cell Growth and Involution. J. Dairy. Sci. 1996, 79, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Hurley, W.L. Proteolysis of Milk Proteins During Involution of the Bovine Mammary Gland1. J. Dairy Sci. 1997, 80, 2004–2010. [Google Scholar] [CrossRef]
- Dijkstra, J.; Lopez, S.; Bannink, A.; Dhanoa, M.S.; Kebreab, E.; Odongo, N.E.; Nasri, M.H.F.; Behera, U.K.; Hernandez-Ferrer, D.; France, J. Evaluation of a Mechanistic Lactation Model Using Cow, Goat and Sheep Data. J. Agri. Sci. 2010, 148, 249–262. [Google Scholar] [CrossRef]
- Larsen, L.; Rasmussen, M.; Bjerring, M.; Nielsen, J. Proteases and Protein Degradation in Milk from Cows Infected with Streptococcus uberis. Int. Dairy J. 2004, 14, 899–907. [Google Scholar] [CrossRef]
Pooled Milk Samples 1 Representing | |||
---|---|---|---|
Parameter | Young Cows (n = 12) | Older Cows (n = 12) | p-Value |
Milk composition (g/100 g) | |||
Total protein | 3.68 ± 0.26 | 3.69 ± 0.27 | 0.903 |
Casein | 2.71 ± 0.20 | 2.76 ± 0.15 | 0.547 |
Casein ratio (%) | 73.72 ± 1.34 | 73.98 ± 1.71 | 0.683 |
Protein in whey 2 | 0.97 ± 0.08 | 0.96 ± 0.12 | 0.953 |
Total fat (g/100 g) | 4.97 ± 0.74 | 4.88 ± 0.68 | 0.770 |
SFA | 3.29 ± 0.56 | 3.28 ± 0.46 | 0.966 |
UFA | 1.32 ± 0.27 | 1.26 ± 0.23 | 0.580 |
MUFA | 1.00 ± 0.23 | 0.96 ± 0.19 | 0.626 |
PUFA | 0.13 ± 0.05 | 0.12 ± 0.04 | 0.502 |
C16:0 | 1.26 ± 0.30 | 1.50 ± 0.24 | 0.974 |
C18:0 | 0.44 ± 0.14 | 0.39 ± 0.10 | 0.286 |
C19:1c9 | 0.82 ± 0.20 | 0.80 ± 0.16 | 0.748 |
C14:0 | 0.63 ± 0.11 | 0.65 ± 0.10 | 0.737 |
Lactose (g/100 g) | 4.71 ± 0.13 | 4.66 ± 0.12 | 0.385 |
Total solids (g/100 g) | 13.97 ± 0.84 | 13.92 ± 0.80 | 0.885 |
SCC (×103 cells/mL) | 107 ± 85 | 175 ± 112 | 0.111 |
pH | 6.62 ± 0.05 | 6.60 ± 0.04 | 0.520 |
Protein fractions 3 (%) | |||
Total casein | 87.81 ± 2.00 | 87.89 ± 1.20 | 0.910 |
αs1-casein | 22.68 ± 0.79 | 22.65 ± 0.98 | 0.935 |
αs2-casein | 7.37 ± 1.24 | 7.70 ± 0.83 | 0.451 |
Total β-casein | 50.49 ± 1.55 | 49.51 ± 0.68 | 0.057 |
β-casein B | 4.63 ± 0.37 | 4.71 ± 0.60 | 0.692 |
β-casein A1 | 13.13 ± 7.15 | 14.80 ± 7.25 | 0.575 |
β-casein A2 | 33.08 ± 7.46 | 29.99 ± 7.33 | 0.317 |
κ-casein | 7.38 ± 1.41 | 8.13 ± 1.28 | 0.188 |
Total whey protein 4 | 9.71 ± 1.31 | 9.55 ± 1.07 | 0.758 |
α-lactalbumin | 2.14 ± 0.37 | 2.10 ± 0.33 | 0.782 |
β-lactoglobulin | 7.56 ± 1.00 | 7.46 ± 0.78 | 0.770 |
Technological properties | |||
Coagulation time (s) | 615 ± 170 | 610 ± 149 | 0.938 |
G20 5 (Pa) | 48.81 ± 34.29 | 54.10 ± 38.30 | 0.724 |
Curd yield (%) | 61.55 ± 8.53 | 57.53 ± 7.05 | 0.221 |
EtOH stability (%) | 81.67 ± 10.26 | 81.33 ± 9.55 | 0.935 |
Proteolytic activities | |||
Plasmin (U/mL) | 3.76 ± 1.40 | 5.81 ± 1.48 | 0.002 |
Plasminogen (U/mL) | 88.36 ± 8.37 | 77.19 ± 6.20 | 0.001 |
Total proteolysis (eq. mM leucine) | 30.65 ± 4.05 | 25.16 ± 6.10 | 0.029 |
Swedish Red Breed 1 | Swedish Holstein 1 | |||||
---|---|---|---|---|---|---|
Parameter | Young Cows (n = 9) | Older Cows (n = 9) | p-Value | Young Cows (n = 3) | Older Cows (n = 3) | p-Value |
Milk composition (g/100 g) | ||||||
Total protein | 3.73 ± 0.26 | 3.78 ± 0.24 | 0.660 | 3.53 ± 0.23 | 3.43 ± 0.20 | 0.584 |
Casein | 2.74 ± 0.19 | 2.78 ± 0.15 | 0.629 | 2.63 ± 0.23 | 2.69 ± 0.14 | 0.747 |
Casein ratio (%) | 73.45 ± 1.12 | 73.54 ± 1.57 | 0.889 | 74.53 + 1.86 | 75.29 ± 1.71 | 0.627 |
Protein in whey 2 | 0.99 ± 0.08 | 1.00 ± 0.12 | 0.789 | 0.90 + 0.03 | 0.85 ± 0.07 | 0.350 |
Total fat (g/100 g) | 4.95 ± 0.84 | 5.86 ± 0.67 | 0.711 | 5.04 ± 0.45 | 4.29 ± 0.20 | 0.057 |
SFA | 3.29 ± 0.65 | 3.41 ± 0.46 | 0.667 | 3.70 ± 0.20 | 2.88 ± 0.10 | 0.041 |
UFA | 1.29 ± 0.28 | 1.31 ± 0.22 | 0.875 | 1.40 ± 0.29 | 1.13 ± 0.23 | 0.252 |
MUFA | 0.98 ± 0.23 | 1.00 ± 0.18 | 0.809 | 1.08 ± 0.24 | 0.83 ± 0.18 | 0.228 |
PUFA | 0.12 ± 0.05 | 0.12 ± 0.04 | 0.957 | 0.14 ± 0.05 | 0.09 ± 0.05 | 0.350 |
C16:0 | 1.50 ± 0.30 | 1.55 ± 0.24 | 0.656 | 0.40 ± 0.09 | 134 ± 0.19 | 0.258 |
C18:0 | 0.44 ± 0.14 | 0.41 ± 0.09 | 0.554 | 0.44 ± 0.17 | 0.33 ± 0.09 | 0.367 |
C19:1c9 | 0.81 ± 0.21 | 0.84 ± 0.15 | 0.768 | 0.85 ± 0.21 | 0.68 ± 0.17 | 0.327 |
C14:0 | 0.63 ± 0.12 | 0.67 ± 0.10 | 0.442 | 0.64 ± 0.06 | 0.57 ± 0.03 | 0.176 |
SCC (×103 cells/mL) | 115 ± 95 | 187 ± 126 | 0.190 | 86 ± 52 | 139 ± 51 | 0.269 |
pH | 6.62 ± 0.06 | 6.61 ± 0.05 | 0.661 | 6.62 ± 0.02 | 6.60 ± 0.04 | 0.547 |
Lactose (g/100 g) | 4.68 ± 0.14 | 4.62 ± 0.10 | 0.350 | 4.79 ± 0.04 | 4.78 ± 0.08 | 0.813 |
Total solids (g/100 g) | 13.97 ± 0.97 | 14.16 ± 0.76 | 0.650 | 13.95 ± 0.37 | 13.19 ± 0.38 | 0.067 |
Protein fractions (%) 3 | ||||||
Total casein | 88.12 ± 1.41 | 87.96 ± 1.20 | 0.798 | 86.91 ± 3.51 | 87.70 ± 1.44 | 0.737 |
Total whey protein 4 | 9.80 ± 1.47 | 9.54 ± 1.24 | 0.698 | 9.44 ± 0.79 | 9.59 ± 0.30 | 0.773 |
αs1-casein | 22.86 ± 0.72 | 22.92 ± 0.87 | 0.874 | 22.14 ± 0.87 | 22.84 ± 0.95 | 0.705 |
αs2-casein | 7.64 ± 0.59 | 6.95 ± 0.52 | 0.261 | 6.56 ± 2.41 | 6.97 ± 1.28 | 0.806 |
Total β-casein | 50.39 ± 1.76 | 49.46 ± 0.67 | 0.159 | 50.79 ± 0.74 | 49.65 ± 0.82 | 0.155 |
β-casein B | 4.58 ± 0.42 | 4.88 ± 0.46 | 0.174 | 4.78 ± 0.16 | 4.23 ± 0.80 | 0.302 |
β-casein A1 | 15.28 ± 6.14 | 17.09 ± 6.86 | 0.562 | 6.69 ± 6.87 | 7.92 ± 2.39 | 0.784 |
β-casein A2 | 31.00 ± 6.84 | 27.49 ± 6.68 | 0.286 | 39.32 ± 6.41 | 37.51 ± 2.00 | 0.664 |
κ-casein | 7.26 ± 1.52 | 7.64 ± 0.78 | 0.513 | 7.75 ± 1.22 | 9.59 ± 1.49 | 0.172 |
α-lactalbumin | 2.20 ± 0.40 | 2.10 ± 0.35 | 0.584 | 1.96 ± 0.28 | 2.10 ± 0.29 | 0.587 |
β-lactoglobulin | 7.60 ± 1.14 | 7.45 ± 0.91 | 0.763 | 7.47 ± 0.56 | 7.49 ± 0.12 | 0.969 |
Technological properties | ||||||
Coagulation time (s) | 631 ± 192 | 577 ± 143 | 0.504 | 565 ± 75 | 709 ± 143 | 0.201 |
G20 5 (Pa) | 49.20 ± 39.80 | 67.90 ± 38.6 | 0.472 | 47.56 ± 10.91 | 27.90 ± 26.9 | 0.306 |
Curd yield (%) | 61.98 ± 9.80 | 57.58 ± 7.88 | 0.309 | 60.24 ± 3.49 | 57.38 ± 4.97 | 0.460 |
EtOH stability (%) | 80.00 ± 11.45 | 79.78 ± 10.5 | 0.966 | 86.67 ± 2.3 | 88.00 ± 3.46 | 0.795 |
Proteolytic activities | ||||||
Plasmin (U/mL) | 3.73 ± 1.58 | 5.68 ± 1.68 | 0.022 | 3.85 ± 0.93 | 6.22 ± 0.67 | 0.024 |
Plasminogen (U/mL) | 88.36 ± 9.00 | 78.68 ± 5.86 | 0.016 | 88.34 ± 7.82 | 72.77 ± 5.84 | 0.050 |
Total proteolysis (eq. mM leucine) | 30.53 ± 4.58 | 25.22 ± 6.84 | 0.089 | 31.13 ± 0.53 | 24.92 ± 2.79 | 0.091 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johansson, M.; Lindberg, M.; Lundh, Å. Does Keeping Cows for More Lactations Affect the Composition and Technological Properties of the Milk? Animals 2024, 14, 157. https://doi.org/10.3390/ani14010157
Johansson M, Lindberg M, Lundh Å. Does Keeping Cows for More Lactations Affect the Composition and Technological Properties of the Milk? Animals. 2024; 14(1):157. https://doi.org/10.3390/ani14010157
Chicago/Turabian StyleJohansson, Monika, Mikaela Lindberg, and Åse Lundh. 2024. "Does Keeping Cows for More Lactations Affect the Composition and Technological Properties of the Milk?" Animals 14, no. 1: 157. https://doi.org/10.3390/ani14010157
APA StyleJohansson, M., Lindberg, M., & Lundh, Å. (2024). Does Keeping Cows for More Lactations Affect the Composition and Technological Properties of the Milk? Animals, 14(1), 157. https://doi.org/10.3390/ani14010157