Effect of a Garlic and Citrus Extract Supplement on the Lactation Performance and Carbon Footprint of Dairy Cows under Grazing Conditions in Chile
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Location, Cows and Treatments
2.2. Feed Sampling and Analysis
2.3. Milk Yield and Composition Analysis
2.4. Calculations
2.5. Simulation Modelling of the Carbon Footprint of Milk
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of GCE on Milk Yield and Composition and Lactation Persistency
3.2. Effect of GCE on Feed Intake and Feed Efficiency
3.3. Effect of GCE on the Carbon Footprint of Milk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guerrero López, A. ODEPA Boletín Sector Lácteo: Estadísticas de Comercio Exterior; Oficina de Estudios y Políticas Agrarias: Santiago, Chile, 2019.
- Rojas Cofré, C.; Cáceres, L.; Tapia Cruz, B. Análisis de Los Resultados Del VIII Censo Agropecuario y Forestal; Estudios y Políticas Agrarias—Odepa; Ministerio de Agricultura: Santiago, Chile, 2022.
- Alfaro, M.; Salazar, F. Ganaderia Y Contaminacion Difusa, Implicancias Para El Sur De Chile Volver a: Sustentabilidad. Agric. Técnica 2005, 65, 330–340. [Google Scholar]
- Alfaro, M.; Salazar, F.; Iraira, S.; Teuber, N.; Villarroel, D.; Ramírez, L. Pérdidas de Nitrógeno, Fósforo y Potasio de Un Sistema Pastoril Con Distinta Carga Animal En Un Suelo Volcánico. Chil. J. Agric. Res. 2008, 68, 146–155. [Google Scholar] [CrossRef]
- Núñez, P.A.; Demanet, R.; Misselbrook, T.H.; Alfaro, M.; de la Luz Mora, M. Pérdidas de Nitrógeno Bajo Diferentes Frecuencias e Intensidades de Pastoreo En Un Suelo Volcánico Del Sur de Chile. Chil. J. Agric. Res. 2010, 70, 237–250. [Google Scholar] [CrossRef]
- Pulido, R.G.; Muñoz, R.; Jara, C.; Balocchi, O.A.; Smulders, J.P.; Wittwer, F.; Orellana, P.; O’Donovan, M. The Effect of Pasture Allowance and Concentrate Supplementation Type on Milk Production Performance and Dry Matter Intake of Autumn-Calving Dairy Cows in Early Lactation. Livest. Sci. 2010, 132, 119–125. [Google Scholar] [CrossRef]
- Keim, J.P.; Valderrama, X.; Alomar, D.; Lopez, I.F. In Situ Rumen Degradation Kinetics as Affected by Type of Pasture and Date of Harvest. Sci. Agric. 2013, 70, 405–414. [Google Scholar] [CrossRef]
- VandeHaar, M.J.; St-Pierre, N. Major Advances in Nutrition: Relevance to the Sustainability of the Dairy Industry. J. Dairy Sci. 2006, 89, 1280–1291. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.; Vellinga, T.; Opio, C.; Steinfeld, H. Productivity Gains and Greenhouse Gas Emissions Intensity in Dairy Systems. Livest. Sci. 2011, 139, 100–108. [Google Scholar] [CrossRef]
- Rivas, M.C.B.; Palacios Riocerezo, C.; Dominguez Vara, I.A.; Gonzalez Ronquillo, M.; Radic Schilling, S. Production, Processing, Commercialization and Analysis of Costumer Preferences of Sheep Cheese in Chile. In Milk Production, Processing and Marketing; IntechOpen: London, UK, 2019. [Google Scholar]
- Vrancken, H.; Suenkel, M.; Hargreaves, P.R.; Chew, L.; Towers, E. Reduction of Enteric Methane Emission in a Commercial Dairy Farm by a Novel Feed Supplement. Open J. Anim. Sci. 2019, 09, 286–296. [Google Scholar] [CrossRef]
- Ahmed, E.; Fukuma, N.; Hanada, M.; Nishida, T. The Efficacy of Plant-Based Bioactives Supplementation to Different Proportion of Concentrate Diets on Methane Production and Rumen Fermentation Characteristics in Vitro. Animals 2021, 11, 1029. [Google Scholar] [CrossRef]
- Bitsie, B.; Osorio, A.M.; Henry, D.D.; Silva, B.C.; Godoi, L.A.; Supapong, C.; Brand, T.; Schoonmaker, J.P. Enteric Methane Emissions, Growth, and Carcass Characteristics of Feedlot Steers Fed a Garlic and Citrus Based Feed Additive in Diets with Three Different Forage Concentrations. J. Anim. Sci. 2022, 100, skac139. [Google Scholar] [CrossRef]
- Khurana, R.; Brand, T.; Tapio, I.; Bayat, A.R. Effect of a Garlic and Citrus Extract Supplement on Performance, Rumen Fermentation, Methane Production, and Rumen Microbiome of Dairy Cows. J. Dairy Sci. 2023, 106, 4608–4621. [Google Scholar] [CrossRef] [PubMed]
- Eger, M.; Graz, M.; Riede, S.; Breves, G. Application of MootralTM Reduces Methane Production by Altering the Archaea Community in the Rumen Simulation Technique. Front. Microbiol. 2018, 9, 2094. [Google Scholar] [CrossRef] [PubMed]
- Nutrient Requirements of Dairy Cattle, 7th Revised ed.; National Academies Press: Washington, DC, USA, 2001.
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analysis: Apparatus, Reagents, Procedures and Some Applications. In USDA-ARS Agricultural Handbook 379; USDA-ARS: Washington, DC, USA, 1970. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- The Association of Official Analytical Chemists. AOAC Official Methods of Analysis; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000; ISBN 10-0935584676. [Google Scholar]
- Weiss, W.P. Estimating the Available Energy Content of Feeds for Dairy Cattle. J. Dairy Sci. 1998, 81, 830–839. [Google Scholar] [CrossRef] [PubMed]
- ISO 9622:2013|IDF 141:2013; Milk and Liquid Milk Products, Guidelines for the Application of Mid-Infrared Spectrometry. International Organization for Standardization, Geneva and International Dairy Federation: Brussels, Belgium, 2013.
- ISO 8196-2:2009|IDF 128-2:2009; Milk-Definition and Evaluation of the Overall Accuracy of Alternative Methods of Milk Analysis—Part 2: Calibration and Quality Control in the Dairy Laboratory. International Organization for Standardization, Geneva and International Dairy Federation: Brussels, Belgium,, 2009.
- ISO 13366-2:2006|IDF 148-2:2006; Milk-Enumeration of Somatic Cells—Part 2: Guidance on the Operation of Fluoro-Opto-Electronic Counters, 2nd Ed. International Organization for Standardization, Geneva and International Dairy Federation: Brussels, Belgium, 2006.
- Souza, M.C.; Oliveira, A.S.; Araújo, C.V.; Brito, A.F.; Teixeira, R.M.A.; Moares, E.H.B.K.; Moura, D.C. Short Communication: Prediction of Intake in Dairy Cows under Tropical Conditions. J. Dairy Sci. 2014, 97, 3845–3854. [Google Scholar] [CrossRef]
- Engelke, S.W.; Daş, G.; Derno, M.; Tuchscherer, A.; Berg, W.; Kuhla, B.; Metges, C.C. Milk Fatty Acids Estimated by Mid-Infrared Spectroscopy and Milk Yield Can Predict Methane Emissions in Dairy Cows. Agron. Sustain. Dev. 2018, 38, 27. [Google Scholar] [CrossRef]
- Western Canadian Dairy Herd Improvement Services. Persistency of Milk Production—Info Sheet. Available online: http://agromedia.ca/ADM_Articles/content/DHI_persist.pdf (accessed on 2 March 2023).
- MacLeod, M.J.; Vellinga, T.; Opio, C.; Falcucci, A.; Tempio, G.; Henderson, B.; Makkar, H.; Mottet, A.; Robinson, T.; Steinfeld, H.; et al. Invited Review: A Position on the Global Livestock Environmental Assessment Model (GLEAM). Animal 2018, 12, 383–397. [Google Scholar] [CrossRef]
- Ross, S.A.; Topp, C.F.E.; Ennos, R.A.; Chagunda, M.G.G. Relative Emissions Intensity of Dairy Production Systems: Employing Different Functional Units in Life-Cycle Assessment. Animal 2017, 11, 1381–1388. [Google Scholar] [CrossRef]
- Prayitno, C.H.; Suwarno; Susanto, A.; Jayanegara, A. Effect of Garlic Extract and Organic Mineral Supplementation on Feed Intake, Digestibility and Milk Yield of Lactating Dairy Cows. Asian J. Anim. Sci. 2016, 10, 213–218. [Google Scholar] [CrossRef]
- Balcells, J.; Aris, A.; Serrano, A.; Seradj, A.R.; Crespo, J.; Devant, M. Effects of an Extract of Plant Flavonoids (Bioflavex) on Rumen Fermentation and Performance in Heifers Fed High-Concentrate Diets. J. Anim. Sci. 2012, 90, 4975–4984. [Google Scholar] [CrossRef]
- Ding, H.; Ao, C.; Zhang, X. Potential Use of Garlic Products in Ruminant Feeding: A Review. Anim. Nutr. 2023, 14, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Li, L.; Zhao, H.; Zhang, S.; Tu, Y.; Liu, M.; Zhao, Y.; Jiang, L. Dietary Citrus Flavonoid Extract Improves Lactational Performance through Modulating Rumen Microbiome and Metabolites in Dairy Cows. Food Funct. 2023, 14, 94–111. [Google Scholar] [CrossRef] [PubMed]
- Seymour, W.M.; Campbell, D.R.; Johnson, Z.B. Relationships between Rumen Volatile Fatty Acid Concentrations and Milk Production in Dairy Cows: A Literature Study. Anim. Feed Sci. Technol. 2005, 119, 155–169. [Google Scholar] [CrossRef]
- Olagaray, K.E.; Bradford, B.J. Plant Flavonoids to Improve Productivity of Ruminants—A Review. Anim. Feed Sci. Technol. 2019, 251, 21–36. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, N.K.; Singh, O.P.; Pandey, V.; Verma, P.K. Oxidative Stress and Antioxidant Status during Transition Period in Dairy Cows. Asian-Aust. J. Anim. Sci. 2011, 24, 479–484. [Google Scholar] [CrossRef]
- Petit, H.V. Antioxidants and Dairy Production: The Example of Flax. Rev. Bras. Zootec. 2009, 38, 352–361. [Google Scholar] [CrossRef]
- Boushehri, M.; Sadeghi, A.A.; Chamani, M.; Aminafshar, M. Effects of Antioxidants and Prebiotics as Vegetable Pellet Feed on Production Performance, Hematological Parameters and Colostrum Immunoglobulin Content in Transition Dairy Cows. Ital. J. Anim. Sci. 2021, 20, 1863–1869. [Google Scholar] [CrossRef]
- Tedesco, D.; Tava, A.; Galletti, S.; Tameni, M.; Varisco, G.; Costa, A.; Steidler, S. Effects of Silymarin, a Natural Hepatoprotector, in Periparturient Dairy Cows. J. Dairy Sci. 2004, 87, 2239–2247. [Google Scholar] [CrossRef]
- Koloi, S.; Pathak, K.; Behera, R.; Mandal, D.K.; Karunakaran, M.; Duta, T.K.; Mandal, A. Factors Affecting the Persistency of Milk Production in Jersey Crossbred Cattle. J. Dairy Vet. Anim. Res. 2018, 7, 268–271. [Google Scholar] [CrossRef]
- Gholipour, A.; Foroozandeh Shahraki, A.D.; Tabeidian, S.A.; Nasrollahi, S.M.; Yang, W.Z. The Effects of Increasing Garlic Powder and Monensin Supplementation on Feed Intake, Nutrient Digestibility, Growth Performance and Blood Parameters of Growing Calves. J. Anim. Physiol. Anim. Nutr. 2016, 100, 623–628. [Google Scholar] [CrossRef]
- Rossi, G.; Schiavon, S.; Lomolino, G.; Cipolat-Gotet, C.; Simonetto, A.; Bittante, G.; Tagliapietra, F. Garlic (Allium sativum L.) Fed to Dairy Cows Does Not Modify the Cheese-Making Properties of Milk but Affects the Color, Texture, and Flavor of Ripened Cheese. J. Dairy Sci. 2018, 101, 2005–2015. [Google Scholar] [CrossRef]
- Ghosh, S.; Mehla, R.K.; Sirohi, S.K.; Roy, B. The Effect of Dietary Garlic Supplementation on Body Weight Gain, Feed Intake, Feed Conversion Efficiency, Faecal Score, Faecal Coliform Count and Feeding Cost in Crossbred Dairy Calves. Trop. Anim. Health Prod. 2010, 42, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Velarde-Guillén, J.; Arndt, C.; Gómez, C.A. Carbon Footprint in Latin American Dairy Systems. Trop. Anim. Health Prod. 2022, 54, 15. [Google Scholar] [CrossRef] [PubMed]
- Celis Hidalgo, J.E.; Allende, R.; Mardones, L. Empiric Approximation for the Carbon Footprint Determination from a Semi Intensive Dairy Farm in Chile. Vet. Sci. Anim. Husb. 2013, 11, 58–62. [Google Scholar]
- Gerber, P.; Vellinga, T.; Opio, C.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from the Dairy Sector—A Life Cycle Assessment; CFSI: Rome, Italy, 2010. [Google Scholar]
- O’Brien, D.; Brennan, P.; Humphreys, J.; Ruane, E.; Shalloo, L. An Appraisal of Carbon Footprint of Milk from Commercial Grass-Based Dairy Farms in Ireland According to a Certified Life Cycle Assessment Methodology. Int. J. Life Cycle Assess. 2014, 19, 1469–1481. [Google Scholar] [CrossRef]
- Yan, M.J.; Humphreys, J.; Holden, N.M. The Carbon Footprint of Pasture-Based Milk Production: Can White Clover Make a Difference? J. Dairy Sci. 2013, 96, 857–865. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, D.; Hennessy, T.; Moran, B.; Shalloo, L. Relating the Carbon Footprint of Milk from Irish Dairy Farms to Economic Performance. J. Dairy Sci. 2015, 98, 7394–7407. [Google Scholar] [CrossRef] [PubMed]
- Gollnow, S.; Lundie, S.; Moore, A.D.; McLaren, J.; van Buuren, N.; Stahle, P.; Christie, K.; Thylmann, D.; Rehl, T. Carbon Footprint of Milk Production from Dairy Cows in Australia. Int. Dairy J. 2014, 37, 31–38. [Google Scholar] [CrossRef]
- Christie, K.M.; Gourley, C.J.P.; Rawnsley, R.P.; Eckard, R.J.; Awty, I.M. Whole-Farm Systems Analysis of Australian Dairy Farm Greenhouse Gas Emissions. Anim. Prod. Sci. 2012, 52, 998–1011. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Falconer, S.J.; Abercrombie, R.; Philip, G.; Hill, J.P. Temporal, Spatial, and Management Variability in the Carbon Footprint of New Zealand Milk. J. Dairy Sci. 2020, 103, 1031–1046. [Google Scholar] [CrossRef]
- Flysjö, A.; Henriksson, M.; Cederberg, C.; Ledgard, S.; Englund, J.E. The Impact of Various Parameters on the Carbon Footprint of Milk Production in New Zealand and Sweden. Agric. Syst. 2011, 104, 459–469. [Google Scholar] [CrossRef]
- Gerber, P.; Opio, C. Greenhouse Gas Emission from Ruminant Supply Chains: A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations, Animal Production and Health Division: Rome, Italy, 2010; ISBN 9789251079454. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 9789251079201. [Google Scholar]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited Review: Current Enteric Methane Mitigation Options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef] [PubMed]
Chemical Composition | Pasture | Rolled Corn | Hay | Concentrates |
---|---|---|---|---|
Dry matter (DM; %) | 16.6 | 85.3 | 80.0 | 88.0 |
Crude protein (% DM) | 22.0 | 8.10 | 10.4 | 16.1 |
Crude fat (% DM) | 4.17 | 3.44 | 2.35 | 3.90 |
Neutral detergent fibre (% DM) | 44.8 | 12.2 | 63.1 | 23.2 |
Acid detergent fibre (% DM) | 24.8 | 4.90 | 40.2 | 11.4 |
Starch (% DM) | 3.31 | 72.2 | 1.80 | 40.3 |
Metabolisable energy (Mcal/kg DM) | 2.61 | 3.37 | 2.13 | 2.70 |
Net energy for lactation (Mcal/kg DM) | 1.56 | 1.98 | 1.30 | 1.61 |
Calcium (% DM) | 0.73 | - | 0.34 | 0.81 |
Phosphorous (% DM) | 0.29 | 0.18 | 0.27 | 0.57 |
Magnesium (% DM) | 0.29 | 0.09 | 0.15 | 0.29 |
Potassium (% DM) | 2.53 | 0.28 | 2.26 | 0.93 |
Chemical Composition | Pasture | Ryegrass + Barley Silage | Concentrates |
---|---|---|---|
Dry matter (%) | 20.2 | 30.5 | 88.4 |
Crude protein (% DM) | 21.9 | 12.5 | 12.9 |
Crude fat (% DM) | 4.19 | 3.63 | 1.79 |
Neutral detergent fibre (% DM) | 45.0 | 53.2 | 19.5 |
Acid detergent fibre (% DM) | 28.2 | 35.3 | 7.85 |
Metabolisable energy (Mcal/kg DM) | 2.55 | 2.22 | 3.05 |
Net energy for lactation (Mcal/kg DM) | 1.62 | 1.51 | 1.81 |
Calcium (% DM) | 0.63 | 0.47 | 2.12 |
Phosphorous (% DM) | 0.34 | 0.25 | 0.42 |
Magnesium (% DM) | 0.27 | 0.18 | 0.52 |
Potassium (% DM) | 2.74 | 1.50 | 0.82 |
Parameter | Treatment 1 | p-Value | ||||
---|---|---|---|---|---|---|
CTRL | GCE | SEM | Treatment | Week | Treatment × Week | |
Milk yield (kg/d) | 25.4 | 28.0 | 0.43 | <0.001 | <0.001 | 0.231 |
ECM 2 (kg/d) | 24.5 | 27.3 | 0.43 | <0.001 | <0.001 | 0.166 |
Protein (%) | 3.49 | 3.47 | 0.02 | 0.619 | 0.063 | 0.097 |
Fat (%) | 3.67 | 3.76 | 0.05 | 0.175 | <0.001 | 0.439 |
Protein yield (kg/d) | 0.88 | 0.97 | 0.02 | <0.001 | <0.001 | 0.037 |
Fat yield (kg/d) | 0.92 | 1.05 | 0.02 | <0.001 | <0.001 | 0.361 |
Urea (mg/L) | 372 | 367 | 4.43 | 0.428 | <0.001 | 0.335 |
Somatic cell count (×1000 cells/mL) | 41.9 | 36.1 | 6.51 | 0.550 | 0.161 | 0.902 |
Feed intake and efficiency | ||||||
Estimated DMI 3 (kg/d) | 18.4 | 19.9 | 0.20 | <0.001 | <0.001 | 0.221 |
Milk yield/DMI | 1.37 | 1.40 | 0.01 | 0.057 | <0.001 | 0.329 |
ECM/DMI | 1.32 | 1.36 | 0.01 | 0.001 | <0.001 | 0.191 |
Parameters | Treatment 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
CTRL | GCE | Treatment | Week | Treatment × Week | ||
Milk yield (kg/d) | 14.9 | 19.6 | 0.21 | <0.001 | <0.001 | <0.001 |
ECM 2 (kg/d) | 15.5 | 20.7 | 0.27 | <0.001 | <0.001 | <0.001 |
Protein (%) | 4.04 | 4.03 | 0.03 | 0.894 | <0.001 | 0.414 |
Fat (%) | 4.25 | 4.20 | 0.07 | 0.674 | <0.001 | 0.816 |
Protein yield (kg/d) | 0.59 | 0.79 | 0.01 | <0.001 | <0.001 | <0.001 |
Fat yield (kg/d) | 0.60 | 0.81 | 0.01 | <0.0001 | 0.006 | <0.001 |
Urea (mg/L) | 363 | 363 | 5.49 | 0.868 | <0.001 | 0.181 |
Somatic cell count (×1000 cells/mL) | 138 | 104 | 18.4 | 0.193 | <0.001 | 0.447 |
Feed efficiency | ||||||
Estimated DMI 3 (kg/d) | 15.0 | 17.3 | 0.14 | <0.001 | <0.001 | <0.001 |
Milk yield/DMI | 0.97 | 1.13 | 0.01 | <0.001 | <0.001 | <0.001 |
ECM/DMI | 1.01 | 1.19 | 0.01 | <0.001 | <0.001 | <0.001 |
Emission Sources (g CO2-eq/kg ECM 1) | CTRL-Baseline | GCE Scenario | % Change |
---|---|---|---|
Enteric fermentation CH4 | 1026 | 940 | −8.38% |
Manure CH4 | 26.9 | 24.7 | −8.18% |
Manure N2O | 34.4 | 30.4 | −11.6% |
Feed N2O | 173 | 157 | −9.25% |
Feed CO2 | 206 | 188 | −8.74% |
Feed LUC 2 CO2 | 0.33 | 0.31 | −6.06% |
Direct energy use CO2 | 70.8 | 70.8 | 0.00% |
Indirect energy use CO2 | 10.8 | 9.41 | −12.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khurana, R.; Salami, S.A.; Poblete, R.B.; Fischer, A.; Cofré, L.A.; Bustos, V.; Tas, B.M. Effect of a Garlic and Citrus Extract Supplement on the Lactation Performance and Carbon Footprint of Dairy Cows under Grazing Conditions in Chile. Animals 2024, 14, 165. https://doi.org/10.3390/ani14010165
Khurana R, Salami SA, Poblete RB, Fischer A, Cofré LA, Bustos V, Tas BM. Effect of a Garlic and Citrus Extract Supplement on the Lactation Performance and Carbon Footprint of Dairy Cows under Grazing Conditions in Chile. Animals. 2024; 14(1):165. https://doi.org/10.3390/ani14010165
Chicago/Turabian StyleKhurana, Ruchita, Saheed A. Salami, Roberto Bergmann Poblete, Angela Fischer, Lisseth Aravena Cofré, Viviana Bustos, and Bart M. Tas. 2024. "Effect of a Garlic and Citrus Extract Supplement on the Lactation Performance and Carbon Footprint of Dairy Cows under Grazing Conditions in Chile" Animals 14, no. 1: 165. https://doi.org/10.3390/ani14010165
APA StyleKhurana, R., Salami, S. A., Poblete, R. B., Fischer, A., Cofré, L. A., Bustos, V., & Tas, B. M. (2024). Effect of a Garlic and Citrus Extract Supplement on the Lactation Performance and Carbon Footprint of Dairy Cows under Grazing Conditions in Chile. Animals, 14(1), 165. https://doi.org/10.3390/ani14010165