Shape Evolution in Two Acts: Morphological Diversity of Larval and Adult Neoaustraranan Frogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample and Data Acquisition
2.2. Statistical Analysis
3. Results
3.1. Shape and Size
3.2. Morphological Evolution
3.3. Adaptive Decoupling Hypothesis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alberch, P.; Gould, S.J.; Oster, G.F.; Wake, D.B. Size and Shape in Ontogeny and Phylogeny. Paleobiology 1979, 5, 296–317. [Google Scholar] [CrossRef]
- Zelditch, M.L.; Bookstein, F.L.; Lundrigan, B.L. The Ontogenetic Complexity of Developmental Constraints. J. Evol. Biol. 1993, 6, 621–641. [Google Scholar] [CrossRef]
- Klingenberg, C.P. Evolution and Development of Shape: Integrating Quantitative Approaches. Nat. Rev. Genet. 2010, 11, 623–635. [Google Scholar] [CrossRef]
- von Baer, K.E. Über Entwickelungsgeschichte der Thiere; Royal College of Physicians of London: London, UK, 1828. [Google Scholar]
- Darwin, C. The Origin of Species: By Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life; John Murray: London, UK, 1976. [Google Scholar]
- Wilbur, H.M. Complex Life Cycles. Annu. Rev. Ecol. Syst. 1980, 11, 67–93. [Google Scholar] [CrossRef]
- Raff, R.A. Origins of the Other Metazoan Body Plans: The Evolution of Larval Forms. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Ebenman, B. Evolution in Organisms That Change Their Niches during the Life Cycle. Am. Nat. 1992, 139, 990–1021. [Google Scholar] [CrossRef]
- Moran, N.A. Adaptation and Constraint in the Complex Life Cycles of Animals. Annu. Rev. Ecol. Syst. 1994, 25, 573–600. [Google Scholar] [CrossRef]
- Collet, J.; Fellous, S. Do Traits Separated by Metamorphosis Evolve Independently? Concepts and Methods. Proc. R. Soc. B Biol. Sci. 2019, 286, 20190445. [Google Scholar] [CrossRef] [PubMed]
- Crean, A.J.; Monro, K.; Marshall, D.J. Fitness Consequences of Larval Traits Persist across the Metamorphic Boundary. Evolution 2011, 65, 3079–3089. [Google Scholar] [CrossRef]
- Stoks, R.; Córdoba-Aguilar, A. Evolutionary Ecology of Odonata: A Complex Life Cycle Perspective. Annu. Rev. Entomol. 2012, 57, 249–265. [Google Scholar] [CrossRef]
- Phung, T.X.; Nascimento, J.C.S.; Novarro, A.J.; Wiens, J.J. Correlated and Decoupled Evolution of Adult and Larval Body Size in Frogs. Proc. R. Soc. B Biol. Sci. 2020, 287, 20201474. [Google Scholar] [CrossRef]
- Rühr, P.T.; Van De Kamp, T.; Faragó, T.; Hammel, J.U.; Wilde, F.; Borisova, E.; Edel, C.; Frenzel, M.; Baumbach, T.; Blanke, A. Juvenile Ecology Drives Adult Morphology in Two Insect Orders. Proc. R. Soc. B Biol. Sci. 2021, 288, 20210616. [Google Scholar] [CrossRef]
- Arnold, S.J. Inheritance and the Evolution of Behavioral Ontogenies. In Developmental Behavior Genetics: Neural, Biometrical, and Evolutionary Approaches; Hahn, M.E., Hewitt, J.K., Henderson, N.D., Benno, R., Eds.; Oxford University Press: Oxford, UK, 1990; pp. 167–189. [Google Scholar]
- Marshall, D.J.; Morgan, S.G. Ecological and Evolutionary Consequences of Linked Life-History Stages in the Sea. Curr. Biol. 2011, 21, R718–R725. [Google Scholar] [CrossRef]
- Aguirre, J.D.; Blows, M.W.; Marshall, D.J. The Genetic Covariance between Life Cycle Stages Separated by Metamorphosis. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141091. [Google Scholar] [CrossRef]
- Herrig, D.K.; Vertacnik, K.L.; Kohrs, A.R.; Linnen, C.R. Support for the Adaptive Decoupling Hypothesis from Whole-Transcriptome Profiles of a Hypermetamorphic and Sexually Dimorphic Insect, Neodiprion Lecontei. Mol. Ecol. 2021, 30, 4551–4566. [Google Scholar] [CrossRef]
- Frost, D.R. Amphibian Species of the World: An Online Reference, Version 6.2; American Museum of Natural History: New York, NY, USA, 2024. [Google Scholar]
- Heyer, W.R. Variation and Systematics of Frogs of the Genus Cycloramphus (Amphibia: Leptodactylidae). Arq. De Zool. 1983, 30, 235–339. [Google Scholar] [CrossRef]
- Heyer, W.R. Notes on the Frog Genus Cycloramphus (Amphibia: Leptodactylidae), with Descriptions of Two New Species. Proc. Biol. Soc. Wash. 1983, 96, 548–559. [Google Scholar]
- Verdade, V.K. Relações Filogenéticas Entre as Espécies dos Gêneros Cycloramphus Tschudi 1838 e Zachaenus Cope 1866 (Anura, Leptodactylidae); Universidade de São Paulo: São Paulo, Brazil, 2005. [Google Scholar]
- Sabbag, A.F.; Lyra, M.L.; Zamudio, K.R.; Haddad, C.F.B.; Feio, R.N.; Leite, F.S.F.; Gasparini, J.L.; Brasileiro, C.A. Molecular Phylogeny of Neotropical Rock Frogs Reveals a Long History of Vicariant Diversification in the Atlantic Forest. Mol. Phylogenetics Evol. 2018, 122, 142–156. [Google Scholar] [CrossRef]
- Verdade, V.K.; Almeida-Silva, D.; Cassimiro, J.; Rodrigues, M.T. Rediscovering Cycloramphus Bandeirensis (Anura: Cycloramphidae): Natural History and Breeding Biology of a Vulnerable Species with a Variant Reproductive Mode. Phyllomedusa J. Herpetol. 2019, 18, 159–175. [Google Scholar] [CrossRef]
- de Sá, F.P.; Haddad, C.F.B.; Gray, M.M.; Verdade, V.K.; Thomé, M.T.C.; Rodrigues, M.T.; Zamudio, K.R. Male-male Competition and Repeated Evolution of Terrestrial Breeding in Atlantic Coastal Forest Frogs*. Evolution 2020, 74, 459–475. [Google Scholar] [CrossRef]
- Verdade, V.K.; Rodrigues, M.T. A New Species of Cycloramphus (Anura, Leptodactylidae) from the Atlantic Forest, Brazil. Herpetologica 2003, 59, 513–518. [Google Scholar] [CrossRef]
- Lingnau, R.; Solé, M.; Dallacorte, F.; Kwet, A. Description of the Advertisement Call of Cycloramphus Bolitoglossus (Werner, 1897), with Comments on Other Species in the Genus from Santa Catarina, South Brazil (Amphibia, Cycloramphidae). J. Zool. 2008, 4, 25. [Google Scholar]
- Almeida-Silva, D.; De Oliveira Rocha-Barros, V.C.; Ferreira, R.B.; Verdade, V.K. The Tadpole of Zachaenus Carvalhoi Izecksohn, 1983 (Anura: Cycloramphidae). Zootaxa 2019, 4668, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Jetz, W.; Pyron, R.A. The Interplay of Past Diversification and Evolutionary Isolation with Present Imperilment across the Amphibian Tree of Life. Nat. Ecol. Evol. 2018, 2, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Streicher, J.W.; Miller, E.C.; Guerrero, P.C.; Correa, C.; Ortiz, J.C.; Crawford, A.J.; Pie, M.R.; Wiens, J.J. Evaluating Methods for Phylogenomic Analyses, and a New Phylogeny for a Major Frog Clade (Hyloidea) Based on 2214 Loci. Mol. Phylogenetics Evol. 2018, 119, 128–143. [Google Scholar] [CrossRef] [PubMed]
- Portik, D.M.; Streicher, J.W.; Wiens, J.J. Frog Phylogeny: A Time-Calibrated, Species-Level Tree Based on Hundreds of Loci and 5,242 Species. Mol. Phylogenetics Evol. 2023, 188, 107907. [Google Scholar] [CrossRef] [PubMed]
- Hime, P.M.; Lemmon, A.R.; Lemmon, E.C.M.; Prendini, E.; Jeremy, M.; Thomson, R.C.; Kratovil, J.D.; Noonan, B.P.; Pyron, R.A.; Pedro, L.V. Phylogenomics Reveals Ancient Gene Tree Discordance in the Amphibian Tree of Life. Syst. Biol. 2021, 70, 49–66. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.J.; Blackburn, D.C.; Liang, D.; Hillis, D.M.; Wake, D.B.; Cannatella, D.C.; Zhang, P. Phylogenomics Reveals Rapid, Simultaneous Diversification of Three Major Clades of Gondwanan Frogs at the Cretaceous–Paleogene Boundary. Proc. Natl. Acad. Sci. USA 2017, 114, E5864–E5870. [Google Scholar] [CrossRef]
- Giaretta, A.A.; Bokermann, W.C.A.; Haddad, C.F.B. A Review of the Genus Megaelosia (Anura: Leptodactylidae) with a Description of a New Species. J. Herpetol. 1993, 27, 276. [Google Scholar] [CrossRef]
- Pimenta, B.V.S.; Cruz, C.A.G.; Caramaschi, U. Taxonomic Review of the Species Complex of Crossodactylus Dispar A. Lutz, 1925 (Anura, Hylodidae). Arq. Zool. 2014, 45, 1–33. [Google Scholar] [CrossRef]
- Almeida-Gomes, M.; Hatano, F.H.; Sluys, M.V.; Rocha, C.F.D. Diet and Microhabitat Use by Two Hylodinae Species (Anura, Cycloramphidae) Living in Sympatry and Syntopy in a Brazilian Atlantic Rainforest Area. Iheringia. Série Zool. 2007, 97, 27–30. [Google Scholar] [CrossRef]
- Lynch, J.D. Evolutionary Relationships, Osteology, and Zoogeography of Leptodactyloid Frogs. Misc. Publ. Univ. Kans. Mus. Nat. Hist. 1971, 53, 899. [Google Scholar]
- Cei, J.-M.A.M. Amphibians of Argentina; Università degli Studi di Firenze: Firenze, Italy, 1980; Volume N. S. Mono. [Google Scholar]
- Díaz, N.F.; Valencia, J. Microhabitat Utilization by Two Leptodactylid Frogs in the Andes of Central Chile. Oecologia 1985, 66, 353–357. [Google Scholar] [CrossRef]
- Charrier, A. Guía de Campo: Anfibios de Los Bosques de La Zona Centro Sur y Patagonia de Chile; Corporación Chilena de la Madera: Santiago, Chile, 2019; ISBN 978-956-8398-12-5. [Google Scholar]
- Úbeda, C.; Moncada, M.; Jara, F. Fenología Del Ciclo de Vida de La Rana Esmeralda Hylorina Sylvatica Bell 1843 (Anura, Batrachylidae) En Un Humedal Semipermanente Del Noroeste de La Patagonia Argentina. Boletín Chil. Herpetol. 2022, 9, 1–11. [Google Scholar]
- Jara, F.G.; Úbeda, C.; Moncada, M.; Perotti, M.G. Natural History Traits of the Terrestrial Breeding Frog Batrachyla Taeniata (Anura: Batrachylidae) in Wet Meadows of Patagonia. Stud. Neotrop. Fauna Environ. 2023, 58, 574–586. [Google Scholar] [CrossRef]
- Vera Candioti, M.F.; Nuñez, J.J.; Úbeda, C. Development of the Nidicolous Tadpoles of Eupsophus Emiliopugini (Anura: Cycloramphidae) until Metamorphosis, with Comments on Systematic Relationships of the Species and Its Endotrophic Developmental Mode. Acta Zool. 2011, 92, 27–45. [Google Scholar] [CrossRef]
- Vera Candioti, M.F.; Úbeda, C.; Lavilla, E.O. Morphology and Metamorphosis of Eupsophus Calcaratus Tadpoles (Anura: Leptodactylidae). J. Morphol. 2005, 264, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Sherratt, E.; Vidal-García, M.; Anstis, M.; Keogh, J.S. Adult Frogs and Tadpoles Have Different Macroevolutionary Patterns across the Australian Continent. Nat. Ecol. Evol. 2017, 1, 1385–1391. [Google Scholar] [CrossRef] [PubMed]
- Gosner, K.L. A Simplified Table for Staging Anuran Embryos and Larvae with Notes on Identification. Herpetologica 1960, 16, 183–190. [Google Scholar]
- Haad, B.; Candioti, F.V.; Baldo, D. Shape Variation in Lentic and Lotic Tadpoles of Melanophryniscus (Anura: Bufonidae). Stud. Neotrop. Fauna Environ. 2011, 46, 91–99. [Google Scholar] [CrossRef]
- Rohlf, F.J. TpsUtil File Utility Program, Version 1.58; Department of Ecology and Evolution, State University of New York at Stony Brook: Stony Brook, NY, USA, 2010.
- Rohlf, F.J. TpsDig File Utility Program, Version 2.17; Department of Ecology and Evolution, State University of New York at Stony Brook: Stony Brook, NY, USA, 2010.
- Adams, D.C.; Collyer, M.L.; Kaliontzopoulou, A.; Baken, E.K. Geomorph: Software for Geometric Morphometric Analyses. R Package Version 4.0.6. Available online: https://cran.r-project.org/package=geomorph (accessed on 10 October 2023).
- Watters, J.L.; Cummings, S.T.; Flanagan, R.L.; Siler, C.D. Review of Morphometric Measurements Used in Anuran Species Descriptions and Recommendations for a Standardized Approach. Zootaxa 2016, 4072, 477–495. [Google Scholar] [CrossRef] [PubMed]
- Girish, V.; Vijayalakshmi, A. Affordable Image Analysis Using NIH Image/ImageJ. Indian J. Cancer 2004, 41, 47. [Google Scholar] [PubMed]
- Josse, J.; Husson, F. missMDA: A Package for Handling Missing Values in Multivariate Data Analysis. J. Stat. Softw. 2016, 70, 1–31. [Google Scholar] [CrossRef]
- Altig, R.; Johnston, G.F. Guilds of Anuran Larvae: Relationships among Developmental Modes, Morphologies, and Habitats. Herpetol. Monogr. 1989, 3, 81–109. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Levis, N.A.; Martin, R.A.; O’Donnell, K.A.; Pfennig, D.W. Intraspecific Adaptive Radiation: Competition, Ecological Opportunity, and Phenotypic Diversification within Species. Evolution 2017, 71, 2496–2509. [Google Scholar] [CrossRef]
- Hossie, T.J.; Ferland-Raymond, B.; Burness, G.; Murray, D.L. Morphological and Behavioural Responses of Frog Tadpoles to Perceived Predation Risk: A Possible Role for Corticosterone Mediation? Ecoscience 2010, 17, 100–108. [Google Scholar] [CrossRef]
- Mosimann, J.E. Size Allometry: Size and Shape Variables with Characterizations of the Lognormal and Generalized Gamma Distributions. J. Am. Stat. Assoc. 1970, 65, 930–945. [Google Scholar] [CrossRef]
- Mitteroecker, P.; Gunz, P.; Windhager, S.; Schaefer, K. A Brief Review of Shape, Form, and Allometry in Geometric Morphometrics, with Applications to Human Facial Morphology. Hystrix 2013, 24, 59–66. [Google Scholar] [CrossRef]
- Brightly, W.H.; Stayton, C.T. Convevol: Analysis of Convergent Evolution. Available online: https://CRAN.R-project.org/package=convevol (accessed on 12 October 2023).
- Stayton, C.T. The Definition, Recognition, and Interpretation of Convergent Evolution, and Two New Measures for Quantifying and Assessing the Significance of Convergence. Evolution 2015, 69, 2140–2153. [Google Scholar] [CrossRef]
- Revell, L.J. Phytools: An R Package for Phylogenetic Comparative Biology (and Other Things). Methods Ecol. Evol. 2012, 3, 217–223. [Google Scholar] [CrossRef]
- Foth, C.; Ascarrunz, E.; Joyce, W.G. Still Slow, but Even Steadier: An Update on the Evolution of Turtle Cranial Disparity Interpolating Shapes along Branches. R. Soc. Open Sci. 2017, 4, 170899. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Ecomorphological Selectivity among Marine Teleost Fishes during the End-Cretaceous Extinction. Proc. Natl. Acad. Sci. USA 2009, 106, 5218–5223. [Google Scholar] [CrossRef]
- Goolsby, E.W.; Bruggeman, J.; Ane, C. Rphylopars: Phylogenetic Comparative Tools for Missing Data and Within-Species Variation. Available online: https://cran.r-project.org/web/packages/Rphylopars/index.html (accessed on 18 January 2024).
- Hetherington, A.J.; Sherratt, E.; Ruta, M.; Wilkinson, M.; Deline, B.; Donoghue, P.C.J. Do Cladistic and Morphometric Data Capture Common Patterns of Morphological Disparity? Palaeontology 2015, 58, 393–399. [Google Scholar] [CrossRef]
- Baldo, D.; Candioti, F.V.; Haad, B.; Kolenc, F.; Borteiro, C.; Pereyra, M.O.; Zank, C.; Colombo, P.; Bornschein, M.R.; Sisa, F.N.; et al. Comparative Morphology of Pond, Stream and Phytotelm-Dwelling Tadpoles of the South American Redbelly Toads (Anura: Bufonidae: Melanophryniscus). Biol. J. Linn. Soc. 2014, 112, 417–441. [Google Scholar] [CrossRef]
- Sherratt, E.; Anstis, M.; Keogh, J.S. Ecomorphological Diversity of Australian Tadpoles. Ecol. Evol. 2018, 8, 12929–12939. [Google Scholar] [CrossRef] [PubMed]
- Dehling, J.M.; Sinsch, U. Partitioning of Morphospace in Larval and Adult Reed Frogs (Anura: Hyperoliidae: Hyperolius)of the Central African Albertine Rift. Zool. Anz. 2019, 280, 65–77. [Google Scholar] [CrossRef]
- Laudor, J.; Schulze, A.; Veith, M.; Viertel, B.; Elle, O.; Lötters, S. Morphology of Lentic and Lotic Tadpoles from Madagascar. BMC Zool. 2021, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Dias, P.H.d.S.; Vera Candioti, F.; Sabbag, A.F.; Colaço, G.; da Silva, H.R.; Haddad, C.F.B.; de Carvalho-e-Silva, A.M.P.T.; Grant, T. Life on the Edge: Tadpoles of Cycloramphidae (Amphibia; Anura), Anatomy, Systematics, Functional Morphology, and Comments on the Evolution of Semiterrestrial Tadpoles. J. Zool. Syst. Evol. Res. 2021, 59, 1297–1321. [Google Scholar] [CrossRef]
- Giannini, N.P. Canonical Phylogenetic Ordination. Syst. Biol. 2003, 52, 684–695. [Google Scholar] [CrossRef]
- Etter, L.; Haas, A.; Lee, C.C.; Min, P.Y.; Das, I.; Hertwig, S.T. Out of the Trap: A New Phytothelm-Breeding Species of Philautus and an Updated Phylogeny of Bornean Bush Frogs (Anura: Rhacophoridae). J. Zool. Syst. Evol. Res. 2021, 59, 1064–1096. [Google Scholar] [CrossRef]
- Randrianiaina, R.D.; Wollenberg, K.C.; Hiobiarilanto, T.R.; Strauß, A.; Glos, J.; Vences, M. Nidicolous Tadpoles Rather than Direct Development in Malagasy Frogs of the Genus Gephyromantis. J. Nat. Hist. 2011, 45, 2871–2900. [Google Scholar] [CrossRef]
- Dubeux, M.J.M.; do Nascimento, F.A.C.; Dias, P.H.d.S. Larval Morphology of Frostius Pernambucensis (Anura): Contribution of Larval Characters for the Systematics of the Family Bufonidae and Evolution of Endotrophic Tadpoles. Zoomorphology 2023, 143, 159–187. [Google Scholar] [CrossRef]
- Verdade, V.K.; Almeida-Silva, D.; Rodrigues, M.T. The Endotrophic Nidicolous Tadpole of Cycloramphus Eleutherodactylus (Miranda-Ribeiro) (Anura: Cycloramphidae). Zootaxa 2023, 5254, 287–294. [Google Scholar] [CrossRef] [PubMed]
- De Sá, F.P.; Condez, T.H.; Lyra, M.L.; Haddad, C.F.B.; Malagoli, L.R. Unveiling the Diversity of Giant Neotropical Torrent Frogs (Hylodidae): Phylogenetic Relationships, Morphology, and the Description of Two New Species. Syst. Biodivers. 2022, 20, 1–31. [Google Scholar] [CrossRef]
- Pirani, R.M.; Pezzuti, T.L.; Motta, A.P.; Feio, R.N. The Tadpole of Hylodes Babax Heyer, 1982 (Amphibia, Anura, Hylodidae). Zootaxa 2011, 1930, 64–68. [Google Scholar] [CrossRef]
- Silva-Soares, T.; Nogueira-Costa, P.; Júnior, V.N.T.B.; Weber, L.N.; Rocha, C.F.D. The Larva of Crossodactylus Aeneus Müller, 1924: Morphology and Ecological Aspects. Herpetologica 2015, 71, 46–57. [Google Scholar] [CrossRef]
- Da Silva, D.d.N.; da Rosa, F.C.B.; de Carvalho-E-Silva, A.M.P.T. Ontogeny and Behavioural Aspects of the Tadpoles of Megaelosia Goeldii (Baumann, 1912) (Amphibia, Anura, Hylodidae). Herpetol. Notes 2018, 11, 629–639. [Google Scholar]
- Vidigal, I.; De Carvalho, T.R.; Clemente-Carvalho, R.B.G.; Giaretta, A.A. Vocalizations, Tadpole, and Natural History of Crossodactylus Werneri Pimenta, Cruz & Caramaschi, 2014 (Anura: Hylodidae), with Comments on Distribution and Intraspecific Variation. Zootaxa 2018, 4388, 61–75. [Google Scholar] [CrossRef]
- Nascimento, L.B.; Pombal, J.P.; Haddad, C.F.B. A New Frog of the Genus Hylodes (Amphibia: Leptodactylidae) from Minas Gerais, Brazil. J. Zool. 2001, 254, 421–428. [Google Scholar] [CrossRef]
- Lacerda, J.V.A.; Montesinos, R.; Zocca, C.; Guimarães, C.S.; Santana, D.J.; Ferreira, R.B. On the Stream-Dwelling Crossodactylus Timbuhy (Anura, Hylodidae): Taxonomy, Natural History, and Geographic Distribution. Zootaxa 2022, 5155, 564–580. [Google Scholar] [CrossRef]
- Sazima, I.; Bokermann, W. Anfíbios Da Serra Do Cipó, Minas Gerais, Brasil. 5: Hylodes Otavioi Sp. n. (Anura, Leptodactylidae). Rev. Bras. Biol. 1982, 42, 767–771. [Google Scholar]
- Pombal, J.P.; Feio, R.N.; Haddad, C.F.B. A New Species of Torrent Frog Genus Hylodes (Anura: Leptodactylidae) from Southeastern Brazil. Herpetologica 2002, 58, 462–471. [Google Scholar] [CrossRef]
- Weber, L.N.; Verdade, V.K.; De Oliveira Lula Salles, R.; Fouquet, A.; De Carvalho-E-Silva, S.P. A New Species of Cycloramphus Tschudi (Anura: Cycloramphidae) from the Parque Nacional Da Serra Dos Órgãos, Southeastern Brazil. Zootaxa 2011, 1982, 19–33. [Google Scholar] [CrossRef]
- Lynch, J.D. A New Genus for Elosia Duidensis Rivero (Amphibia, Leptodactylidae) from Southern Venezuela. Amercan Mus. Novit. 1979, 2680, 1–8. [Google Scholar]
- Matsui, M.; Mohamed, M.; Shimada, T.; Sudin, A. Resurrection of Staurois Parvus from s. Tuberilinguis from Borneo (Amphibia, Ranidae). Zool. Sci. 2007, 24, 101–106. [Google Scholar] [CrossRef]
- Biju, S.D.; Garg, S.; Gururaja, K.V.; Shouche, Y.; Walujkar, S.A. DNA Barcoding Reveals Unprecedented Diversity in Dancing Frogs of India (Micrixalidae, Micrixalus): A Taxonomic Revision with Description of 14 New Species. Ceylon J. Sci. 2014, 43, 37–123. [Google Scholar] [CrossRef]
- Tokita, M.; Iizuka, J.; Eto, K. Characterization of the Adaptive Morphology of the Stream Brown Frog, Rana Sakuraii Matsui & Matsui, 1990, Using Geometric Morphometrics. Herpetol. Notes 2023, 16, 761–771. [Google Scholar]
- Werner, E.E. Amphibian Metamorphosis: Growth Rate, Predation Risk, and the Optimal Size at Transformation. Am. Nat. 1986, 128, 319–341. [Google Scholar] [CrossRef]
- Wollenberg-Valero, K.C.; Garcia-Porta, J.; Rodríguez, A.; Arias, M.; Shah, A.; Randrianiaina, R.D.; Brown, J.L.; Glaw, F.; Amat, F.; Künzel, S.; et al. Transcriptomic and Macroevolutionary Evidence for Phenotypic Uncoupling between Frog Life History Phases. Nat. Commun. 2017, 8, 15213. [Google Scholar] [CrossRef]
- Safford, H.D. Brazilian Paramos, I. An Introduction to the Physical Environment and Vegetation of the Campos de Altitude. J. Biogeogr. 1999, 26, 693–712. [Google Scholar] [CrossRef]
- Perret, M.; Chautems, A.; Spichiger, R. Dispersal-Vicariance Analyses in the Tribe Sinningieae (Gesneriaceae): A Clue to Understanding Biogeographical History of the Brazilian Atlantic Forest. Ann. Mo. Bot. Gard. 2006, 93, 340–358. [Google Scholar] [CrossRef]
- Mata, H.; Fontana, C.S.; Maurício, G.N.; Bornschein, M.R.; de Vasconcelos, M.F.; Bonatto, S.L. Molecular Phylogeny and Biogeography of the Eastern Tapaculos (Aves: Rhinocryptidae: Scytalopus, Eleoscytalopus): Cryptic Diversification in Brazilian Atlantic Forest. Mol. Phylogenetics Evol. 2009, 53, 450–462. [Google Scholar] [CrossRef]
- Varajão, C.A.C.; Alkmim, F.F. de Pancas: The Kingdom of Bornhardts. In Landscapes and Landforms of Brazil. World Geomorphological Landscapes; Vieira, B.C., Rodrigues, A.A., Santos, S.L.J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 381–388. [Google Scholar]
- Vieira, B.C.; Gramani, M.F. Serra Do Mar: The Most “Tormented” Relief in Brazil. In Landscapes and Landforms of Brazil. World Geomorphological Landscapes; Vieira, B.C., Rodrigues, A.A., Santos, S.L.J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 285–297. [Google Scholar]
- Hernández, R.M.; Jordan, T.E.; Farjat, A.D.; Echavarría, L.; Idleman, B.D.; Reynolds, J.H. Age, Distribution, Tectonics, and Eustatic Controls of the Paranense and Caribbean Marine Transgressions in Southern Bolivia and Argentina. J. S. Am. Earth Sci. 2005, 19, 495–512. [Google Scholar] [CrossRef]
- Billups, K. Late Miocene through Early Pliocene Deep Water Circulation and Climate Change Viewed from the Sub-Antarctic South Atlantic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 185, 287–307. [Google Scholar] [CrossRef]
- Nascimento, A.C.; Chaves, A.V.; Leite, F.S.F.; Eterovick, P.C.; Santos, F.R.D. Past Vicariance Promoting Deep Genetic Divergence in an Endemic Frog Species of the Espinhaço Range in Brazil: The Historical Biogeography of Bokermannohyla Saxicola (Hylidae). PLoS ONE 2018, 13, e0206732. [Google Scholar] [CrossRef] [PubMed]
- Zachos, J.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science 2001, 292, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, A.; Artabe, A.E.; Morel, E.M. The Evolution of Patagonian Climate and Vegetation from the Mesozoic to the Present. Biol. J. Linn. Soc. 2011, 103, 409–422. [Google Scholar] [CrossRef]
- Barreda, V.; Palazzesi, L. Patagonian Vegetation Turnovers during the Paleogene-Early Neogene: Origin of Arid-Adapted Floras. Bot. Rev. 2007, 73, 31–50. [Google Scholar] [CrossRef]
- Gombosi, D.J.; Barbeau, D.L.; Garver, J.I. New Thermochronometric Constraints on the Rapid Palaeogene Exhumation of the Cordillera Darwin Complex and Related Thrust Sheets in the Fuegian Andes. Terra Nova 2009, 21, 507–515. [Google Scholar] [CrossRef]
- Goddard, A.L.S.; Fosdick, J.C.; Calderón, M.; Ghiglione, M.C.; VanderLeest, R.A.; Romans, B.W. Thermochronological Evidence for Eocene Deformation in the Southern Patagonian Andes: Linking Orogenesis Along the Patagonian Orocline. Tectonics 2023, 42, e2022TC007677. [Google Scholar] [CrossRef]
df | SS | MS | Rsq | F | Z | p-Value | |
---|---|---|---|---|---|---|---|
Tadpoles: shape~ln(TL 1) × family | |||||||
ln(TL) | 1 | 0.33499 | 0.33499 | 0.20377 | 849.852 | 43.726 | <0.001 |
family | 3 | 0.95021 | 0.31674 | 0.57798 | 803.536 | 74.096 | <0.001 |
ln(TL):family | 3 | 0.06318 | 0.02106 | 0.03843 | 53.427 | 46.174 | <0.001 |
Residuals | 75 | 0.29563 | 0.00394 | 0.17982 | |||
Total | 82 | 164.401 | |||||
Adults: shape~ln(SVL 2) × family | |||||||
ln(SVL) | 1 | 1.6673 | 1.66729 | 0.07172 | 7.9340 | 3.6049 | <0.001 |
family | 3 | 4.6146 | 1.53821 | 0.19849 | 7.3197 | 5.1940 | <0.001 |
ln(SVL):family | 3 | 1.2055 | 0.40182 | 0.05185 | 1.9121 | 1.6838 | 0.051 |
Residuals | 75 | 15.7610 | 0.21015 | 0.67794 | |||
Total | 82 | 23.2484 |
C1 | C2 | C3 | C4 | |||||
---|---|---|---|---|---|---|---|---|
Value | p | Value | p | Value | p | Value | p | |
Larval phylomorphospace | ||||||||
Family | ||||||||
Alsodidae | 0.276 | 0.30 | 0.007 | 0.99 | 0.159 | 0.28 | 0.005 | 0.79 |
Batrachylidae | 0.253 | 0.24 | 0.005 | 0.97 | 0.149 | 0.24 | 0.010 | 0.73 |
Cycloramphidae | 0.422 | <0.01 | 0.046 | <0.01 | 0.235 | <0.01 | 0.018 | 0.36 |
Hylodidae | 0.487 | <0.01 | 0.026 | 0.74 | 0.275 | <0.01 | 0.008 | 0.57 |
Ecomorphological guild | ||||||||
Lentic | 0.500 | <0.01 | 0.046 | 0.18 | 0.233 | 0.02 | 0.002 | 0.86 |
Lotic | 0.582 | <0.01 | 0.052 | 0.09 | 0.294 | <0.01 | 0.005 | 0.52 |
Endotrophic | 0.312 | 0.32 | 0.052 | 0.145 | 0.200 | 0.11 | 0.013 | 0.53 |
Semiterrestrial | 0.685 | <0.01 | 0.075 | <0.01 | 0.381 | <0.01 | 0.031 | 0.53 |
Adult phylomorphospace | ||||||||
Family | ||||||||
Alsodidae | 0.296 | 0.15 | 0.050 | 0.50 | 0.162 | 0.20 | 0.021 | 0.27 |
Batrachylidae | 0.216 | 0.49 | 0.045 | 0.33 | 0.144 | 0.31 | 0.009 | 0.82 |
Cycloramphidae | 0.292 | 0.19 | 0.083 | 0.45 | 0.153 | 0.53 | 0.004 | 0.96 |
Hylodidae | 0.380 | <0.01 | 0.166 | <0.01 | 0.194 | <0.01 | 0.013 | 0.38 |
Ecomorphological guild | ||||||||
Semi-aquatic | 0.420 | 0.12 | 0.158 | 0.18 | 0.211 | 0.14 | 0.001 | 0.85 |
Torrential | 0.357 | 0.01 | 0.168 | <0.01 | 0.189 | 0.02 | 0.015 | 0.24 |
Saxicolous | 0.303 | 0.25 | 0.126 | 0.12 | 0.164 | 0.30 | 0.004 | 0.84 |
Terrestrial | 0.319 | 0.25 | 0.080 | 0.83 | 0.151 | 0.68 | 0.002 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida-Silva, D.; Vera Candioti, F. Shape Evolution in Two Acts: Morphological Diversity of Larval and Adult Neoaustraranan Frogs. Animals 2024, 14, 1406. https://doi.org/10.3390/ani14101406
Almeida-Silva D, Vera Candioti F. Shape Evolution in Two Acts: Morphological Diversity of Larval and Adult Neoaustraranan Frogs. Animals. 2024; 14(10):1406. https://doi.org/10.3390/ani14101406
Chicago/Turabian StyleAlmeida-Silva, Diego, and Florencia Vera Candioti. 2024. "Shape Evolution in Two Acts: Morphological Diversity of Larval and Adult Neoaustraranan Frogs" Animals 14, no. 10: 1406. https://doi.org/10.3390/ani14101406
APA StyleAlmeida-Silva, D., & Vera Candioti, F. (2024). Shape Evolution in Two Acts: Morphological Diversity of Larval and Adult Neoaustraranan Frogs. Animals, 14(10), 1406. https://doi.org/10.3390/ani14101406