Evaluation of Dry Ice for Short-Term Storage and Transportation of Frozen Boar Semen
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials
2.1. Semen Samples
2.2. Chemicals
2.3. Experimental Design
2.3.1. Semen Freezing
2.3.2. Frozen Semen Motility Test
2.3.3. Plasma Membrane Integrity
2.3.4. Acrosome Integrity
2.3.5. DNA Integrity
2.3.6. Mitochondrial Activity
2.3.7. Antioxidant Properties
2.4. Statistical Analyses
3. Results
3.1. Effect of Different Thawing Times on Semen Quality When Stored on Dry Ice
3.2. Effect of Dry Ice Storage on the Quality of Frozen–Thawed Boar Semen
3.3. Effect of Dry Ice Preservation on Antioxidant Function in Cryopreserved Boar Semen
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Álvarez-Rodríguez, M.; Tomás-Almenar, C.; Nieto-Cristóbal, H.; de Mercado, E. Evaluation of Different Thawing Protocols on Iberian Boar Sperm Preserved for 10 Years at Different Liquid Nitrogen Levels. Animals 2024, 14, 914. [Google Scholar] [CrossRef] [PubMed]
- Lavrentiadou, S.N.; Sapanidou, V.; Tzekaki, E.E.; Margaritis, I.; Tsantarliotou, M.P. Melatonin Protects Bovine Spermatozoa by Reinforcing Their Antioxidant Defenses. Animals 2023, 13, 3219. [Google Scholar] [CrossRef]
- Bailey, J.L.; Lessard, C.; Jacques, J.; Brèque, C.; Dobrinski, I.; Zeng, W.; Galantino-Homer, H.L. Cryopreservation of boar semen and its future importance to the industry. Theriogenology 2008, 70, 1251–1259. [Google Scholar] [CrossRef]
- Vaz, C.R.; Lamim, T.; Salvador, R.A.; Batschauer, A.P.B.; Amaral, V.L.L.; Til, D. Could cryopreserved human semen samples be stored at −80 °C? JBRA Assist. Reprod. 2018, 22, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sánchez, R.; Pérez-Garnelo, S.S.; Martín Lluch, M.; de la Cruz, P.; Falceto, M.V.; Córdova-Izquierdo, A.; Torner, J.G.; Mitjana, O.; Suárez, A.E.; Montull, T.; et al. Reproductive efficiency of sows inseminated at single dose fixed time with refrigerated, cryopreserved and encapsulated spermatozoa. Reprod. Domest. Anim. 2022, 57 (Suppl. 5), 90–93. [Google Scholar] [CrossRef] [PubMed]
- Glenister, P.H.; Whittingham, D.G.; Lyon, M.F. Further studies on the effect of radiation during the storage of frozen 8-cell mouse embryos at −196 °C. J. Reprod. Fertil. 1984, 70, 229–234. [Google Scholar] [CrossRef]
- Hammerstedt, R.H.; Graham, J.K.; Nolan, J.P. Cryopreservation of mammalian sperm: What we ask them to survive. J. Androl. 1990, 11, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, M.; Spencer, M.; Kanyima, B.M.; Ng, C.H.; Newell, M.; Turyahikayo, S.; Makoni, N.; Madan, D.; Lieberman, D.H. Using on-demand dry ice production as an alternative cryogenic cold chain for bovine artificial insemination outreach in low-resource settings. Transl. Anim. Sci. 2020, 4, txaa012. [Google Scholar] [CrossRef]
- Kaneko, R.; Kakinuma, T.; Sato, S.; Jinno-Oue, A. Freezing sperm in short straws reduces storage space and allows transport in dry ice. J. Reprod. Dev. 2018, 64, 541–545. [Google Scholar] [CrossRef]
- Til, D.; Amaral, V.L.; Salvador, R.A.; Senn, A.; Paula, T.S. The effects of storing and transporting cryopreserved semen samples on dry ice. JBRA Assist. Reprod. 2016, 20, 217–221. [Google Scholar] [CrossRef]
- Westendorf, P.; Richter, L.; Treu, H. Zur Tiefgefrierung von Ebersperma. Labor- und Besamungsergebnisse mit dem Hülsenberger Pailletten-Verfahren Deep freezing of boar sperma. Laboratory and insemination results using the Hülsenberger paillete method. Dtsch. Tierarztl. Wochenschr. 1975, 82, 261–267. [Google Scholar] [PubMed]
- Thurston, L.M.; Watson, P.F.; Mileham, A.J.; Holt, W.V. Morphologically distinct sperm subpopulations defined by Fourier shape descriptors in fresh ejaculates correlate with variation in boar semen quality following cryopreservation. J. Androl. 2001, 22, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, G.; Cuello, C.; Ruiz, M.; Vázquez, J.M.; Martínez, E.A.; Roca, J. Effects of centrifugation before freezing on boar sperm cryosurvival. J. Androl. 2004, 25, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Olivares, C.C.S.; Souza-Fabjan, J.M.G.; Fonseca, J.F.; Saraiva, H.F.R.A.; Côrtes, L.R.; Alfradique, V.A.P.; Balaro, M.F.A.; Oliveira, R.V.; Brandão, F.Z. Mini-percoll gradient may be used for frozen-thawed sperm selection in sheep. Arq. Bras. Med. Veterinária Zootec. 2019, 71, 455–463. [Google Scholar] [CrossRef]
- Shabani, S.; Mehri, M.; Shirmohammad, F.; Sharafi, M. Enhancement of sperm quality and fertility-related parameters in Hubbard grandparent rooster fed diets supplemented with soybean lecithin and vitamin E. Poult. Sci. 2022, 101, 101635. [Google Scholar] [CrossRef] [PubMed]
- Thurston, L.M.; Holt, W.V.; Watson, P.F. Post-thaw functional status of boar spermatozoa cryopreserved using three controlled rate freezers: A comparison. Theriogenology 2003, 60, 101–113. [Google Scholar] [CrossRef]
- Liu, C.; Feng, H.; Han, J.; Zhou, H.; Yuan, L.; Pan, H.; Wang, X.; Han, X.; Qiao, R.; Yang, F.; et al. Effect of L-proline on sperm quality during cryopreservation of boar semen. Anim. Reprod. Sci. 2023, 258, 107359. [Google Scholar] [CrossRef] [PubMed]
- Fraser, L.; Dziekońska, A.; Strzezek, R.; Strzezek, J. Dialysis of boar semen prior to freezing-thawing: Its effects on post-thaw sperm characteristics. Theriogenology 2007, 67, 994–1003. [Google Scholar] [CrossRef]
- Kaeoket, K.; Chanapiwat, P. The Beneficial Effect of Resveratrol on the Quality of Frozen-Thawed Boar Sperm. Animals 2023, 13, 2829. [Google Scholar] [CrossRef]
- Holt, C.; Holt, W.V.; Moore, H.D.; Reed, H.C.; Curnock, R.M. Objectively measured boar sperm motility parameters correlate with the outcomes of on-farm inseminations: Results of two fertility trials. J. Androl. 1997, 18, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Holt, C.; Holt, W.V.; Moore, H.D. Choice of operating conditions to minimize sperm subpopulation sampling bias in the assessment of boar semen by computer-assisted semen analysis. J. Androl. 1996, 17, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of oxidative stress on male reproduction. World J. Mens Health. 2014, 32, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A. Semen banking in patients with cancer: 20-year experience. Int. J. Androl. 2000, 23 (Suppl. 2), 16–19. [Google Scholar] [CrossRef] [PubMed]
- Polge, C. Fertilizing capacity of bull spermatozoa after freezing at −79 °C. Nature 1952, 169, 626–627. [Google Scholar] [CrossRef]
- Sztein, J.M.; Takeo, T.; Nakagata, N. History of cryobiology, with special emphasis in evolution of mouse sperm cryopreservation. Cryobiology 2018, 82, 57–63. [Google Scholar] [CrossRef]
- Buranaamnuay, K.; Seesuwan, K.; Saikhun, K. Preliminary study on effects of bovine frozen semen storage using a liquid nitrogen-independent method on the quality of post-thaw spermatozoa. Anim. Reprod. Sci. 2016, 172, 32–38. [Google Scholar] [CrossRef] [PubMed]
- El-Shalofy, A.; Gautier, C.; Khan, Y.; Aurich, J.; Aurich, C. Shipping duration and temperature influence the characteristics of cryopreserved horse semen stored in different shipping devices for up to 14 days. Anim. Reprod. Sci. 2023, 256, 107307. [Google Scholar] [CrossRef]
- Fuller, B.; Paynter, S. Fundamentals of cryobiology in reproductive medicine. Reprod. Biomed. Online 2004, 9, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Nijs, M.; Ombelet, W. Cryopreservation of human sperm. Hum. Fertil. 2001, 4, 158–163. [Google Scholar] [CrossRef]
- Petrunkina, A. Fundamental aspects of gamete cryobiology. J. Reprod. Med. Endocrinol. 2007, 4, 78–91. [Google Scholar]
- Flores, E.; Fernández-Novell, J.M.; Peña, A.; Rigau, T.; Rodríguez-Gil, J.E. Cryopreservation-induced alterations in boar spermatozoa mitochondrial function are related to changes in the expression and location of midpiece mitofusin-2 and actin network. Theriogenology 2010, 74, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Trummer, H.; Tucker, K.; Young, C.; Kaula, N.; Meacham, R.B. Effect of storage temperature on sperm cryopreservation. Fertil. Steril. 1998, 70, 1162–1164. [Google Scholar] [CrossRef] [PubMed]
Groups | TMOT/% | MOT/% | VSL/ (μm/s) | VCL/ (μm/s) | LIN/ % | STR/ % | VAP/ (μm/s) | WOB/% | ALH/ μm | BCF/Hz |
---|---|---|---|---|---|---|---|---|---|---|
60 °C/6 s | 13.37 ± 2.23 d | 7.69 ± 3.17 d | 4.42 ± 1.37 d | 21.87 ± 1.98 d | 23.51 ± 1.37 c | 39.70 ± 1.53 c | 11.61 ± 2.92 d | 54.81 ± 1.95 c | 0.53 ± 0.05 e | 1.35 ± 0.41 d |
60 °C/7 s | 37.85 ± 1.68 b | 30.51 ± 2.43 b | 15.92 ± 3.33 c | 46.75 ± 3.31 b | 35.17 ± 1.63 b | 63.71 ± 3.16 b | 24.41 ± 1.35 c | 53.39 ± 2.21 c | 0.96 ± 0.03 c | 3.37 ± 0.62 c |
60 °C/8 s | 52.65 ± 3.19 a | 44.93 ± 3.31 a | 32.37 ± 1.75 a | 57.21 ± 3.52 a | 55.63 ± 2.85 a | 77.86 ± 1.67 a | 41.16 ± 2.17 a | 70.14 ± 2.28 a | 1.47 ± 0.04 a | 6.79 ± 0.51 a |
60 °C/9 s | 47.86 ± 4.52 a | 39.86 ± 2.87 a | 27.65 ± 2.17 b | 55.17 ± 2.98 a | 51.13 ± 2.12 a | 73.28 ± 2.66 a | 35.61 ± 1.15 b | 63.94 ± 1.16 b | 1.24 ± 0.03 b | 5.17 ± 0.44 b |
60 °C/10 s | 28.69 ± 2.41 c | 18.85 ± 3.37 c | 14.14 ± 2.57 c | 39.86 ± 2.97 c | 36.41 ± 1.56 b | 64.71 ± 1.78 b | 21.04 ± 1.07 c | 50.42 ± 2.51 c | 0.66 ± 0.02 d | 2.53 ± 0.37 c |
60 °C/12 s | 7.76 ± 3.17 e | 4.13 ± 2.44 d | 2.29 ± 0.78 d | 11.36 ± 1.43 e | 21.75 ± 1.14 c | 36.56 ± 1.23 c | 6.51 ± 0.73 e | 55.73 ± 2.64 c | 0.47 ± 0.03 e | 1.44 ± 0.25 d |
p value | <0.01 | <0.01 | <0.01 | =0.059 | =0.003 | <0.01 | <0.01 | =0.003 | <0.01 | =0.004 |
Groups | TMOT/% | MOT/% | VSL/ (μm/s) | VCL/ (μm/s) | LIN/ % | STR/ % | VAP/ (μm/s) | WOB/% | ALH/ μm | BCF/ Hz |
---|---|---|---|---|---|---|---|---|---|---|
Fresh semen | 92.71 ± 2.31 a | 85.62 ± 1.75 a | 75.57 ± 2.03 a | 103.38 ± 1.77 a | 85.61 ± 2.44 a | 94.85 ± 3.90 a | 79.76 ± 3.14 a | 90.45 ± 2.49 a | 4.67 ± 0.17 a | 13.18 ± 0.54 a |
Day 0 | 53.43 ± 1.14 b | 46.39 ± 1.04 b | 32.97 ± 2.52 b | 57.67 ± 2.12 b | 52.97 ± 2.05 b | 72.51 ± 3.11 b | 42.56 ± 1.25 b | 72.13 ± 1.67 b | 2.61 ± 0.41 b | 7.44 ± 0.39 b |
Day 1 | 52.67 ± 1.74 b | 45.71 ± 2.62 b | 30.59 ± 1.55 b | 55.96 ± 2.67 b | 51.76 ± 2.34 b | 71.44 ± 2.17 b | 40.93 ± 2.92 b | 71.90 ± 1.79 b | 2.27 ± 0.28 b | 7.35 ± 0.56 b |
Day 3 | 52.35 ± 1.97 b | 44.17 ± 1.46 b | 31.46 ± 2.16 b | 56.81 ± 2.16 b | 50.71 ± 1.88 b | 71.71 ± 1.93 b | 41.43 ± 1.89 b | 71.77 ± 1.02 b | 2.23 ± 0.20 b | 7.37 ± 0.43 b |
Day 5 | 51.77 ± 1.36 b | 45.87 ± 2.46 b | 31.12 ± 2.13 b | 56.17 ± 1.99 b | 51.37 ± 2.31 b | 70.93 ± 2.75 b | 40.66 ± 1.49 b | 69.83 ± 2.79 b | 2.41 ± 0.53 b | 7.26 ± 0.37 b |
Day 7 | 51.19 ± 1.46 b | 45.69 ± 1.43 b | 31.63 ± 1.43 b | 56.65 ± 1.69 b | 51.69 ± 1.73 b | 71.39 ± 1.59 b | 40.87 ± 1.35 b | 70.56 ± 2.13 b | 2.37 ± 0.42 b | 7.33 ± 0.39 b |
Day 8 | 51.20 ± 1.33 b | 45.13 ± 1.44 b | 30.76 ± 2.31 b | 56.93 ± 2.59 b | 51.98 ± 1.75 b | 71.86 ± 2.14 b | 41.04 ± 1.97 b | 71.31 ± 1.45 b | 2.43 ± 0.29 b | 7.27 ± 0.39 b |
Groups | SOD (U/mL) | MDA (nmol/L) | ROS (RFUs) | AOC (nmol/L) |
---|---|---|---|---|
Fresh semen | 141.72 ± 3.56 a | 4.54 ± 0.38 b | 277.34 ± 1.29 c | 2.31 ± 0.36 a |
Day 0 | 119.85 ± 2.78 b | 7.31 ± 0.57 a | 352.61 ± 1.96 b | 1.53 ± 0.51 b |
Day 1 | 117.93 ± 3.51 b | 7.55 ± 0.72 a | 364.51 ± 2.32 a | 1.47 ± 0.33 b |
Day 3 | 118.13 ± 3.16 b | 7.41 ± 0.67 a | 358.03 ± 3.47 a | 1.41 ± 0.29 b |
Day 5 | 118.69 ± 4.14 b | 7.57 ± 0.71 a | 360.44 ± 2.07 a | 1.35 ± 0.31 b |
Day 7 | 117.79 ± 3.67 b | 7.63 ± 0.59 a | 366.74 ± 3.99 a | 1.39 ± 0.27 b |
Day 8 | 118.13 ± 2.98 b | 7.39 ± 0.44 a | 361.97 ± 2.67 a | 1.49 ± 0.28 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.; Sun, L.; Xu, J.; Wu, C.; Zhang, S.; Gao, J.; Zhang, D.; Gan, Y.; Bian, Y.; Wei, J.; et al. Evaluation of Dry Ice for Short-Term Storage and Transportation of Frozen Boar Semen. Animals 2024, 14, 1422. https://doi.org/10.3390/ani14101422
He M, Sun L, Xu J, Wu C, Zhang S, Gao J, Zhang D, Gan Y, Bian Y, Wei J, et al. Evaluation of Dry Ice for Short-Term Storage and Transportation of Frozen Boar Semen. Animals. 2024; 14(10):1422. https://doi.org/10.3390/ani14101422
Chicago/Turabian StyleHe, Mengqian, Lingwei Sun, Jiehuan Xu, Caifeng Wu, Shushan Zhang, Jun Gao, Defu Zhang, Yeqing Gan, Yi Bian, Jinliang Wei, and et al. 2024. "Evaluation of Dry Ice for Short-Term Storage and Transportation of Frozen Boar Semen" Animals 14, no. 10: 1422. https://doi.org/10.3390/ani14101422
APA StyleHe, M., Sun, L., Xu, J., Wu, C., Zhang, S., Gao, J., Zhang, D., Gan, Y., Bian, Y., Wei, J., Zhang, W., Zhang, W., Han, X., & Dai, J. (2024). Evaluation of Dry Ice for Short-Term Storage and Transportation of Frozen Boar Semen. Animals, 14(10), 1422. https://doi.org/10.3390/ani14101422