Growth, Hepatic Enzymatic Activity, and Quality of European Seabass Fed on Hermetia illucens and Poultry By-Product Meal in a Commercial Farm
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish Rearing and Diet Formulation
2.2. Fish Sampling
2.3. Zootechnical Parameters
2.4. Marketable Characteristics of Fish and Physical Proprieties of Fillets
2.5. Fillet Chemical Composition, Estimation of Indices of Elongase and Desaturase Activity and Oxidative Status
2.6. Hepatic Enzymatic Activity
2.7. Statistical Analysis of Data
3. Results
3.1. Growth Performance
3.2. Marketable Characteristics of Fish and Physical Characteristics of Fillet
3.3. Fillet Chemical Composition, Estimation of Indices of Elongase and Desaturase Activity and Oxidative Status
3.4. Enzymatic Activities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asche, F.; Garlock, T.M.; Anderson, J.L.; Bush, S.R.; Smith, M.D.; Anderson, C.M.; Chu, J.; Garrett, K.A.; Lem, A.; Lorenzen, K.; et al. Three Pillars of Sustainability in Fisheries. Proc. Natl. Acad. Sci. USA 2018, 115, 11221–11225. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M.; McNevin, A.A. Future Feeds: Suggested Guidelines for Sustainable Development. Rev. Fish. Sci. Aquac. 2022, 30, 271–279. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Fish and Shrimp; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Aas, T.S.; Ytrestøyl, T.; Åsgård, T. Utilization of Feed Resources in the Production of Atlantic Salmon (Salmo salar) in Norway: An Update for 2016. Aquac. Rep. 2019, 15, 100216. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022; ISBN 978-92-5-136364-5. [Google Scholar]
- Randazzo, B.; Zarantoniello, M.; Cardinaletti, G.; Cerri, R.; Giorgini, E.; Belloni, A.; Contò, M.; Tibaldi, E.; Olivotto, I. Hermetia illucens and Poultry by-Product Meals as Alternatives to Plant Protein Sources in Gilthead Seabream (Sparus aurata) Diet: A Multidisciplinary Study on Fish Gut Status. Animals 2021, 11, 677. [Google Scholar] [CrossRef] [PubMed]
- Daniel, D. A Review on Replacing Fish Meal in Aqua Feeds Using Plant Protein Sources. Int. J. Fish Aquat. Stud. 2018, 6, 164–179. [Google Scholar]
- Jannathulla, R.; Rajaram, V.; Kalanjiam, R.; Ambasankar, K.; Muralidhar, M.; Dayal, J.S. Fishmeal Availability in the Scenarios of Climate Change: Inevitability of Fishmeal Replacement in Aquafeeds and Approaches for the Utilization of Plant Protein Sources. Aquac. Res. 2019, 50, 3493–3506. [Google Scholar] [CrossRef]
- Gasco, L.; Gai, F.; Maricchiolo, G.; Genovese, L.; Ragonese, S.; Bottari, T.; Caruso, G. Fishmeal Alternative Protein Sources for Aquaculture Feeds. In SpringerBriefs in Molecular Science; Springer: Cham, Switzerland, 2018; pp. 1–28. [Google Scholar]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef]
- Berggren, Å.; Jansson, A.; Low, M. Approaching Ecological Sustainability in the Emerging Insects-as-Food Industry. Trends Ecol. Evol. 2019, 34, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Maiolo, S.; Parisi, G.; Biondi, N.; Lunelli, F.; Tibaldi, E.; Pastres, R. Fishmeal Partial Substitution within Aquafeed Formulations: Life Cycle Assessment of Four Alternative Protein Sources. Int. J. Life Cycle Assess. 2020, 25, 1455–1471. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-Art on Use of Insects as Animal Feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Potential and Challenges of Insects as an Innovative Source for Food and Feed Production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Galkanda-Arachchige, H.S.C.; Wilson, A.E.; Davis, D.A. Success of Fishmeal Replacement through Poultry By-Product Meal in Aquaculture Feed Formulations: A Meta-Analysis. Rev. Aquac. 2020, 12, 1624–1636. [Google Scholar] [CrossRef]
- Di Rosa, A.R.; Caccamo, L.; Pansera, L.; Oteri, M.; Chiofalo, B.; Maricchiolo, G. Influence of Hermetia illucens Larvae Meal Dietary Inclusion on Growth Performance, Gut Histological Traits and Stress Parameters in Sparus aurata. Animals 2023, 13, 339. [Google Scholar] [CrossRef]
- Busti, S.; Bonaldo, A.; Candela, M.; Scicchitano, D.; Trapella, G.; Brambilla, F.; Guidou, C.; Trespeuch, C.; Sirri, F.; Dondi, F.; et al. Hermetia illucens Larvae Meal as an Alternative Protein Source in Practical Diets for Gilthead Sea Bream (Sparus aurata): A Study on Growth, Plasma Biochemistry and Gut Microbiota. Aquaculture 2024, 578, 740093. [Google Scholar] [CrossRef]
- Moutinho, S.; Pedrosa, R.; Magalhães, R.; Oliva-Teles, A.; Parisi, G.; Peres, H. Black Soldier Fly (Hermetia Illucens) Pre-Pupae Larvae Meal in Diets for European Seabass (Dicentrarchus labrax) Juveniles: Effects on Liver Oxidative Status and Fillet Quality Traits during Shelf-Life. Aquaculture 2021, 533, 736080. [Google Scholar] [CrossRef]
- Irm, M.; Taj, S.; Jin, M.; Luo, J.; Andriamialinirina, H.J.T.; Zhou, Q. Effects of Replacement of Fish Meal by Poultry By-Product Meal on Growth Performance and Gene Expression Involved in Protein Metabolism for Juvenile Black Sea Bream (Acanthoparus schlegelii). Aquaculture 2020, 528, 735544. [Google Scholar] [CrossRef]
- Karapanagiotidis, I.T.; Psofakis, P.; Mente, E.; Malandrakis, E.; Golomazou, E. Effect of Fishmeal Replacement by Poultry By-Product Meal on Growth Performance, Proximate Composition, Digestive Enzyme Activity, Haematological Parameters and Gene Expression of Gilthead Seabream (Sparus aurata). Aquac. Nutr. 2019, 25, 3–14. [Google Scholar] [CrossRef]
- Hill, J.C.; Alam, M.S.; Watanabe, W.O.; Carroll, P.M.; Seaton, P.J.; Bourdelais, A.J. Replacement of Menhaden Fish Meal by Poultry By-Product Meal in the Diet of Juvenile Red Porgy. N. Am. J. Aquac. 2019, 81, 81–93. [Google Scholar] [CrossRef]
- Cerri, R.; Niccolai, A.; Cardinaletti, G.; Tulli, F.; Mina, F.; Daniso, E.; Bongiorno, T.; Chini Zittelli, G.; Biondi, N.; Tredici, M.R.; et al. Chemical Composition and Apparent Digestibility of a Panel of Dried Microalgae and Cyanobacteria Biomasses in Rainbow Trout (Oncorhynchus mykiss). Aquaculture 2021, 544, 737075. [Google Scholar] [CrossRef]
- Zarantoniello, M.; Pulido Rodriguez, L.F.; Randazzo, B.; Cardinaletti, G.; Giorgini, E.; Belloni, A.; Secci, G.; Faccenda, F.; Pulcini, D.; Parisi, G.; et al. Conventional Feed Additives or Red Claw Crayfish Meal and Dried Microbial Biomass as Feed Supplement in Fish Meal-Free Diets for Rainbow Trout (Oncorhynchus mykiss): Possible Ameliorative Effects on Growth and Gut Health Status. Aquaculture 2022, 554, 738137. [Google Scholar] [CrossRef]
- Donadelli, V.; Di Marco, P.; Mandich, A.; Finoia, M.G.; Cardinaletti, G.; Petochi, T.; Longobardi, A.; Tibaldi, E.; Marino, G. Effects of Dietary Plant Protein Replacement with Insect and Poultry By-Product Meals on the Liver Health and Serum Metabolites of Sea Bream (Sparus aurata) and Sea Bass (Dicentrarchus labrax). Animals 2024, 14, 241. [Google Scholar] [CrossRef] [PubMed]
- Pulido-Rodriguez, L.F.; Cardinaletti, G.; Secci, G.; Randazzo, B.; Bruni, L.; Cerri, R.; Olivotto, I.; Tibaldi, E.; Parisi, G. Appetite Regulation, Growth Performances and Fish Quality Are Modulated by Alternative Dietary Protein Ingredients in Gilthead Sea Bream (Sparus aurata) Culture. Animals 2021, 11, 1919. [Google Scholar] [CrossRef] [PubMed]
- Pleić, I.L.; Bušelić, I.; Messina, M.; Hrabar, J.; Žuvić, L.; Talijančić, I.; Žužul, I.; Pavelin, T.; Anđelić, I.; Pleadin, J.; et al. A Plant-Based Diet Supplemented with Hermetia illucens Alone or in Combination with Poultry by-Product Meal: One Step Closer to Sustainable Aquafeeds for European Seabass. J. Anim. Sci. Biotechnol. 2022, 13, 77. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Vázquez, F.J.; Muñoz-Cueto, J.A. Biology of European Sea Bass; CRC Press: Boca Raton, FL, USA, 2014; pp. 1–420. [Google Scholar] [CrossRef]
- Topic Popovic, N.; Strunjak-Perovic, I.; Coz-Rakovac, R.; Barisic, J.; Jadan, M.; Persin Berakovic, A.; Sauerborn Klobucar, R. Tricaine Methane-Sulfonate (MS-222) Application in Fish Anaesthesia. J. Appl. Ichthyol. 2012, 28, 553–564. [Google Scholar] [CrossRef]
- Samaras, A. A Systematic Review and Meta-Analysis of Basal and Post-Stress Circulating Cortisol Concentration in an Important Marine Aquaculture Fish Species, European Sea Bass, Dicentrarchus labrax. Animals 2023, 13, 1340. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.R.; Lozano, R.D.; Alman, D.H.; Orchard, S.E.; Keitch, J.A.; Connely, R.; Graham, L.A.; Acree, W.L.; John, R.S.; Hoban, R.F. CIE Recommendations on Uniform Color Spaces, Color-Difference Equations, and Metric Color Terms. Color Res. Appl. 1977, 2, 5–6. [Google Scholar]
- Iaconisi, V.; Bonelli, A.; Pupino, R.; Gai, F.; Parisi, G. Mealworm as Dietary Protein Source for Rainbow Trout: Body and Fillet Quality Traits. Aquaculture 2018, 484, 197–204. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analysis Chemists International: Washington, DC, USA, 2012; ISBN 0-935584-83-8. [Google Scholar]
- Folch, J.; Less, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W. A Simple Procedure for Rapid Transmethylation of Glycerolipids and Cholesteryl Esters. J. Lipid Res. 1982, 23, 1072–1075. [Google Scholar] [CrossRef]
- Bruni, L.; Secci, G.; Mancini, S.; Faccenda, F.; Parisi, G. A Commercial Macroalgae Extract in a Plant-Protein Rich Diet Diminished Saturated Fatty Acids of Oncorhynchus mykiss Walbaum Fillets. Ital. J. Anim. Sci. 2020, 19, 373–382. [Google Scholar] [CrossRef]
- Srinivasan, S.; Xiong, Y.L.; Decker, E.A. Inhibition of Protein and Lipid Oxidation in Beef Heart Surimi-like Material by Antioxidants and Combinations of pH, NaCl, and Buffer Type in the Washing Media. J. Agric. Food Chem. 1996, 44, 119–125. [Google Scholar] [CrossRef]
- Pérez-Jiménez, A.; Peres, H.; Cruz Rubio, V.; Oliva-Teles, A. The Effect of Dietary Methionine and White Tea on Oxidative Status of Gilthead Sea Bream (Sparus aurata). Br. J. Nutr. 2012, 108, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- Secci, G.; Borgogno, M.; Lupi, P.; Rossi, S.; Paci, G.; Mancini, S.; Bonelli, A.; Parisi, G. Effect of Mechanical Separation Process on Lipid Oxidation in European Aquacultured Sea Bass, Gilthead Sea Bream, and Rainbow Trout Products. Food Control 2016, 67, 75–81. [Google Scholar] [CrossRef]
- Castro, C.; Peréz-Jiménez, A.; Coutinho, F.; Díaz-Rosales, P.; Serra, C.A.D.R.; Panserat, S.; Corraze, G.; Peres, H.; Oliva-Teles, A. Dietary Carbohydrate and Lipid Sources Affect Differently the Oxidative Status of European Sea Bass (Dicentrarchus labrax) Juveniles. Br. J. Nutr. 2015, 114, 1584–1593. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, F.; Castro, C.; Rufino-Palomares, E.; Ordóñez-Grande, B.; Gallardo, M.A.; Oliva-Teles, A.; Peres, H. Dietary Glutamine Supplementation Effects on Amino Acid Metabolism, Intestinal Nutrient Absorption Capacity and Antioxidant Response of Gilthead Sea Bream (Sparus aurata) Juveniles. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2016, 191, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- SAS. SAS/STAT 15.3; SAS Institute, Inc.: Cary, NC, USA, 2023. [Google Scholar]
- Pulcini, D.; Capoccioni, F.; Franceschini, S.; Martinoli, M.; Tibaldi, E. Skin Pigmentation in Gilthead Seabream (Sparus aurata L.) Fed Conventional and Novel Protein Sources in Diets Deprived of Fish Meal. Animals 2020, 10, 2138. [Google Scholar] [CrossRef] [PubMed]
- EFSA. European Food Safety Authority Scientific Opinion on the Tolerable Upper Intake Level of Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA) and Docosapentaenoic Acid (DPA). EFSA J. 2012, 10, 2815. [Google Scholar] [CrossRef]
- Hoc, B.; Genva, M.; Fauconnier, M.-L.; Lognay, G.; Francis, F.; Caparros Megido, R. About Lipid Metabolism in Hermetia illucens (L. 1758): On the Origin of Fatty Acids in Prepupae. Sci. Rep. 2020, 10, 11916. [Google Scholar] [CrossRef]
- Zarantoniello, M.; Randazzo, B.; Nozzi, V.; Truzzi, C.; Giorgini, E.; Cardinaletti, G.; Freddi, L.; Ratti, S.; Girolametti, F.; Osimani, A.; et al. Physiological Responses of Siberian Sturgeon (Acipenser baerii) Juveniles Fed on Full-Fat Insect-Based Diet in an Aquaponic System. Sci. Rep. 2021, 11, 1057. [Google Scholar] [CrossRef]
- Carvalho, M.; Montero, D.; Torrecillas, S.; Castro, P.; Zamorano, M.J.; Izquierdo, M. Hepatic Biochemical, Morphological and Molecular Effects of Feeding Microalgae and Poultry Oils to Gilthead Sea Bream (Sparus aurata). Aquaculture 2021, 532, 736073. [Google Scholar] [CrossRef]
- Magalhães, R.; Guerreiro, I.; Coutinho, F.; Moutinho, S.; Sousa, S.; Delerue-Matos, C.; Domingues, V.F.; Olsen, R.E.; Peres, H.; Oliva-Teles, A. Effect of Dietary ARA/EPA/DHA Ratios on Growth Performance and Intermediary Metabolism of Gilthead Sea Bream (Sparus aurata) Juveniles. Aquaculture 2020, 516, 734644. [Google Scholar] [CrossRef]
- Mastoraki, M.; Katsika, L.; Enes, P.; Guerreiro, I.; Kotzamanis, Y.P.; Gasco, L.; Chatzifotis, S.; Antonopoulou, E. Insect Meals in Feeds for Juvenile Gilthead Seabream (Sparus aurata): Effects on Growth, Blood Chemistry, Hepatic Metabolic Enzymes, Body Composition and Nutrient Utilization. Aquaculture 2022, 561, 738674. [Google Scholar] [CrossRef]
- Stubhaug, I.; Lie, Ø.; Torstensen, B.E. Fatty Acid Productive Value and β-Oxidation Capacity in Atlantic Salmon (Salmo salar L.) Fed on Different Lipid Sources along the Whole Growth Period. Aquac. Nutr. 2007, 13, 145–155. [Google Scholar] [CrossRef]
- Bell, J.G.; McEvoy, J.; Tocher, D.R.; McGhee, F.; Campbell, P.J.; Sargent, J.R. Replacement of Fish Oil with Rapeseed Oil in Diets of Atlantic Salmon (Salmo salar) Affects Tissue Lipid Compositions and Hepatocyte Fatty Acid Metabolism. J. Nutr. 2001, 131, 1535–1543. [Google Scholar] [CrossRef]
- Henderson, R.J.; Sargent, J.R. Chain-Length Specificities of Mitochondrial and Peroxisimal β-Oxidation of Fatty Acids in Livers of Rainbow Trout (Salmo gairdneri). Comp. Biochem. Physiol. Part B Comp. Biochem. 1985, 82, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Lie, Ø.; Lambertsen, G. Fatty Acid Composition of Glycerophospholipids in Seven Tissues of Cod (Gadus morhua), Determined by Combined High-Performance Liquid Chromatography and Gas Chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1991, 565, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Mastoraki, M.; Mollá Ferrándiz, P.; Vardali, S.C.; Kontodimas, D.C.; Kotzamanis, Y.P.; Gasco, L.; Chatzifotis, S.; Antonopoulou, E. A Comparative Study on the Effect of Fish Meal Substitution with Three Different Insect Meals on Growth, Body Composition and Metabolism of European Sea Bass (Dicentrarchus labrax L.). Aquaculture 2020, 528, 735511. [Google Scholar] [CrossRef]
- Murray, R.K.; Granner, D.K.; Mayes, P.A.; Rodwell, V.W. Harper’s Illustrated Biochemistry, 26th ed.; Lange Medical Books/McGraw-Hill Medical Publishing Division: New York, NY, USA, 2003; ISBN 0071389016. [Google Scholar]
- Jürss, K.; Bastrop, R. Chapter 7 Amino Acid Metabolism in Fish. In Biochemistry and Molecular Biology of Fishes; Elsevier: Amsterdam, The Netherlands, 1995; Volume 4, pp. 159–189. [Google Scholar]
- Zheng, Y.; Zhang, Y.; Xie, Z.; Shin, P.K.S.; Xu, J.; Fan, H.; Zhuang, P.; Hu, M.; Wang, Y. Seasonal Changes of Growth, Immune Parameters and Liver Function in Wild Chinese Sturgeons Under Indoor Conditions: Implication for Artificial Rearing. Front. Physiol. 2022, 13, 894729. [Google Scholar] [CrossRef]
- York, M.J. Clinical Pathology. In A Comprehensive Guide to Toxicology in Nonclinical Drug Development; Elsevier: Amsterdam, The Netherlands, 2017; pp. 325–374. [Google Scholar]
- Chimela, W.; Mesua, N.; Abdulraheem, B.-A. Aspartate Transaminase (AST) Activity in Selected Tissues and Organs of Clarias Gariepinus Exposed to Different Levels of Paraquat. J. Environ. Anal. Toxicol. 2014, 4, 214. [Google Scholar] [CrossRef]
- Elia, A.C.; Capucchio, M.T.; Caldaroni, B.; Magara, G.; Dörr, A.J.M.; Biasato, I.; Biasibetti, E.; Righetti, M.; Pastorino, P.; Prearo, M.; et al. Influence of Hermetia illucens Meal Dietary Inclusion on the Histological Traits, Gut Mucin Composition and the Oxidative Stress Biomarkers in Rainbow Trout (Oncorhynchus mykiss). Aquaculture 2018, 496, 50–57. [Google Scholar] [CrossRef]
- Ngo, D.-H.; Kim, S.-K. Antioxidant Effects of Chitin, Chitosan, and Their Derivatives. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2014; Volume 73, pp. 15–31. [Google Scholar]
- Chaklader, M.R.; Siddik, M.A.B.; Fotedar, R. Total Replacement of Fishmeal with Poultry By-Product Meal Affected the Growth, Muscle Quality, Histological Structure, Antioxidant Capacity and Immune Response of Juvenile Barramundi, Lates Calcarifer. PLoS ONE 2020, 15, e0242079. [Google Scholar] [CrossRef] [PubMed]
CG § | SSH | |
---|---|---|
Ingredient composition | ||
Feeding stimulants 1 | 5.5 | |
Veg.-protein mix 2 | 35.4 | |
Hermetia meal 3 | 8.1 | |
PBM 4 | 20.6 | |
Wheat meal * | 5.5 | |
Whole pea * | 8.8 | |
Fish oil 5 | 6.2 | |
Veg. oil mix 6 | 7.4 | |
Vit. & Min. Premix 7 | 0.3 | |
Choline HCL | 0.1 | |
Sodium phosphate | 0.2 | |
L-Lysine 8 | 0.1 | |
DL-Methionine 9 | 0.3 | |
Celite | 1.5 | |
Chemical composition | ||
Crude protein | 45 | 45 |
Crude fat | 18 | 20 |
Crude cellulose | 1.3 | 1.8 |
Ashes | 8.6 | 8 |
Calcium | 1.6 | 1.7 |
Phosphorus | 1.2 | 1.15 |
Sodium | 0.3 | 0.2 |
Chitin | 0.39 | |
Gross Energy (MJ/kg) | 20.1 | 20.3 |
P/E ratio | 22.4 | 22.2 |
Growth Parameters 1 | CG | SSH | p-Value 2 |
---|---|---|---|
BW (g) | 441.7 ± 58.6 | 461.5 ± 74.8 | ns |
TL (cm) | 32.9 ± 1.39 | 33.3 ± 1.70 | ns |
SL (cm) | 28.6 ± 1.28 | 28.8 ± 2.06 | ns |
K (%) | 1.24 ± 0.09 | 1.25 ± 0.09 | ns |
SGR | 0.57 ± 0.21 | 0.63 ± 0.26 | ns |
Items 1 | T0 2 | CG | SSH | p-Value 3 |
---|---|---|---|---|
Eviscerated weight, g | 263 ± 47.81 | 384.93 ± 18.0 | 421.06 ± 12.73 | ns |
FY, % | 54.67 ± 2.09 | 55.85 ± 0.55 | 56.62 ± 0.39 | ns |
VSI, % | 9.77 ± 1.36 | 11.11 ± 0.44 | 10.89 ± 0.31 | ns |
HSI, % | 1.54 ± 0.44 | 2.33 ± 0.12 | 2.03 ± 0.09 | ns |
pH | 6.36 ± 0.07 | 6.30 ± 0.02 | 6.31 ± 0.02 | ns |
Texture, N | 72.40 ± 12.71 | 89.98 ± 6.44 | 89.10 ± 4.55 | ns |
WHC, % | 97.27 ± 0.61 | 95.07 ± 0.76 | 93.84 ± 0.54 | ns |
Skin colour | ||||
L* | 43.91 ± 2.17 | 52.51 ± 0.73 | 49.72 ± 0.51 | 0.004 |
a* | −1.22 ± 0.29 | −1.34 ± 0.17 | −1.02 ± 0.12 | ns |
b* | 0.61 ± 0.97 | −0.55 ± 0.26 | −0.57 ± 0.18 | ns |
Fillet colour | ||||
L* | 50.31 ± 0.83 | 49.18 ± 0.36 | 49.06 ± 0.25 | ns |
a* | −0.04 ± 0.60 | −0.61 ± 0.20 | −0.62 ± 0.14 | ns |
b* | 0.92 ± 0.76 | −1.03 ± 0.23 | −0.84 ± 0.16 | ns |
CG | SSH | p-Value 1 | |
---|---|---|---|
Proximate composition, g/100 g fresh tissue | |||
Moisture | 71.01 ± 0.47 | 71.02 ± 0.33 | ns |
Crude protein | 20.05 ± 0.22 | 20.01 ± 0.15 | ns |
Ashes | 1.03 ± 0.05 | 1.01 ± 0.03 | ns |
Total lipids | 7.91 ± 0.50 | 7.96 ± 0.35 | ns |
Fatty acids 2, mg of FA/100 g fresh tissue | |||
C14:0 | 109.25 ± 7.90 | 114.18 ± 5.58 | ns |
C16:0 | 657.87 ± 47.86 | 662.18 ± 33.84 | ns |
C16:1n-7 | 158.77 ± 11.44 | 155.35 ± 8.08 | ns |
C18:0 | 133.77 ± 9.99 | 140.55 ± 7.07 | ns |
C18:1n-9 | 976.03 ± 80.81 | 1089.27 ± 57.14 | ns |
C18:1n-7 | 93.51 ± 6.88 | 98.24 ± 4.86 | ns |
C18:2n-6 | 542.68 ± 41.42 | 572.75 ± 29.29 | ns |
C18:3n-3 | 93.78 ± 7.17 | 104.23 ± 5.07 | ns |
C18:4n-3 | 36.40 ± 2.30 | 29.92 ± 1.63 | 0.030 |
C20:1n-9 | 82.90 ± 6.00 | 86.72 ± 4.24 | ns |
C20:5n-3 | 179.17 ± 10.79 | 164.18 ± 7.63 | ns |
C22:1n-11 | 55.03 ± 3.34 | 44.55 ± 2.36 | 0.016 |
C22:6n-3 | 258.37 ± 13.48 | 236.81 ± 9.53 | ns |
EPA + DHA | 437.53 ± 24.21 | 400.99 ± 17.12 | ns |
ΣSFA | 940.80 ± 68.46 | 969.14 ± 48.40 | ns |
ΣMUFA | 1415.72 ± 111.16 | 1523.05 ± 78.60 | ns |
Σn-6 PUFA | 602.51 ± 45.15 | 634.80 ± 31.92 | ns |
Σn-3 PUFA | 613.45 ± 36.06 | 582.95 ± 25.50 | ns |
Oxidative status 3 | |||
CD, µmol Hp/100 g fresh tissue | 0.21 ± 0.01 | 0.22 ± 0.008 | ns |
TBARS, mg MDA-eq/100 g fresh tissue | 0.02 ± 0.001 | 0.03 ± 0.001 | ns |
CG | SSH | p-Value 1 | |
---|---|---|---|
Thioesterase | 6.03 ± 0.10 | 5.80 ± 0.07 | ns |
Elongase | 0.20 ± 0.003 | 0.21 ± 0.002 | 0.028 |
Δ9 desaturase (C16) | 59.65 ± 0.24 | 62.13 ± 0.17 | <0.0001 |
Δ9 desaturase (C18) | 87.88 ± 0.19 | 88.53 ± 0.13 | 0.011 |
Δ9 desaturase (C16 + C18) | 55.50 ± 0.26 | 57.86 ± 0.18 | <0.0001 |
Δ5 + Δ6 desaturase n-6 | 6.87 ± 0.18 | 6.79 ± 0.13 | ns |
Δ5 + Δ6 desaturase n-3 | 83.16 ± 0.48 | 80.54 ± 0.34 | 0.0001 |
CG | SSH | p-Value 1 | |
---|---|---|---|
Intermediary metabolism enzymes 2 | |||
GDH | 69.29 ± 5.04 | 77.38 ± 5.04 | ns |
ALT | 35.59 ± 2.76 | 38.36 ± 2.76 | ns |
AST | 24.29 ± 2.18 | 34.38 ± 2.31 | 0.01 |
ME | 6.50 ± 0.57 | 6.58 ± 0.57 | ns |
HOAD | 8.23 ± 0.81 | 11.32 ± 0.81 | 0.01 |
Antioxidant enzymes 3 | |||
CAT | 22.25 ± 2.03 | 23.61 ± 2.03 | ns |
G6PDH | 328.97 ± 29.04 | 493.60 ± 29.04 | 0.001 |
GPX | 17.75 ± 1.72 | 19.19 ± 1.72 | ns |
GR | 4.11 ± 0.42 | 3.49 ± 0.40 | ns |
Liver lipid peroxidation 4 | |||
LPO | 13.99 ± 1.32 | 13.17 ± 1.38 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulido-Rodriguez, L.F.; Bruni, L.; Secci, G.; Moutinho, S.; Peres, H.; Petochi, T.; Marino, G.; Tibaldi, E.; Parisi, G. Growth, Hepatic Enzymatic Activity, and Quality of European Seabass Fed on Hermetia illucens and Poultry By-Product Meal in a Commercial Farm. Animals 2024, 14, 1449. https://doi.org/10.3390/ani14101449
Pulido-Rodriguez LF, Bruni L, Secci G, Moutinho S, Peres H, Petochi T, Marino G, Tibaldi E, Parisi G. Growth, Hepatic Enzymatic Activity, and Quality of European Seabass Fed on Hermetia illucens and Poultry By-Product Meal in a Commercial Farm. Animals. 2024; 14(10):1449. https://doi.org/10.3390/ani14101449
Chicago/Turabian StylePulido-Rodriguez, Lina Fernanda, Leonardo Bruni, Giulia Secci, Sara Moutinho, Helena Peres, Tommaso Petochi, Giovanna Marino, Emilio Tibaldi, and Giuliana Parisi. 2024. "Growth, Hepatic Enzymatic Activity, and Quality of European Seabass Fed on Hermetia illucens and Poultry By-Product Meal in a Commercial Farm" Animals 14, no. 10: 1449. https://doi.org/10.3390/ani14101449
APA StylePulido-Rodriguez, L. F., Bruni, L., Secci, G., Moutinho, S., Peres, H., Petochi, T., Marino, G., Tibaldi, E., & Parisi, G. (2024). Growth, Hepatic Enzymatic Activity, and Quality of European Seabass Fed on Hermetia illucens and Poultry By-Product Meal in a Commercial Farm. Animals, 14(10), 1449. https://doi.org/10.3390/ani14101449