Trends and Characteristics of Human Casualties in Wildlife–Vehicle Accidents in Lithuania, 2002–2022
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analyses
3. Results
3.1. Human Casualties in Transport and Wildlife-Related Accidents
3.2. Involved Wildlife Species
3.3. Temporal Distribution of WVA-Related Human Casualties
3.4. Influence of the Road Type and Spatial Distribution of Human Casualties
3.5. Influence of Wildlife Fencing and Warning Signs
3.6. Transport Type and Driving-Related Aspects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garlichs, K.; Huber, M.; Wolf, L. How Human Drivers Can Benefit from Collective Perception: A User Study. IEEE Intell. Transp. Syst. Mag. 2023, 15, 25–35. [Google Scholar] [CrossRef]
- Ascensão, F.; Barrientos, R.; D’Amico, M. Wildlife collisions put a dent in road safety. Science 2021, 374, 1208. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Road Safety Statistics—Characteristics at National and Regional Level. 2018. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Road_safety_statistics_-_characteristics_at_national_and_regional_level&oldid=463733 (accessed on 11 December 2023).
- Tumavičė, A.; Jasiūnienė, V.; Kravcovas, I. Identification and analysis of problems in the implementation of road safety audit in Lithuania. Balt. J. Road Bridge Eng. 2020, 15, 111–126. [Google Scholar] [CrossRef]
- UN General Assembly. Improving Global Road Safety. 2020. Available online: https://undocs.org/en/A/RES/74/299 (accessed on 15 January 2024).
- World Health Organization. Global Road Safety Performance Targets. 2021. Available online: https://www.who.int/multi-media/details/global-road-safety-performance-targets (accessed on 15 January 2024).
- European Commission.Road Safety: 20,640 People Died in a Road Crash Last Year—Progress Remains Too Slow. 2023. Available online: https://transport.ec.europa.eu/news-events/news/road-safety-20640-people-died-road-crash-last-year-progress-remains-too-slow-2023-10-19_en (accessed on 19 January 2024).
- European Transport Safety Council. Road Deaths in the European Union—Latest Data. 2023. Available online: https://etsc.eu/euroadsafetydata/ (accessed on 17 January 2024).
- Björnberg, E.; Hansson, S.O.; Belin, M.Å.; Tingvall, C. (Eds.) The Vision Zero Handbook; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–1240. [Google Scholar]
- Shi, G.; Methoxha, V.; Atkinson-Palombo, C.; Garrick, N. Moving Beyond the Vision Zero Slogan. Transp. Res. Rec. 2023, 2677, 1027–1038. [Google Scholar] [CrossRef]
- Mayorov, V.I.; Denisenko, V.V.; Solovev, S.G. A systemic approach to road safety in the EU. Jurídicas CUC 2023, 19, 259–278. [Google Scholar] [CrossRef]
- Conover, M.R. Numbers of human fatalities, injuries, and illnesses in the United States due to wildlife. Hum.–Wildl. Interact. 2019, 13, 12. [Google Scholar] [CrossRef]
- Žuraulis, V.; Pumputis, V. Vision Zero in Lithuania. In Vision Zero Handbook; Björnberg, E., Hansson, S.O., Belin, M.Å., Tingvall, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 398–438. [Google Scholar] [CrossRef]
- Lee, T.S.; Jones, P.F.; Jakes, A.F.; Jensen, M.; Sanderson, K.; Duke, D. Where to invest in road mitigation? A comparison of multiscale wildlife data to inform roadway prioritization. J. Nat. Conserv. 2023, 71, 126327. [Google Scholar] [CrossRef]
- Sugiarto, W. Impact of Wildlife Crossing Structures on Wildlife–Vehicle Collisions. Transp. Res. Rec. 2023, 2677, 670–685. [Google Scholar] [CrossRef]
- Paemelaere, E.A.; Mejía, A.; Quintero, S.; Hallett, M.; Li, F.; Wilson, A.; Barnabas, H.; Albert, A.; Li, R.; Baird, L.; et al. The road towards wildlife friendlier infrastructure: Mitigation planning through landscape-level priority settings and species connectivity frameworks. Environ. Impact Assess. Rev. 2023, 99, 107010. [Google Scholar] [CrossRef]
- Pagany, R. Wildlife-vehicle collisions—Influencing factors, data collection and research methods. Biol. Conserv. 2020, 251, 108758. [Google Scholar] [CrossRef]
- Torres, D.F.; Oliveira, E.S.; Alves, R.R.N. Understanding human–wildlife conflicts and their implications. In Ethnozoology; Nóbrega Alves, R.R., Albuquerque, U.A., Eds.; Academic Press: London, UK, 2018; pp. 421–445. [Google Scholar] [CrossRef]
- Abra, F.D.; Granziera, B.M.; Huijser, M.P.; Ferraz, K.M.P.M.D.B.; Haddad, C.M.; Paolino, R.M. Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state, Brazil. PLoS ONE 2019, 4, e0215152. [Google Scholar] [CrossRef]
- Grilo, C.; Koroleva, E.; Andrášik, R.; Bíl, M.; González-Suárez, M. Roadkill risk and population vulnerability in European birds and mammals. Front. Ecol. Environ. 2020, 18, 323–328. [Google Scholar] [CrossRef]
- Clevenger, A.P.; Chruszcz, B.; Gunson, K.E. Highway mitigation fencing reduces wildlife-vehicle collisions. Wildl. Soc. Bull. 2001, 29, 646–653. [Google Scholar]
- Ford, A.T.; Clevenger, A.P.; Huijser, M.P.; Dibb, A. Planning and prioritization strategies for phased highway mitigation using wildlife-vehicle collision data. Wildl. Biol. 2011, 17, 253–265. [Google Scholar] [CrossRef]
- Huijser, M.P.; Fairbank, E.R.; Camel-Means, W.; Graham, J.; Watson, V.; Basting, P.; Becker, D. Effectiveness of short sections of wildlife fencing and crossing structures along highways in reducing wildlife–vehicle collisions and providing safe crossing opportunities for large mammals. Biol. Conserv. 2016, 197, 61–68. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Kučas, A.; Balčiauskienė, L. Mammal Roadkills in Lithuanian Urban Areas: A 15-Year Study. Animals 2023, 13, 3272. [Google Scholar] [CrossRef]
- Pop, M.I.; Gradinaru, S.R.; Popescu, V.D.; Haase, D.; Iojă, C.I. Emergency-line calls as an indicator to assess human–wildlife interaction in urban areas. Ecosphere 2023, 14, e4418. [Google Scholar] [CrossRef]
- Denneboom, D.; Bar-Massada, A.; Shwartz, A. Wildlife mortality risk posed by high and low traffic roads. Conserv. Biol. 2024, 38, e14159. [Google Scholar] [CrossRef]
- Kučas, A.; Balčiauskas, L.; Lavalle, C. Identification of Urban and Wildlife Terrestrial Corridor Intersections for Planning of Wildlife-Vehicle Collision Mitigation Measures. Land 2023, 12, 758. [Google Scholar] [CrossRef]
- Kučas, A.; Balčiauskas, L. Impact of Road Fencing on Ungulate-Vehicle Collisions and Hotspot Patterns. Land 2021, 10, 338. [Google Scholar] [CrossRef]
- Brieger, F.; Kämmerle, J.L.; Hagen, R.; Suchant, R. Behavioural reactions to oncoming vehicles as a crucial aspect of wildlife-vehicle collision risk in three common wildlife species. Accid. Anal. Prev. 2022, 168, 106564. [Google Scholar] [CrossRef]
- Borza, S.; Godó, L.; Valkó, O.; Végvári, Z.; Deák, B. Better safe than sorry–Understanding the attitude and habits of drivers can help mitigating animal-vehicle collisions. J. Environ. Manag. 2023, 339, 117917. [Google Scholar] [CrossRef]
- Sagberg, F.; Selpi; Bianchi Piccinini, G.F.; Engström, J. A review of research on driving styles and road safety. Hum. Factors 2015, 57, 1248–1275. [Google Scholar] [CrossRef]
- Al-Bdairi, N.S.S.; Behnood, A.; Hernandez, S. Temporal stability of driver injury severities in animal-vehicle collisions: A random parameters with heterogeneity in means (and variances) approach. Anal. Methods Accid. Res. 2020, 26, 100120. [Google Scholar] [CrossRef]
- McCollister, M.F.; Van Manen, F.T. Effectiveness of wildlife underpasses and fencing to reduce wildlife-vehicle collisions. J. Wildl. Manag. 2010, 74, 1722–1731. [Google Scholar] [CrossRef]
- Sundaram, N.; Meena, S.D. Integrated animal monitoring system with animal detection and classification capabilities: A review on image modality, techniques, applications, and challenges. Artif. Intell. Rev. 2023, 56, 1–51. [Google Scholar] [CrossRef]
- Singer, P.; Tse, Y.F. AI ethics: The case for including animals. AI Ethics 2023, 3, 539–551. [Google Scholar] [CrossRef]
- Jasiūnienė, V.; Vaiškūnaitė, R. Road safety assessment considering the expected fatal accident density. Balt. J. Road Bridge Eng. 2020, 15, 31–48. [Google Scholar] [CrossRef]
- Naidič, E.; Bražiūnas, J. Žūčių Lietuvos keliuose dinamika ir priežastys. Sci.—Future Lith. 2023, 5, 1–10. [Google Scholar] [CrossRef]
- Ušpalytė-Vitkūnienė, R.; Laureshyn, A. The typical traffic accident in Lithuania in comparison with Sweden. Balt. J. Road Bridge Eng. 2020, 15, 60–73. [Google Scholar] [CrossRef]
- Činčikaitė, R.; Meidutė-Kavaliauskienė, I. Study of the influence of sustainable transport on traffic incidents. Bus. Manag. Econ. Eng. 2023, 21, 237–247. [Google Scholar] [CrossRef]
- Leonavičienė, T.; Pukalskas, S.; Pumputis, V.; Kulešienė, E.; Žuraulis, V. Investigation of factors that have affected the outcomes of road traffic accidents on Lithuanian roads. Balt. J. Road Bridge Eng. 2020, 15, 1–20. [Google Scholar] [CrossRef]
- EU. Available online: https://european-union.europa.eu/principles-countries-history/country-profiles/lithuania_en (accessed on 25 December 2023).
- European Environmental Agency CORINE Land Cover—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 22 August 2023).
- State Service for Protected Areas under the Ministry of Environment of Lithuania. Available online: https://vstt.lrv.lt/en/lithuanian-protected-areas/ (accessed on 15 November 2023).
- Eismo Intensyvumas. Available online: https://lakd.lt/eismo-intensyvumas (accessed on 20 August 2023).
- Statistinė Informacija. Available online: https://lakd.lt/statistine-informacija (accessed on 21 July 2023).
- Eismo Įvykių Lietuvoje Statistika. 2023. Available online: https://lkpt.policija.lrv.lt/lt/statistika/eismo-ivykiu-lietuvoje-statistika (accessed on 15 December 2023).
- Dean, A.G.; Sullivan, K.M.; Soe, M.M. OpenEpi: Open Source Epidemiologic Statistics for Public Health. Available online: http://OpenEpi.com (accessed on 5 January 2024).
- Fleiss, J.L.; Levin, B.; Paik, M.C. Statistical Methods for Rates and Proportions, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 1–800. [Google Scholar]
- G-Test Calculator. Available online: https://elem.com/~btilly/effective-ab-testing/g-test-calculator.html (accessed on 5 January 2024).
- Past 4—The Past of the Future. Available online: https://www.nhm.uio.no/english/research/resources/past/ (accessed on 1 January 2024).
- Prūsaitė, J. (Ed.) Lietuvos Fauna. Žinduoliai; Mokslas: Vilnius, Lithuania, 1988; pp. 1–295. [Google Scholar]
- Logminas, V. (Ed.) Lietuvos Fauna, Paukščiai; Mokslas: Vilnius, Lithuania, 1990; Volume 1, pp. 1–366. [Google Scholar]
- Baleišis, R.; Bluzma, P.; Balčiauskas, L. Lietuvos Kanopiniai Žvėrys, 3rd ed.; Akstis: Vilnius, Lithuania, 2003; pp. 1–216. [Google Scholar]
- Visuotinė Lietuvių Enciklopedija. Available online: https://www.vle.lt/ (accessed on 11 January 2024).
- Kalendorius.today. Available online: https://www.kalendorius.today/ (accessed on 25 September 2023).
- Balčiauskas, L.; Kučas, A.; Balčiauskienė, L. Lockdown’s Silver Lining? Different Levels of Roadkill during the COVID-19 Times in Lithuania. Animals 2023, 13, 2918. [Google Scholar] [CrossRef]
- Wildlife-Vehicle Collision Reduction Study: Report to Congress. Available online: https://wafwa.org/wp-content/uploads/2021/04/2007-Report-to-Congress.pdf (accessed on 5 January 2024).
- Rahman, M.A.; Das, S.; Sun, X.; Sun, M.; Hossain, M.M. Using unsupervised learning to investigate injury-associated factors of animal-vehicle crashes. Int. J. Inj. Control Saf. Promot. 2023, 30, 210–219. [Google Scholar] [CrossRef]
- Seiler, A.; Bhardwaj, M. Wildlife and Traffic: An Inevitable but Not Unsolvable Problem? In Problematic Wildlife II; Angelici, F., Rossi, L., Eds.; Springer: Cham, Switzerland, 2020; pp. 171–190. [Google Scholar] [CrossRef]
- Medžiojamųjų Gyvūnų Apskaita (2022–2023 Metų Medžioklės Sezonas). Available online: https://am.lrv.lt/lt/veiklos-sritys-1/gamtos-apsauga/medziokle/medziojamuju-zveriu-apskaita/medziojamuju-gyvunu-apskaita-2022-2023-metu-medziokles-sezonas/ (accessed on 14 January 2024).
- Balčiauskas, L.; Kučas, A.; Balčiauskienė, L. The Impact of Roadkill on Cervid Populations in Lithuania. Forests 2023, 14, 1224. [Google Scholar] [CrossRef]
- Bíl, M.; Kubeček, J.; Andrášik, R. Ungulate-vehicle collision risk and traffic volume on roads. Eur. J. Wildl. Res. 2020, 66, 59. [Google Scholar] [CrossRef]
- Apollonio, M.; Andersen, R.; Putman, R. (Eds.) European Ungulates and Their Management in the 21st Century; Cambridge University Press: New York, NY, USA, 2010; pp. 1–604. [Google Scholar]
- Laliberté, J.; St-Laurent, M.H. In the wrong place at the wrong time: Moose and deer movement patterns influence wildlife-vehicle collision risk. Accid. Anal. Prev. 2020, 135, 105365. [Google Scholar] [CrossRef]
- Kučas, A.; Balčiauskas, L. Temporal patterns of ungulate-vehicle collisions in Lithuania. J. Environ. Manag. 2020, 273, 111172. [Google Scholar] [CrossRef]
- Putzu, N.; Bonetto, D.; Civallero, V.; Fenoglio, S.; Meneguz, P.G.; Preacco, N.; Tizzani, P. Temporal patterns of ungulate-vehicle collisions in a subalpine Italian region. Ital. J. Zool. 2014, 81, 463–470. [Google Scholar] [CrossRef]
- Kämmerle, J.-L.; Brieger, F.; Kröschel, M.; Hagen, R.; Storch, I.; Suchant, R.; Apollonio, M. Temporal patterns in road crossing behaviour in roe deer (Capreolus capreolus) at sites with wildlife warning reflectors. PLoS ONE 2017, 12, e0184761. [Google Scholar] [CrossRef] [PubMed]
- Niemi, M.; Rolandsen, C.M.; Neumann, W.; Kukko, T.; Tiilikainen, R.; Pusenius, J.; Solberg, E.J.; Ericsson, G. Temporal patterns of moose-vehicle collisions with and without personal injuries. Accid. Anal. Prev. 2017, 98, 167–173. [Google Scholar] [CrossRef]
- Bíl, M.; Andrášik, R.; Kušta, T.; Bartonička, T. Ungulate-vehicle crashes peak a month earlier than 38 years ago due to global warming. Clim. Change 2023, 176, 84. [Google Scholar] [CrossRef]
- Menapace, M.; Tattoni, C.; Tondini, N.; Zatelli, P.; Ciolli, M. Human-wildlife conflict and road collisions with ungulates. A risk analysis and design solutions in Trentino, Italy. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 125–131. [Google Scholar] [CrossRef]
- Cserkész, T.; Ottlecz, B.; Cserkész-Nagy, Á.; Farkas, J. Interchange as the main factor determining wildlife–vehicle collision hotspots on the fenced highways: Spatial analysis and applications. Eur. J. Wildl. Res. 2013, 59, 587–597. [Google Scholar] [CrossRef]
- Šprem, N.; Duduković, D.; Keros, T.; Konjević, D. Wildlife-vehicle collisions in Croatia—A hazard for humans and animals. Coll. Antropol. 2013, 37, 531–535. [Google Scholar]
- Pokorny, B. Roe deer-vehicle collisions in Slovenia: Situation, mitigation strategy and countermeasures. Vet. Arh. 2006, 76, 177–187. [Google Scholar]
- Markolt, F.; Hervai, A.; Havas, G.; Szemethy, L.; Heltai, M. Landscape factors influencing roe deer roadkill frequencies on the M3 highway of Hungary. Rev. Agric. Rural. Dev. 2012, 1, 44–49. [Google Scholar]
- Hothorn, T.; Müller, J.; Held, L.; Möst, L.; Mysterud, A. Temporal patterns of deer-vehicle collisions consistent with deer activity pattern and density increase but not general accident risk. Accid. Anal. Prev. 2015, 81, 143–152. [Google Scholar] [CrossRef]
- Vanlaar, W.; Barrett, H.; Hing, M.; Brown, S.; Robertson, R. Canadian wildlife-vehicle collisions: An examination of knowledge and behavior for collision prevention. J. Saf. Res. 2019, 68, 181–186. [Google Scholar] [CrossRef]
- Wilkins, D.; Kockelman, K.; Jiang, N. Animal-vehicle collisions in Texas: How to protect travelers and animals on roadways. Accident Anal. Prev. 2019, 131, 157–170. [Google Scholar] [CrossRef]
- Carvalho-Roel, C.F.; Alves, G.B.; de Almeida Jácomo, A.T.; Moreira, R.A.; Tôrres, N.M.; Silveira, L. Wildlife roadkill in the surroundings of Emas National Park, Cerrado biome, Brazil. Oecologia Aust. 2021, 25, 795–806. [Google Scholar] [CrossRef]
- dos Santos, A.B.; Gatti, A.; Santos, M.R.d.D.; Merçon, L.; Westermeyer, I.; Ardente, N.C.; Gonzaga, L.F.O.P.; Barreto, L.M.; Damásio, L.; Rocha, T.L.; et al. Roadkills of Lowland Tapir Tapirus terrestris (Mammalia: Perissodactyla: Tapiridae) in one of its last refuges in the Atlantic Forest. J. Threat. Taxa 2021, 13, 19921–19929. [Google Scholar] [CrossRef]
- Giummarra, M.J.; Beck, B.; Gabbe, B.J. Classification of road traffic injury collision characteristics using text mining analysis: Implications for road injury prevention. PLoS ONE 2021, 16, e0245636. [Google Scholar] [CrossRef] [PubMed]
- Hedlund, J.H.; Curtis, P.D.; Curtis, G.; Williams, A.F. Methods to reduce traffic crashes involving deer: What works and what does not. Traffic Inj. Prev. 2004, 5, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Garrah, E.; Danby, R.K.; Eberhardt, E.; Cunnington, G.M.; Mitchell, S. Hot spots and hot times: Wildlife road mortality in a regional conservation corridor. Environ. Manag. 2015, 56, 874–889. [Google Scholar] [CrossRef] [PubMed]
- Balčiauskas, L.; Stratford, J.; Balčiauskienė, L.; Kučas, A. Importance of professional roadkill data in assessing diversity of mammal roadkills. Transp. Res. Part D Transp. Environ. 2020, 87, 102493. [Google Scholar] [CrossRef]
- Ascensão, F.; Ribeiro, Y.G.G.; Campos, Z.; Yogui, D.R.; Desbiez, A.L. Forecasting seasonal peaks in roadkill patterns for improving road management. J. Environ. Manag. 2022, 321, 115903. [Google Scholar] [CrossRef]
Species | Body Mass, kg | Fatalities | Injuries | |||
---|---|---|---|---|---|---|
WVA Number | N | WVA Number | N | Per 1 WVA | ||
European bison (Bison bonasus) | 700 | 4 | 7 | 1.75 | ||
Moose (Alces alces) | 325 | 14 | 14 | 170 | 217 | 1.28 |
Red deer (Cervus elaphus) | 105 | 17 | 21 | 1.24 | ||
Roe deer (Capreolus capreolus) | 28 | 2 | 2 | 49 | 51 | 1.04 |
Wild boar (Sus scrofa) | 120 | 9 | 10 | 1.11 | ||
Red fox (Vulpes vulpes) | 5.3 | 1 | 1 | 1.00 | ||
European hare (Lepus europaeus) | 4.6 | 2 | 2 | 1.00 | ||
White stork (Ciconia ciconia) | 4.5 | 1 | 1 | 1.00 | ||
Horse (Equus ferus caballus) | 600 | 2 | 3 | 22 | 32 | 1.45 |
Cattle (Bos taurus) | 400 | 1 | 1 | 23 | 34 | 1.48 |
Cat (Felis catus) | 4 | 1 | 1 | 1.00 | ||
Dog (Canis familiaris) | 10 | 21 | 23 | 1.10 | ||
Species not identified | 2 | 2 | 40 | 52 | 1.30 |
Casualty | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Ost | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fatality | 1 | 1 | 1 | 3 | 3 | 4 | 5 | 2 | 1 | |||
Injury | 14 | 8 | 9 | 23 | 55 | 44 | 39 | 27 | 53 | 42 | 26 | 16 |
Total | 15 | 8 | 10 | 24 | 58 | 47 | 39 | 31 | 58 | 42 | 28 | 17 |
% | 4.0 | 2.1 | 2.7 | 6.4 | 15.4 | 12.5 | 10.3 | 8.2 | 15.4 | 11.1 | 7.4 | 4.5 |
Casualty | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday |
---|---|---|---|---|---|---|---|
Death | 1 | 4 | 4 | 1 | 3 | 1 | 7 |
Injury | 35 | 47 | 50 | 43 | 62 | 59 | 60 |
Total | 36 | 51 | 54 | 44 | 65 | 60 | 67 |
% | 9.6 | 13.6 | 14.4 | 11.8 | 17.4 | 16.0 | 17.9 |
Road | Casualty | Per 1000 km | ||
---|---|---|---|---|
Fatality | Injury | Total | ||
Main | 11 a | 154 a | 165 | 94.25 |
National | 4 a | 112 b | 116 | 23.54 |
Regional | 6 a | 32 c | 38 | 2.61 |
Other | 0 | 58 d | 58 | n/a |
Main Road | AADT in 2016 | WVA with Human Injuries | |||||
---|---|---|---|---|---|---|---|
Number | Length, km | Cars | Trucks | Total | n | % | per km |
A1 | 311.4 | 18,937 | 2895 | 21,832 | 51 | 33.1 | 0.164 |
A2 | 135.9 | 10,910 | 1230 | 12,140 | 21 | 13.6 | 0.155 |
A11 | 146.85 | 5166 | 580 | 5746 | 17 | 11.0 | 0.116 |
A6 | 185.4 | 6181 | 876 | 7057 | 12 | 7.8 | 0.065 |
A12 | 186.09 | 4669 | 547 | 5216 | 9 | 5.8 | 0.048 |
A4 | 134.46 | 4720 | 389 | 5109 | 8 | 5.2 | 0.059 |
A14 | 95.6 | 6584 | 435 | 7019 | 7 | 4.5 | 0.073 |
A16 | 137.51 | 5307 | 589 | 5896 | 6 | 3.9 | 0.044 |
A13 | 45.15 | 10,842 | 701 | 11,543 | 5 | 3.2 | 0.111 |
A10 | 66.1 | 7776 | 2408 | 10,184 | 4 | 2.6 | 0.061 |
A8 | 87.86 | 7038 | 2504 | 9542 | 3 | 1.9 | 0.034 |
A9 | 78.94 | 7667 | 896 | 8563 | 3 | 1.9 | 0.038 |
A5 | 97.06 | 15,078 | 5280 | 20,358 | 2 | 1.3 | 0.021 |
A7 | 42.21 | 4595 | 560 | 5155 | 2 | 1.3 | 0.047 |
A15 | 49.28 | 5428 | 548 | 5976 | 2 | 1.3 | 0.041 |
A17 | 22.28 | 8029 | 2708 | 10,737 | 1 | 0.6 | 0.045 |
A3 | 33.99 | 5863 | 917 | 6780 | 1 | 0.6 | 0.029 |
Fatal Casualties | Injuries | ||
---|---|---|---|
Sequence | N | Sequence | N |
1 | 13 | 1, 6 | 1 |
1, 2 | 1 | 1, 6, 10 | 1 |
1, 2, 10 | 2 | 1, 7, 4 | 2 |
1, 3 | 2 | 1, 8, 4 | 1 |
1, 7, 4 | 1 | 1, 9 | 2 |
1, 7, 10 | 1 | 1, 10 | 7 |
1, 9, 8 | 1 | 1, 12 | 2 |
Injuries | 2, 1 | 1 | |
1 | 280 | 5 | 4 |
1, 2 | 14 | 5, 2 | 1 |
1, 2, 3 | 9 | 5, 2, 3 | 1 |
1, 2, 10 | 4 | 5, 2, 10 | 1 |
1, 2, 9 | 3 | 5, 10 | 3 |
1, 2, 11 | 1 | 6, 2 | 1 |
1, 3 | 2 | 6, 2, 3 | 1 |
1, 4 | 1 | 6, 2, 10 | 1 |
1, 5 | 1 | 6, 7, 4 | 1 |
1, 5, 10 | 1 | Other | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balčiauskas, L.; Kučas, A.; Balčiauskienė, L. Trends and Characteristics of Human Casualties in Wildlife–Vehicle Accidents in Lithuania, 2002–2022. Animals 2024, 14, 1452. https://doi.org/10.3390/ani14101452
Balčiauskas L, Kučas A, Balčiauskienė L. Trends and Characteristics of Human Casualties in Wildlife–Vehicle Accidents in Lithuania, 2002–2022. Animals. 2024; 14(10):1452. https://doi.org/10.3390/ani14101452
Chicago/Turabian StyleBalčiauskas, Linas, Andrius Kučas, and Laima Balčiauskienė. 2024. "Trends and Characteristics of Human Casualties in Wildlife–Vehicle Accidents in Lithuania, 2002–2022" Animals 14, no. 10: 1452. https://doi.org/10.3390/ani14101452
APA StyleBalčiauskas, L., Kučas, A., & Balčiauskienė, L. (2024). Trends and Characteristics of Human Casualties in Wildlife–Vehicle Accidents in Lithuania, 2002–2022. Animals, 14(10), 1452. https://doi.org/10.3390/ani14101452