Spatiotemporal Mechanisms of the Coexistence of Reintroduced Scimitar-Horned Oryx and Native Dorcas Gazelle in Sidi Toui National Park, Tunisia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Camera-Trap Survey
2.2.2. Data Processing
2.2.3. Environmental Data
2.3. Data Analysis
2.3.1. Relative Activity Index (RAI)
2.3.2. Spatial Niche Analysis
Modelling Habitat Suitability
Spatial Niche Overlap
2.3.3. Temporal Niche Analysis
Daily Activity Patterns
Temporal Niche Overlap
3. Results
3.1. Inventory Data
3.2. Relative Activity Index
3.3. Spatial Niche
3.3.1. Modelling a Suitable Habitat
3.3.2. Spatial Niche Overlap
3.4. Temporal Niche
3.4.1. Daily Activity Pattern Characteristics
3.4.2. Temporal Niche Overlap
4. Discussion
4.1. Annual Spatial Niche Partitioning
4.2. Annual Temporal Niche Partitioning
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Beltagy, A.; Madkour, M. Impact of climate change on arid lands agriculture. Agric. Food Secur. 2012, 1, 3. [Google Scholar] [CrossRef]
- Gordon, I.J.; Prins, H.H.T. The Ecology of Browsing and Grazing II; Springer: New York, NY, USA, 2019; pp. 1–4. Available online: https://link.springer.com/content/pdf/bfm:978-3-540-72422-3/1?pdf=chapter%20toc (accessed on 29 January 2024).
- Lillian, S.; Redak, R.A.; Daugherty, M.P. Assessing the role of differential herbivore performance among plant species in associational effects involving the invasive stink bug Bagrada hilaris (Hemiptera: Pentatomidae). Community Ecosyst. Ecol. 2019, 48, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Ripple, W.J.; Newsome, T.M.; Wolf, C.; Dirzo, R.; Everatt, K.T.; Galetti, M.; Hayward, M.W.; Kerley, G.I.H.; Levi, T.; Lindsey, P.A.; et al. Collapse of the world’s largest herbivores. Sci. Adv. 2015, 1, e1400103. [Google Scholar] [CrossRef] [PubMed]
- Biggs, D.; Courchamp, F.; Martin, R.; Possingham, H.P. Legal trade of Africa’s rhino horns. Science 2013, 339, 1038–1039. [Google Scholar] [CrossRef] [PubMed]
- Malcolm, J.R.; Liu, C.; Neilson, R.P.; Hansen, L.; Hannah, L.E.E. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 2006, 20, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Prins, H.H.; Gordon, I.J. Invasion Biology and Ecological Theory: Insights from a Continent in Transformation; Cambridge University Press: New York, NY, USA, 2014; pp. 1–17. [Google Scholar]
- Schulze, E.D.; Bouriaud, O.; Wäldchen, N.; Eisenhauer, H.; Walentowski, C.; Seele, E.; Helnze, U.; Pruschitzke, G.; Dănilă, G.; Marln, D.; et al. Ungulate browsing causes species loss in deciduous forests independent of community dynamics and silvicultural management in central and southeastern europe. Ann. For. Res. 2014, 57, 267–288. [Google Scholar] [CrossRef]
- Kasahara, M.; Fujii, S.; Tanikawa, T.; Mori, A.S. Ungulates decelerate litter decomposition by altering litter quality above and below ground. Eur. J. Forest. Res. 2016, 135, 849–856. [Google Scholar] [CrossRef]
- IUCN Species Survival Commission. Guidelines for Reintroductions and Other Conservation Translocations; Gland Switz Camb UK IUCNSSC Re-Introd Spec Group; IUCN Species Survival Commission: Gland, Switzerland, 2013; p. 57. [Google Scholar]
- Newby, J.E. Arid land wildlife in decline: The case of the scimitar-horned oryx. Conserv. Biol. Desert Antelopes. 1988, 146, 166. [Google Scholar]
- Hilton-Taylor, C. 2000 IUCN Red List of Threatened Species. IUCN, Gland, Switzerland and Cambridge, UK. 2000. Available online: https://policycommons.net/artifacts/1372154/2000-iucn-red-list-of-threatened-species/1986326/ (accessed on 25 August 2023).
- Molcanova, R. Update on Scimitar-horned oryx re-introduction in Sidi-Toui National Park, Tunisia. In Proceedings of the 7th Annual SSIG Meeting, Douz, Tunisia, 8–11 May 2006; pp. 85–92. [Google Scholar]
- IUCN SSC Antelope Specialist Group. Gazella dorcas. The IUCN Red List of Threatened Species 2017:E.T8969A50186334. 2017. Available online: https://doi.org/10.2305/IUCN.UK.2017-2.RLTS.T8969A50186334.en (accessed on 22 April 2024).
- IUCN SSC Antelope Specialist Group. Oryx dammah. The IUCN Red List of Threatened Species 2023:E.T15568A197393805. 2023. Available online: https://doi.org/10.2305/IUCN.UK.2023-1.RLTS.T15568A197393805.en (accessed on 22 April 2024).
- Ripple, W.J.; Estes, J.A.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P.; et al. Status and ecological effects of the world’s largest carnivores. Science 2014, 343, 1241484. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, F.; Corazza, M.; Campana, I.; Pietrocini, V.; Brunetti, C.; Scornavacca, D.; Lovari, S. Competition between wild herbivores: Reintroduced red deer and Apennine chamois. Behav. Ecol. 2015, 26, 550–559. [Google Scholar] [CrossRef]
- Valente, A.M.; Acevedo, P.; Figueiredo, A.M.; Fonseca, C.; Torres, R.T. Overabundant wild ungulate populations in Europe: Management with consideration of socio-ecological consequences. Mammal. Rev. 2020, 50, 353–366. [Google Scholar] [CrossRef]
- Gause, G.F. Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science 1934, 79, 16–17. [Google Scholar] [CrossRef] [PubMed]
- Wereszczuk, A.; ZalewskiI, A. Spatial niche segregation of sympatric stone marten and pine marten–avoidance of competition or selection of optimal habitat? PLoS ONE 2015, 10, e0139852. [Google Scholar] [CrossRef] [PubMed]
- Macarthur, R.; Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 1967, 101, 377–385. Available online: https://www.jstor.org/stable/2459090 (accessed on 12 December 2023). [CrossRef]
- Holt, R.D.; Polis, G.A. A theoretical framework for intraguild predation. Am. Nat. 1997, 149, 745–764. Available online: https://journals.uchicago.edu/doi/10.1086/286018 (accessed on 15 December 2023). [CrossRef]
- Grassel, S.M.; Rachlow, J.L.; Williams, C.J. Spatial interactions between sympatric carnivores: Asymmetric avoidance of an intraguild predator. Ecol. Evol. 2015, 5, 2762–2773. [Google Scholar] [CrossRef] [PubMed]
- Chesson, P. General theory of competitive coexistence in spatially-varying environments. Theor. Popul. Biol. 2000, 58, 211–237. [Google Scholar] [CrossRef] [PubMed]
- Letten, A.D.; Ke, P.J.; Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 2017, 87, 161–177. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Cardoso, P. Decomposing the causes for niche differentiation between species using hypervolumes. Front. Ecol. Evol. 2020, 8, 243. [Google Scholar] [CrossRef]
- Dayan, T.; Simberloff, D. Ecological and community-wide character displacement: The next generation. Ecol. Lett. 2005, 8, 875–894. [Google Scholar] [CrossRef]
- Jonathan, D.T.; Meiri, S.; Barraclough, T.G.; Gittleman, J.L. Species co-existence and character divergence across carnivores. Ecol. Lett. 2007, 10, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, G.E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 1957, 22, 415–427. [Google Scholar] [CrossRef]
- HilleRisLambers, J.; Adler, P.B.; Harpole, W.S.; Levine, J.M.; Mayfield, M.M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 227–248. [Google Scholar] [CrossRef]
- Halle, S.; Stenseth, N.C. Theoretical Considerations—Introduction. In Activity Patterns in Small Mammals: An Ecological Approach; with 11 Tables; Springer: Berlin/Heidelberg, Germany, 2000; Volume 141, p. 21. Available online: https://books.google.tn/books?hl=en&lr=&id=cLvnPZA4KCkC&oi=fnd&pg=PA21&dq=30.%09Halle,+S.%3B+Stenseth,+N.C.+Theoretical+Considerations%E2%80%94Introduction.+Activity+Patterns+in+Small+Mammals:+An+Ecological+Approach%3B+with+11+Tables+2000,+141,+21.&ots=O6AJpuhsQa&sig=cvmPcVv4eMg4DWguqYXEpAjevOQ&redir_esc=y#v=onepage&q&f=false (accessed on 10 December 2023).
- Kneitel, J.M.; Chase, J.M. Trade-offs in community ecology: Linking spatial scales and species coexistence. Ecol. Lett. 2004, 7, 69–80. [Google Scholar] [CrossRef]
- Hofmann, R.R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants—A comparative view of their digestive-system. Oecologia 1989, 78, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.G.; Brown, D. Niche separation of grazing ungulates in the Serengeti: An experimental test. J. Anim. Ecol. 1993, 62, 380–389. [Google Scholar] [CrossRef]
- Bell, R.H.V. A grazing system in the Serengeti. Sci. Am. 1971, 225, 86–93. [Google Scholar] [CrossRef]
- Cromsigt, J.P.; Prins, H.H.; Olff, H. Habitat heterogeneity as a driver of ungulate diversity and distribution patterns: Interaction of body mass and digestive strategy. Divers. Distrib. 2009, 15, 513–522. [Google Scholar] [CrossRef]
- Azevedo, F.C.; Lemos, F.G.; Freitas-Junior, M.C.; Rocha, D.G.; Azevedo, F.C.C. Puma activity patterns and temporal overlap with prey in a human-modified landscape at Southeastern Brazil. J. Zool. 2018, 305, 246–255. [Google Scholar] [CrossRef]
- Lashley, M.A.; Cove, M.V.; Chitwood, M.C.; Penido, G.; Gardner, B.; DePerno, C.S.; Moorman, C.E. Estimating wildlife activity curves: Comparison of methods and sample size. Sci. Rep. 2018, 8, 4173. [Google Scholar] [CrossRef]
- Kotler, B.P.; Brown, J.; Mukherjee, S.; Berger-Tal, O.; Bouskila, A. Moonlight avoidance in gerbils reveals a sophisticated interplay among time allocation, vigilance and state-dependent foraging. Proc. R. Soc. B 2010, 277, 1469–1474. [Google Scholar] [CrossRef] [PubMed]
- Linkie, M.; Ridout, M.S. Assessing tiger–prey interactions in Sumatran rainforests. J. Zool. 2011, 3, 224–229. [Google Scholar] [CrossRef]
- Ramesh, T.; Kalle, R.; Sankar, K.; Qureshi, Q. Spatio-temporal partitioning among large carnivores in relation to major prey species in W estern G hats. J. Zool. 2012, 287, 269–275. [Google Scholar] [CrossRef]
- Johnsingh, A.J.T. Large mammal prey–predators in Bandipur. J. Bombay Nat. Hist. Soc. 1983, 80, 1–57. [Google Scholar]
- Bowland, A.E.; Perrin, M.R. Temporal and spatial patterns in blue duikers Philatomba monticola and red duikers Cephalophus natalensis. J. Zool. 1995, 237, 487–498. [Google Scholar] [CrossRef]
- Nathan, R.; Spiegel, O.; Fortmann-Roe, S.; Harel, R.; Wikelski, M.; Getz, W.M. Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: General concepts and tools illustrated for griffon vultures. J. Exp. Biol. 2012, 215, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Mori, E.; Andreoni, A.; Cecere, F.; Magi, M.; Lazzeri, L. Patterns of activity rhythms of invasive coypus Myocastor coypus inferred through camera-trapping. Mamm. Biol. 2020, 100, 591–599. [Google Scholar] [CrossRef]
- Viviano, A.; Mori, E.; Fattorini, N.; Mazza, G.; Lazzeri, L.; Panichi, A.; Strianese, L.; Mohamed, W.F. Spatiotemporal overlap between the European brown hare and its potential predators and competitors. Animals 2021, 11, 562. [Google Scholar] [CrossRef]
- Li, X.; Tian, H.; Piao, Z.; Wang, G.; Xiao, Z.; Sun, Y.; Gao, E.; Holyoak, M. cameratrapR: An R package for estimating animal density using camera trapping data. Ecol. Inform. 2022, 69, 101597. [Google Scholar] [CrossRef]
- Agha, M.; Batter, T.; Bolas, E.C.; Collins, A.C.; Gomes da Rocha, D.; Monteza-Moreno, C.M.; Preckler-Quisquater, S.; Sollmann, R. A review of wildlife camera trapping trends across Africa. Afr. J. Ecol. 2018, 56, 694–701. [Google Scholar] [CrossRef]
- Greenberg, S.; Godin, T.; Whittington, J. Design patterns for wildlife-related camera trap image analysis. Ecol. Evol. 2019, 9, 13706–13730. [Google Scholar] [CrossRef] [PubMed]
- Harmsen, B.J.; Foster, R.J.; Doncaster, C.P. Heterogeneous capture rates in low density populations and consequences for capture-recapture analysis of camera-trap data. Popul. Ecol. 2011, 53, 253–259. [Google Scholar] [CrossRef]
- Pfeffer, S.E.; Spitzer, R.; Allen, A.M.; Hofmeester, T.R.; Ericsson, G.; Widemo, F.; Singh, N.J.; Cromsigt, J.P. Pictures or pellets? Comparing camera trapping and dung counts as methods for estimating population densities of ungulates. Remote Sens. Ecol. Conserv. 2018, 4, 173–183. [Google Scholar] [CrossRef]
- Mori, E.; Bagnato, S.; Serroni, P.; Sangiuliano, A.; Rotondaro, F.; Marchianò, V.; Cascini, V.; Poerio, L.; Ferretti, F. Spatiotemporal mechanisms of coexistence in an European mammal community in a protected area of southern Italy. J. Zool. 2019, 310, 232–245. [Google Scholar] [CrossRef]
- Houngbégnon, F.G.; Cornelis, D.; Vermeulen, C.; Sonké, B.; Ntie, S.; Fayolle, A.; Fonteyn, D.; Lhoest, S.; Evrard, Q.; Yapi, F.; et al. Daily activity patterns and co-occurrence of duikers revealed by an intensive camera trap survey across central african rainforests. Animals 2020, 10, 2200. [Google Scholar] [CrossRef]
- You, Z.; Lu, B.; Du, B.; Liu, W.; Jiang, Y.; Ruan, G.; Yang, N. Spatio-Temporal Niche of Sympatric Tufted Deer (Elaphodus Cephalophus) and Sambar (Rusa unicolor) Based on Camera Traps in the Gongga Mountain National Nature Reserve, China. Animals 2022, 12, 2694. [Google Scholar] [CrossRef]
- Meliane, M.K.; Petretto, M.; Saidi, A.; Chetoui, A.; Gilbert, T.; Nasri-Ammar, K. Daily and seasonal activity patterns of the dorcas gazelle, scimitar-horned oryx, north-African ostrich and canids in an arid habitat. Afr. J. Ecol. 2023, 61, 118–128. [Google Scholar] [CrossRef]
- Karanth, K.K. Wildlife in the matrix: Spatio-temporal patterns of herbivore occurrence in Karnataka, India. Environ. Manag. 2016, 57, 189–206. [Google Scholar] [CrossRef]
- Li, S.; McShea, W.J.; Wang, D.; Shen, X.; Bu, H.; Guan, T.; Wang, F.; Gu, X.; Zhang, X.; Liao, H. Construction progress of the Camera-trapping Network for the Mountains of Southwest China. Biodivers. Sci. 2020, 28, 1049. [Google Scholar] [CrossRef]
- Karem, A.; Ksantini, M.; Schoenenberger, A.; Waibel, T. Contribution à la Régénération de la Végétation dans le Parcs Nationaux en Tunisie Aride; GTZ/DGF: Tunis, Tunisia, 1993. [Google Scholar]
- Tarhouni, M.; Ben Hmida, W.; Neffati, M. Long-term changes in plant life forms as a consequence of grazing exclusion under and climatic conditions. Land Degrad. Dev. 2017, 28, 1199–1211. [Google Scholar] [CrossRef]
- Lyra-Jorge, M.C.; Ribeiro, M.C.; Ciocheti, G.; Tambosi, L.R.; Pivello, V.R. Influence of multi-scale landscape structure on the occurrence of carnivorous mammals in a human-modified savanna, Brazil. Eur. J. Wildl. Res. 2010, 56, 359–368. [Google Scholar] [CrossRef]
- Meliane, M.K.; Saidi, A.; Petretto, M.; Nasri-Ammar, K.; Taghouti, E.; Guidara, H.; Boufaroua, M.; Woodfine, T.; Gilbert, T. African houbara (Chlamydotis undulata undulata) confirmed in Sidi Toui National Park, Tunisia. Afr. J. Ecol. 2023, 61, 482–484. [Google Scholar] [CrossRef]
- Meliane, M.K.; Saidi, A.; Petretto, M.; Woodfine, T.; Riordan, P.; Gilbert, T.; Taghouti, E.; Guidara, H. The crested porcupine in Tunisia’s semi-arid steppes. Oryx 2023, 57, 10. [Google Scholar] [CrossRef]
- Kalan, A.K.; Hohmann, G.; Arandjelovic, M.; Boesch, C.; McCarthy, M.S.; Agbor, A.; Angedakin, S.; Bailey, E.; Balongelwa, C.W.; Bessone, M.; et al. Novelty response of wild African apes to camera traps. Curr. Biol. 2019, 29, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Bargaoui, Z.; Tramblay, Y.; Lawin, E.A.; Servat, E. Seasonal precipitation variability in regional climate simulations over Northern basins of Tunisia. Int. J. Climatol. 2014, 34, 235–248. [Google Scholar] [CrossRef]
- Ridout, M.S.; Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 2009, 14, 322–337. [Google Scholar] [CrossRef]
- Jiménez, J.; Nuñez-Arjona, J.C.; Rueda, C.; González, L.M.; García-Domínguez, F.; Muñoz-Igualada, J.; López-Bao, J.V. Estimating carnivore community structures. Sci. Rep. 2017, 7, 41036. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xue, Y.; Zhang, Y.; Dong, W.; Shan, G.; Sun, R.; Hacker, C.; Wu, B.; Li, D. Spatial and temporal activity patterns of Golden takin (Budorcas taxicolor bedfordi) recorded by camera trapping. PeerJ 2020, 8, e10353. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, M.L. A thoery of habitat selection. Ecology 1981, 62, 327–335. [Google Scholar] [CrossRef]
- Bergeson, S.M.; Carter, T.C.; Whitby, M.D. Partitioning of foraging resources between sympatric Indiana and little brown bats. J. Mammal. 2013, 94, 1311–1320. [Google Scholar] [CrossRef]
- Daget, P.; Poissonet, J. Une méthode d’analyse phytologique des prairies. Critères d’application. Ann. Agron. 1971, 22, 5–41. [Google Scholar]
- He, F.; Legendre, P. Species diversity patterns derived from species–area models. Ecology 2002, 83, 1185–1198. [Google Scholar] [CrossRef]
- He, F.; Legendre, P. On species-area relations. Am. Nat. 1996, 148, 719–737. [Google Scholar] [CrossRef]
- Blake, J.G.; Mosquera, D.; Guerra, J.; Loiselle, B.A.; Romo, D.; Swing, K. Mineral licks as diversity hotspots in lowland forest of eastern Ecuador. Diversity 2011, 3, 217–234. [Google Scholar] [CrossRef]
- Bowkett, A.E.; Rovero, F.; Marshall, A.R. The use of camera-trap data to model habitat use by antelope species in the Udzungwa Mountain forests, Tanzania. Afr. J. Ecol. 2008, 46, 479–487. [Google Scholar] [CrossRef]
- McCullagh, P. Generalized Linear Models; Routledge: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Mary, S.W.; Antoine, G. Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecol. 2009, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Burnham, K.P.; Anderson, D.R. Model Selection and Inference: A Practical Information-Theoretic Approach; Springer: Berlin/Heidelberg, Germany, 2006; Volume 67, pp. 655–666. [Google Scholar]
- Whittingham, M.J.; Stephens, P.A.; Bradbury, R.B.; Freckleton, R.P. Why do we still use stepwise modelling in ecology and behaviour? J. Anim. Ecol. 2006, 75, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Pianka, E.R. The structure of lizard communities. Annu. Rev. Ecol. Syst. 1973, 4, 53–74. [Google Scholar] [CrossRef]
- Bennie, J.J.; Duffy, J.P.; Inger, R.; Gaston, K.J. Biogeography of time partitioning in mammals. Proc. Natl. Acad. Sci. USA 2014, 111, 13727–13732. [Google Scholar] [CrossRef]
- de Satgé, J.; Teichman, K.; Cristescu, B. Competition and coexistence in a small carnivore guild. Oecologia 2017, 184, 873–884. [Google Scholar] [CrossRef]
- Mella-Méndez, I.; Flores-Peredo, R.; Pérez-Torres, J.; Hernández-González, S.; González-Uribe, D.U.; del Socorro Bolívar-Cimé, B. Activity patterns and temporal niche partitioning of dogs and medium-sized wild mammals in urban parks of Xalapa, Mexico. Urban Ecosyst. 2019, 22, 1061–1070. [Google Scholar] [CrossRef]
- Manly, B.F.J.; McDonald, L.L.; Thomas, D.L.; McDonald, T.L.; Erickson, W.P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies, 2nd ed.; Springer: Dordrecht, The Netherlands, 2002; Available online: https://books.google.tn/books?hl=en&lr=&id=rBXnBwAAQBAJ&oi=fnd&pg=PR9&dq=86.%09Manly,+B.F.J.%3B+McDonald,+L.L.%3B+Thomas,+D.L.%3B+McDonald,+T.L.%3B+Erickson,+W.P.+Resource+Selection+by+Animals:+Statistical+Design+and+Analysis+for+Field+Studies,+2nd+ed.%3B+Springer:+Dordrecht,+The+Netherlands,+2002.&ots=Q4BdSXaaU3&sig=Hp84o_nME55sYwQlagDiExKfo1o&redir_esc=y#v=onepage&q&f=false (accessed on 13 November 2023).
- Lynam, A.J.; Jenks, K.E.; Tantipisanuh, N.; Chutipong, W.; Ngoprasert, D.; Gale, G.A.; Steinmetz, R.; Sukmasuang, R.; Bhumpakphan, N.; Lon, I.; et al. Terrestrial activity patterns of wild cats from camera-trapping. Raffles Bull. Zool. 2013, 61, 407–415. [Google Scholar]
- Meredith, M.; Ridout, M. Overlap: Estimates of Coefficient of Overlapping for Animal Activity Patterns. 2014. Available online: https://cran.r-project.org/package=overlap (accessed on 17 November 2023).
- Monterroso, P.; Alves, P.C.; Ferreras, P. Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: Implications for species coexistence. Behav. Ecol. Sociobiol. 2014, 68, 1403–1417. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Meliane, M.K.; Saidi, A.; Petretto, M.; Gilbert, T.; Nasri-Ammar, K. Temporal and spatial distribution of dorcas and slender-horned gazelles in a Saharan habitat. J. Wildl. Manag. 2023, 87, e22408. [Google Scholar] [CrossRef]
- Cooke, R.S.C.; Woodfine, T.; Petretto, M.; Ezard, T.H.G. Resource partitioning between ungulate populations in arid environments. Ecol. Evol. 2016, 6, 6354–6365. [Google Scholar] [CrossRef] [PubMed]
- Walther, F.R. Flight behaviour and avoidance of predators in Thomson’s gazelle (Gazella thomsoni Guenther 1884). Behaviour 1969, 34, 184–221. Available online: https://brill.com/view/journals/beh/34/3/article-p184_5.xml (accessed on 20 January 2024). [CrossRef]
- Costelloe, B.R.; Rubenstein, D.I. Temporal structuring of vigilance behaviour by female Thomson’s gazelles with hidden fawns. Anim. Behav. 2018, 145, 87–97. [Google Scholar] [CrossRef]
- Abáigar, T.; Cano, M.; Djigo, C.A.; Gomis, J.; Sarr, T.; Youm, B.; Fernández-Bellon, H.; Ensenyat, C. Social organization and demography of reintroduced Dorcas gazelle (Gazella dorcas neglecta) in North Ferlo Fauna Reserve. Senegal. Mamm. 2016, 80, 593–600. [Google Scholar] [CrossRef]
- Abáigar, T.; Cano, M.; Ensenyat, C. Time allocation and patterns of activity of the dorcas gazelle (Gazella dorcas) in a sahelian habitat. Mamm. Res. 2018, 63, 73–82. [Google Scholar] [CrossRef]
- Newby, J.E. The ecological resources of the Ouadi Rimé-Ouadi Achim faunal reserve. In Arada, UNDP/FA Wildlife Conservation and Management Project CHD/69/004; UNDP/FA Wildlife Conservation and Management Project: Arada, Chad, 1974. [Google Scholar]
- Hofmann, R.R.; Stewart, D.R.M. Grazer or browser: A classification based on the stomach-structure and feeding habits of East African ruminants. Mammalia 1972, 36, 227–240. [Google Scholar] [CrossRef]
- Hofmann, R.R. Ruminant Stomach: Stomach Structure and Feeding Habits of East African Game Ruminants; East African Literature Bureau: Nairobi, Kenya, 1973; p. 345. [Google Scholar]
- Schmidt-Nielsen, K. Scaling: Why Is Animal Size so Important? Cambridge University Press: New York, NY, USA, 1984; Available online: https://books.google.tn/books?hl=en&lr=&id=8WkjD3L_avQC&oi=fnd&pg=PR11&dq=96.%09Schmidt-Nielsen,+K.+Scaling:+why+is+animal+size+so+important%3F+Cambridge+university+press+:+New+York,+USA,+1984.&ots=oVf96mqPVL&sig=y8QVep3U94q1AqFLzxnIJE8YU-4&redir_esc=y#v=onepage&q&f=false (accessed on 25 January 2024).
- Haskell, J.P.; Ritchie, M.E.; Olff, H. Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges. Nature 2002, 418, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Henley, S.R.; Ward, D.; Schmidt, I. Habitat selection by two desert-adapted ungulates. J. Arid. Environ. 2007, 70, 39–48. [Google Scholar] [CrossRef]
- Dragesco-Joffé, A. La vie sauvage au Sahara. Lausanne. Rev. Ecol. 1993, 48, 441–442. Available online: https://www.persee.fr/doc/revec_0249-7395_1993_num_48_4_2461_t1_0441_0000_4 (accessed on 15 January 2024).
- Robinson, S.E.; Weckerly, F.W. Grouping patterns and selection of forage by the scimitar-horned oryx (Oryx dammah) in the Llano Uplift region of Texas. Southwest. Nat. 2010, 55, 510–516. [Google Scholar] [CrossRef]
- Wacher, T. Social organisation and ranging behaviour in the Hippotraginae. Conserv. Biol. Desert Antelopes. 1988, 102, 113. [Google Scholar]
- Spalton, J.A. The food supply of Arabian oryx (Oryx leucoryx) in the desert of Oman. J. Zool. 1999, 248, 433–441. [Google Scholar] [CrossRef]
- Pahkala, K.; Pihala, M. Different plant parts as raw material for fuel and pulp production. Ind. Crop. Prod. 2000, 11, 119–128. [Google Scholar] [CrossRef]
- Jaballah, S.; Gribaa, A.; Volaire, F.; Ferchichi, A. Ecophysiological Reponses of perennial grasses Stipa lagascae and Dactylis glomerata under soil water deficit. Opt. Mediterr. Ser. A 2008, 79, 303–307. [Google Scholar]
- Du Toit, J.T.; Olff, H. Generalities in grazing and browsing ecology: Using across-guild comparisons to control contingencies. Oecologia 2014, 174, 1075–1083. [Google Scholar] [CrossRef]
- Bukombe, J.; Kittle, A.; Senzota, R.B.; Kija, H.; Mduma, S.; Fryxell, J.M.; Magige, F.; Mligo, C.; Sinclair, A.R.E. The influence of food availability, quality and body size on patch selection of coexisting grazer ungulates in western Serengeti National Park. Wildl. Res. 2019, 46, 54–63. [Google Scholar] [CrossRef]
- Schaller, G.B. Mongolia’s golden horde, a million migrating gazelles. Wildl. Conserv. 1998, 101, 35–41. [Google Scholar]
- Iason, G.R.; Van Wieren, S.E. Digestive and ingestive adaptations of mammalian herbivores to low quality forage. In Herbivores: Between Plants and Herbivores; 38th Symposium of the British Ecological Society; Blackwell: Oxford, UK, 1999; pp. 337–370. [Google Scholar]
- Breuil, M.; Mayeur, J.P.; Thille, F. Kenya-Tanzanie: Le Guide du Safari, Faune et Parcs. Editions Marcus. 1998. Available online: https://books.google.tn/books?hl=en&lr=&id=RDXrb_0wqV4C&oi=fnd&pg=PA7&dq=109.%09Breuil,+M.%3B+Mayeur,+J.P.%3B+Thille,+F.+Kenya-Tanzanie:+Le+guide+du+safari,+faune+et+parcs.+Editions+Marcus,+1998&ots=Nc8kfWGuPe&sig=IIg6-NIlldvyCqbrISQDsMTXbYk&redir_esc=y#v=onepage&q&f=false (accessed on 13 January 2024).
- Massé, A.; Côté, S. Spatiotemporal variations in resources affect activity and movement patterns of white-tailed deer (Odocoileus virginianus) at high density. Can. J. Zool. 2013, 91, 252–263. [Google Scholar] [CrossRef]
- Hetem, R.S.; Strauss, W.M.; Fick, L.G.; Maloney, S.K.; Meyer, L.C.R.; Shobrak, M.; Fuller, A.; Mitchell, D. Does size matter? Comparison of body temperature and activity of free-living Arabian oryx (Oryx leucoryx) and the smaller Arabian sand gazelle (Gazella subgutturosa marica) in the Saudi desert. J. Comp. Physiol. B 2012, 182, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Babor, H.; Okab, A.B.; Samara, E.M.; Abdoun, K.A.; Omar, A.T.; Al-Haidary, A.A. Adaptive thermophysiological adjustments of gazelles to survive hot summer conditions. Pak. J. Zool. 2014, 46, 245–252. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=89f5b61e75a253e871213c2f634bcf0fd3058de2 (accessed on 20 January 2024).
- Espinosa, S.; Salvador, J. Hunters landscape accessibility and daily activity of ungulates in Yasuní Biosphere Reserve, Ecuador. Therya 2017, 8, 45–52. [Google Scholar] [CrossRef]
- Noor, A.; Mir, Z.R.; Veeraswami, G.G.; Habib, B. Activity patterns and spatial co-occurrence of sympatric mammals in the moist temperate forest of the Kashmir Himalaya, India. Folia Zool. 2017, 66, 231–241. [Google Scholar] [CrossRef]
- de Sá Alves, L.C.P.; Andriolo, A. Camera traps used on the mastofaunal survey of Araras Biological Reserve, IEF-RJ. Rev. Bras. Zoociências. 2005, 7, 231–246. Available online: https://www.researchgate.net/profile/Artur-Andriolo/publication/242463662_Camera_traps_used_on_the_mastofaunal_survey_of_Araras_Biological_Reserve_IEF-RJ/links/02e7e52a057be300e8000000/Camera-traps-used-on-the-mastofaunal-survey-of-Araras-Biological-Reserve-IEF-RJ.pdf (accessed on 11 January 2024).
- Leuthold, W. African Ungulates: A Comparative Review of their Ethology and Behavioural Ecdogy; Springer: Berlin/Heidelberg, Germany, 1977; Available online: https://books.google.tn/books?hl=en&lr=&id=ynLtCAAAQBAJ&oi=fnd&pg=PR5&dq=116.%09Leuthold,+W.+African+Ungulates.+A+Comparative+Review+of+their+Ethology+and+Behavioural+Ecdogy.+Springer:+Berlin,+1977.&ots=tmZzhwCXTP&sig=JFi9VYbEFzzh_nyR1KXuUDBuI8k&redir_esc=y#v=onepage&q&f=false (accessed on 15 January 2024).
- Merrill, E.H. Thermal constraints on use of cover types and activity time of elk. Appl. Anim. Behav. Sci. 1991, 29, 251–267. [Google Scholar] [CrossRef]
- Klassen, N.A.; Rea, R.V. What do we know about nocturnal activity of moose? Alces 2008, 44, 101–109. [Google Scholar]
- Gaynor, K.M.; Hojnowski, C.E.; Carter, N.H.; Brashares, J.S. The influence of human disturbance on wildlife nocturnality. Science 2018, 360, 1232–1235. [Google Scholar] [CrossRef]
- Lima, S.L.; Bednekoff, P.A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Nat. 1999, 153, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Fenn, M.G.; Macdonald, D.W. Use of middens by red foxes: Risk reverses rhythms of rats. J. Mammal. 1995, 76, 130–136. [Google Scholar] [CrossRef]
Season | Included Predictors | AICc | ∆AICc | wt | R2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Winter 2020–2021 | GC | 199.5 | 0 | 0.11 | 0.55 | |||||||
GC | DP | 200.71 | 1.21 | 0.06 | ||||||||
GC | WT | 200.92 | 1.42 | 0.06 | ||||||||
GC | DP | WT | 201.11 | 1.61 | 0.05 | |||||||
GC | WA | 201.25 | 1.74 | 0.05 | ||||||||
GC | AL | 201.29 | 1.79 | 0.05 | ||||||||
Selection probability | 0.94 | 0.25 | 0.25 | 0.33 | 0.30 | |||||||
Coefficient | 12.051 | −0.004 | −0.207 | 0.003 | −0.005 | |||||||
SE | 3.579 | 0.004 | 0.198 | 0.003 | 0.004 | |||||||
Winter 2021–2022 | GC | DP | 203.74 | 0 | 0.12 | 0.51 | ||||||
GC | 204.54 | 0.79 | 0.08 | |||||||||
GC | AL | DP | 204.73 | 0.99 | 0.08 | |||||||
GC | WT | 205.69 | 0.79 | 0.04 | ||||||||
Selection probability | 0.86 | 0.22 | 0.49 | 0.22 | ||||||||
Coefficient | 10.430 | 0.296 | 0.006 | 0.006 | ||||||||
SE | 3.786 | 0.263 | 0.003 | 0.005 | ||||||||
Spring 2021 | FC | GC | DP | 209.74 | 0 | 0.1 | 0.58 | |||||
FC | DP | 210.87 | 1.13 | 0.06 | ||||||||
FC | GC | DP | DR | 211.47 | 1.73 | 0.04 | ||||||
Selection probability | 0.68 | 0.54 | 0.55 | 0.20 | ||||||||
Coefficient | 12.660 | 7.289 | 0.008 | 0.002 | ||||||||
SE | 5.875 | 3.826 | 0.004 | 0.002 | ||||||||
Spring 2022 | FC | GC | DR | WT | 214.78 | 0 | 0.12 | 0.67 | ||||
FC | GC | DP | DR | WT | 215.3 | 0.53 | 0.09 | |||||
Selection probability | 0.81 | 0.61 | 0.31 | 0.46 | 0.54 | |||||||
Coefficient | 26.956 | 17.902 | −0.009 | 0.007 | −0.021 | |||||||
SE | 10.929 | 8.569 | 0.007 | 0.004 | 0.011 | |||||||
Summer 2021 | GC | 172.95 | 0 | 0.09 | 0.52 | |||||||
FC | GC | 174.04 | 0.09 | 0.05 | ||||||||
SC | FC | GC | 174.08 | 1.13 | 0.05 | |||||||
GC | WT | 174.15 | 1.2 | 0.05 | ||||||||
SC | GC | 174.17 | 1.22 | 0.05 | ||||||||
GC | DR | 174.76 | 1.82 | 0.04 | ||||||||
Selection probability | 0.33 | 0.30 | 0.86 | 0.17 | 0.26 | |||||||
Coefficient | −0.606 | 5.639 | 6.192 | −0.001 | −0.003 | |||||||
SE | 0.429 | 3.960 | 2.251 | 0.001 | 0.002 | |||||||
Summer 2022 | GC | 173.02 | 0 | 0.12 | 0.49 | |||||||
GC | AL | 173.6 | 0.58 | 0.09 | ||||||||
GC | WT | 174.76 | 1.74 | 0.05 | ||||||||
Selection probability | 0.78 | 0.31 | 0.13 | |||||||||
Coefficient | 0.109 | 0.236 | −0.003 | |||||||||
SE | 4.075 | 0.166 | 0.003 | |||||||||
Fall 2021 | FC | 203.99 | 0 | 0.18 | 0.43 | |||||||
FC | GC | 205.8 | 1.8 | 0.07 | ||||||||
Selection probability | 0.82 | 0.23 | ||||||||||
Coefficient | 15.102 | 4.865 | ||||||||||
SE | 4.916 | 4.585 | ||||||||||
Fall 2022 | FC | WA | 206.38 | 0 | 0.1 | 0.54 | ||||||
FC | DR | 206.69 | 0.3 | 0.09 | ||||||||
FC | 207.01 | 0.62 | 0.07 | |||||||||
FC | WA | DR | 207.3 | 0.91 | 0.06 | |||||||
FC | DP | DR | 208.31 | 1.93 | 0.04 | |||||||
Selection probability | 0.97 | 0.43 | 0.20 | 0.43 | ||||||||
Coefficient | 20.425 | 0.007 | −0.002 | 0.003 | ||||||||
SE | 6.102 | 0.004 | 0.003 | 0.002 |
Season | Included Predictors | AICc | ∆AICc | wt | R2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Winter 2020–2021 | FC | GC | DR | 140.18 | 0 | 0.12 | 0.63 | |||||
SC | FC | GC | DR | 140.42 | 0.25 | 0.10 | ||||||
FC | GC | AL | DR | 141.55 | 1.38 | 0.06 | ||||||
FC | GC | WA | DR | 141.81 | 1.69 | 0.06 | ||||||
Selection probability | 0.30 | 0.83 | 0.67 | 0.19 | 0.40 | 0.98 | ||||||
Coefficient | −0.267 | 3.493 | −2.957 | 0.001 | 0.10 | −0.001 | ||||||
SE | 0.190 | 1.509 | 1.38 | 0.001 | 0.066 | 0.000 | ||||||
Winter 2021–2022 | FC | WA | AL | 191.93 | 0 | 0.06 | 0.59 | |||||
SC | FC | WT | 192.02 | 0.09 | 0.06 | |||||||
SC | FC | 192.18 | 0.24 | 0.06 | ||||||||
FC | WA | 192.72 | 0.79 | 0.04 | ||||||||
SC | FC | DR | 192.86 | 0.93 | 0.04 | |||||||
FC | WA | WT | 193.4 | 1.47 | 0.03 | |||||||
FC | WA | DR | 193.56 | 1.63 | 0.03 | |||||||
FC | WA | AL | DR | 193.74 | 1.81 | 0.03 | ||||||
FC | 193.82 | 1.89 | 0.02 | |||||||||
Selection probability | 0.4 | 0.83 | 0.42 | 0.3 | 0.25 | 0.26 | ||||||
Coefficient | −1.310 | 13.272 | 0.007 | 0.307 | −0.002 | −0.005 | ||||||
SE | 0.749 | 4.723 | 0.004 | 0.21 | 0.002 | 0.004 | ||||||
Spring 2021 | FC | DP | 182.45 | 0 | 0.18 | 0.55 | ||||||
FC | GC | DP | 183.38 | 0.93 | 0.11 | |||||||
FC | 184.08 | 1.63 | 0.08 | |||||||||
Selection probability | 0.95 | 0.31 | 0.67 | |||||||||
Coefficient | 10.302 | 2.829 | 0.005 | |||||||||
SE | 3.383 | 2.207 | 0.002 | |||||||||
Spring 2022 | FC | GC | DR | WT | 209.87 | 0 | 0.17 | 0.68 | ||||
FC | GC | WT | 210.73 | 0.85 | 0.11 | |||||||
Selection probability | 0.85 | 0.63 | 0.40 | 0.80 | ||||||||
Coefficient | 25.259 | 16.269 | 0.006 | −0.023 | ||||||||
SE | 9.342 | 7.489 | 0.003 | 0.010 | ||||||||
Summer 2021 | SC | AL | DR | 189.43 | 0 | 0.13 | 0.52 | |||||
AL | DR | 190.48 | 1.06 | 0.08 | ||||||||
SC | FC | AL | DR | 190.88 | 1.45 | 0.06 | ||||||
Selection probability | 0.48 | 0.17 | 0.62 | 0.88 | ||||||||
Coefficient | −1.035 | 4.704 | −0.396 | −0.004 | ||||||||
SE | 0.595 | 6.071 | 0.196 | 0.001 | ||||||||
Summer 2022 | WA | DP | 160.21 | 0 | 0.13 | 0.56 | ||||||
GC | WA | DP | 161.02 | 0.81 | 0.09 | |||||||
WA | DP | DR | 161.1 | 0.89 | 0.08 | |||||||
WA | DP | WT | 161.72 | 1.5 | 0.06 | |||||||
SC | WA | DP | 161.84 | 1.63 | 0.06 | |||||||
Selection probability | 0.17 | 0.25 | 0.88 | 0.77 | 0.28 | 0.19 | ||||||
Coefficient | 0.506 | 3.852 | 0.007 | −0.004 | −0.001 | −0.002 | ||||||
SE | 0.495 | 3.023 | 0.002 | 0.001 | 0.001 | 0.002 | ||||||
Fall 2021 | FC | GC | 170.8 | 0 | 0.12 | 0.56 | ||||||
FC | GC | 171.69 | 0.89 | 0.08 | ||||||||
FC | 172.06 | 1.26 | 0.06 | |||||||||
FC | GC | AL | 172.55 | 1.75 | 0.05 | |||||||
Selection probability | 0.88 | 0.54 | 0.26 | |||||||||
Coefficient | 8.770 | −3.979 | 0.128 | |||||||||
SE | 3.182 | 2.088 | 0.118 | |||||||||
Fall 2022 | FC | WA | 192.05 | 0 | 0.07 | 0.41 | ||||||
FC | 192.33 | 0.28 | 0.06 | |||||||||
SC | FC | 192.48 | 0.43 | 0.06 | ||||||||
FC | DR | 193.37 | 1.32 | 0.04 | ||||||||
FC | DP | 193.74 | 1.69 | 0.03 | ||||||||
FC | WA | DP | 194.03 | 1.76 | 0.03 | |||||||
Selection probability | 0.18 | 0.62 | 0.19 | 0.17 | 0.26 | |||||||
Coefficient | −0.792 | 11.131 | 0.004 | 0.002 | 0.001 | |||||||
SE | 0.672 | 4.723 | 0.003 | 0.002 | 0.001 |
Season | Spatial Overlap |
---|---|
Winter 2020–2021 | 0.31 |
Winter 2021–2020 | 0.35 |
Spring 2021 | 0.47 |
Spring 2022 | 0.46 |
Summer 2021 | 0.38 |
Summer 2022 | 0.49 |
Fall 2021 | 0.45 |
Fall 2022 | 0.57 |
Antelope Species | wi (n) in Time Period | ANOVA (df = 2) | ||
---|---|---|---|---|
Crepuscular | Diurnal | Nocturnal | ||
Winter 2020/2021 | ||||
Oryx | 1.60 (65) | 1.16 (96) | 0.69 (84) | F = 5.57, p = 0.043 |
Gazelle | 1.48 (22) | 1.69 (50) | 0.38 (17) | F = 8.463, p = 0.018 |
Winter 2021/2022 | ||||
Oryx | 1.21 (60) | 1.13 (114) | 0.86 (123) | F = 1.545, p = 0.288 |
Gazelle | 1.81 (48) | 1.25 (65) | 0.56 (41) | F = 13.74, p = 0.006 |
Spring 2021 | ||||
Oryx | 9.45 (37) | 1.04 (109) | 0.99 (85) | F = 0.253, p = 0.784 |
Gazelle | 1.42 (43) | 1.08 (87) | 0.72 (46) | F = 3.193, p = 0.114 |
Spring 2022 | ||||
Oryx | 1.20 (47) | 1.13 (107) | 0.96 (77) | F = 0.973, p = 0.431 |
Gazelle | 1.80 (58) | 1.07 (96) | 0.57 (42) | F = 16.98, p = 0.003 |
Summer 2021 | ||||
Oryx | 1.37 (39) | 0.79 (69) | 1.20 (65) | F = 2.594, p = 0.154 |
Gazelle | 1.43 (37) | 0.99 (80) | 0.78 (46) | F = 4.069, p = 0.076 |
Summer 2022 | ||||
Oryx | 1.43 (35) | 0.63 (46) | 1.34 (66) | F = 5.069, p = 0.051 |
Gazelle | 2.10 (45) | 0.82 (53) | 0.71 (31) | F = 47.950, p < 0.000 |
Fall 2021 | ||||
Oryx | 1.72 (85) | 1.14 (132) | 0.62 (79) | F = 39.400, p < 0.000 |
Gazelle | 1.60 (36) | 1.38 (72) | 0.46 (27) | F = 4.279, p = 0.070 |
Fall 2022 | ||||
Oryx | 1.52 (60) | 0.95 (91) | 0.88 (94) | F = 1.736, p = 0.254 |
Gazelle | 1.83 (49) | 1.14 (72) | 0.56 (45) | F = 13.21, p = 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Louhichi, M.; Khorchani, T.; Petretto, M.; Eifler, D.; Eifler, M.; Dadi, K.; Zaidi, A.; Karssene, Y.; Chammem, M. Spatiotemporal Mechanisms of the Coexistence of Reintroduced Scimitar-Horned Oryx and Native Dorcas Gazelle in Sidi Toui National Park, Tunisia. Animals 2024, 14, 1475. https://doi.org/10.3390/ani14101475
Louhichi M, Khorchani T, Petretto M, Eifler D, Eifler M, Dadi K, Zaidi A, Karssene Y, Chammem M. Spatiotemporal Mechanisms of the Coexistence of Reintroduced Scimitar-Horned Oryx and Native Dorcas Gazelle in Sidi Toui National Park, Tunisia. Animals. 2024; 14(10):1475. https://doi.org/10.3390/ani14101475
Chicago/Turabian StyleLouhichi, Marouane, Touhami Khorchani, Marie Petretto, Douglas Eifler, Maria Eifler, Kamel Dadi, Ali Zaidi, Yamna Karssene, and Mohsen Chammem. 2024. "Spatiotemporal Mechanisms of the Coexistence of Reintroduced Scimitar-Horned Oryx and Native Dorcas Gazelle in Sidi Toui National Park, Tunisia" Animals 14, no. 10: 1475. https://doi.org/10.3390/ani14101475
APA StyleLouhichi, M., Khorchani, T., Petretto, M., Eifler, D., Eifler, M., Dadi, K., Zaidi, A., Karssene, Y., & Chammem, M. (2024). Spatiotemporal Mechanisms of the Coexistence of Reintroduced Scimitar-Horned Oryx and Native Dorcas Gazelle in Sidi Toui National Park, Tunisia. Animals, 14(10), 1475. https://doi.org/10.3390/ani14101475