Effect of High Molybdenum Diet on Copper Status, Growth Performance, Blood Metabolites, Select Liver and Kidney Minerals, and Immune Responses of Boer Crosses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Experimental Animals
2.2. Experimental Diets
2.3. Experimental Design and Data Collection
2.4. Handling and Processing of Samples
2.5. Laboratory Analysis
2.6. Immunological Procedure
2.6.1. Cell-Mediated Immunity
2.6.2. Humoral Immunity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Experimental Diets
3.2. Feed Intake and Growth Performance
3.3. Animal Health Parameters
3.4. Blood and Liver Metabolites and Hemogram
3.5. Blood, Liver, and Kidney Minerals
3.6. Immune Responses
3.7. Carcass Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mpofu, T.J.; Nephawe, K.A.; Mtileni, B. Prevalence and resistance to gastrointestinal parasites in goats, review. Vet. World 2022, 15, 2442–2452. [Google Scholar] [CrossRef] [PubMed]
- Dick, A.T. The control of copper storage in the liver of sheep by inorganic sulphate and molybdenum. Aust. Vet. J. 1953, 29, 233–239. [Google Scholar] [CrossRef]
- Frank, A.; Danielsson, R.; Jobes, B. Experimental copper and chromium deficiency and additional molybdenum supplementation in goats. II. Concentrations of trace and minor elements in liver, kidneys and ribs: Haematology and clinical chemistry. Sci. Total Environ. 2000, 249, 143–170. [Google Scholar] [CrossRef] [PubMed]
- Suttle, N.F. The interactions between copper, molybdenum and sulfur in ruminant nutrition. Ann. Rev. Nutr. 1991, 11, 121–140. [Google Scholar] [CrossRef] [PubMed]
- Gooneratne, S.R.; Buckley, W.T.; Christensen, D.A. Review of copper deficiency and metabolism in ruminants. Can. J. Anim. Sci. 1989, 69, 819–845. [Google Scholar] [CrossRef]
- Ward, J.D.; Spears, J.W.; Kegley, E.B. Effect of copper level and source (copper lysine vs copper sulfate) on copper status, performance, and immune response in growing steers fed diets with or without supplemental molybdenum and sulfur. J. Anim. Sci. 1993, 71, 2748–2755. [Google Scholar] [CrossRef]
- Ward, J.D.; Spears, J.W. Long-term effects of consumption of low-copper diets with or without supplemental molybdenum on copper status, performance, and carcass characteristics of cattle. J. Anim. Sci. 1997, 75, 3057–3065. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.Y.; Du, G.Z.; Li, H. Studies of a naturally occurring molybdenum-induced copper deficiency in the yak. Vet. J. 2006, 171, 352–357. [Google Scholar]
- Allen, J.D.; Gawthome, J.D. Involvement of the solid phase of rumen digesta in the interaction between copper, molybdenum and Sulphur in sheep. Br. J. Nutr. 1987, 58, 265–276. [Google Scholar] [CrossRef]
- Suttle, N.F. The role of organic sulphur in the copper-molybdenum-S interrelationship in ruminant nutrition. Br. J. Nutr. 1975, 34, 411–420. [Google Scholar] [CrossRef]
- Gengelbach, G.P. Effect of Copper Deficiency on Cellular Immunity in Cattle. Ph.D. Thesis, NC State University, Raleigh, NC, USA, 1994. [Google Scholar]
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids; National Research Council, National Academy of Science: Washington, DC, USA, 2007. [Google Scholar]
- USDA. Institutional Meat Purchased Specifications for Fresh Goat; Series 11; USDA/MRP/AMF, Livestock and Seed Program, Meat Grading Certification Branch; USDA: Washington, DC, USA, 2001.
- AOAC. International Official Methods of Analysis, 16th ed.; 5th Revision; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1998. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Komarek, A.R. An improved filtering technique for the analysis of neutral detergent fiber and acid detergent fiber utilizing the filter bag technique. J. Anim. Sci. 1993, 71, 824–829. [Google Scholar]
- Hue, N.V.; Evans, C.E. Procedures Used for Soil and Plant Analysis by the Auburn University Soil Testing Laboratory; Series 106; Department of Agronomy and Soils, Alabama Agricultural Experiment Station: Auburn, AL, USA, 1986. [Google Scholar]
- Gengelbach, G.P.; Ward, J.D.; Spears, J.W. Effect of dietary copper, iron, and molybdenum on growth and copper status of beef cows and calves. J. Anim. Sci. 1994, 72, 2722–2727. [Google Scholar] [CrossRef] [PubMed]
- SAS. SAS User’s Guide: Statistics (Version 8); SAS Institute Inc.: Cary, NC, USA, 1998. [Google Scholar]
- Steel, R.G.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biological Approach, 3rd ed.; WCB/Mcgraw-Hill Co.: New York, NY, USA, 1997. [Google Scholar]
- Moir, R.J. Basic concepts of Sulphur nutrition. Proc. Int. Minerals Conf. 1979, 2, 93–109. [Google Scholar]
- Mills, C.F.; Davis, G.K. Molybdenum. In Trace Elements in Human and Animal Nutrition; Mertz, W., Ed.; Academic Press: Cambridge, MA, USA, 1987; pp. 429–457. [Google Scholar]
- Suttle, N.F. The role of comparative pathology in the study of copper and cobalt deficiencies in ruminants. J. Comp. Pathol. 1988, 99, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Suttle, N.F.; Angus, K.W. Experimental copper deficiency in the calf. J. Comp. Pathol. 1976, 86, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Aupperle, B.H.; Schoon, H.A.; Frank, A. Experimental copper deficiency, chromium deficiency and additional molybdenum supplementation in goats-pathological findings. Acta Vet. Scand. 2001, 42, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Solaiman, S.G.; Maloney, M.A.; Qureshi, M.A.; Davis, G.; D’Andrea, G. Effect of high level of Copper supplements on performance, health, plasma copper and enzymes in goats. Small Rumin. Res. 2001, 41, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Al-Othman, A.A.; Rosenstein, F.; Lei, K.Y. Copper deficiency alters plasma pool size, percent composition and concentration o lipoprotein components in rats. J. Nutr. 1992, 122, 1199–1204. [Google Scholar] [CrossRef]
- Solaiman, S.G.; Shoemaker, C.E.; Jones, W.R.; Kurt, C.R. The effects of high levels of supplemental copper on the serum lipid profile, carcass traits, and carcass composition of goat kids. J. Anim. Sci. 2006, 84, 171–177. [Google Scholar] [CrossRef]
- Engle, T.E.; Spears, J.W.; Armstrong, T.A.; Wright, C.L.; Odle, J. Effects of dietary copper source and concentration on carcass characteristics and lipid and cholesterol metabolism in growing and finishing steers. J. Anim. Sci. 2000, 78, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Engle, T.E.; Hossner, K.L. Effects of dietary copper on the expression of lipogenic genes and metabolic hormones in steers. J. Anim. Sci. 2002, 80, 1999–2005. [Google Scholar] [CrossRef] [PubMed]
- Bakalli, R.I.; Pesti, G.M.; Ragland, W.L.; Konjufca, V. Dietary copper in excess of nutritional requirements reduces plasma and breast muscle cholesterol of chickens. Poult. Sci. 1995, 74, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Ullrey, P.S.; Brady, P.S.; Whetter, P.A.; Ku, P.K.; Magee, W.T. Selenium supplementation of diets for sheep and beef cattle. J. Anim. Sci. 1977, 46, 559–565. [Google Scholar] [CrossRef]
- Underwood, E.J. Trace Elements in Human and Animal Nutrition, 4th ed.; Academy Press: New York, NY, USA, 1977. [Google Scholar]
- Brockman, R.P. Concentration of copper in livers in Saskachewan cattle at slaughter. Can. Vet. J. 1977, 18, 168–170. [Google Scholar] [PubMed]
- Puls, R. Mineral Levels in Animal Health: Diagnostic Data, 2nd ed.; Sherpa International: Clearbrook, BC, Canada, 1994; pp. 147–149. [Google Scholar]
- Mongini, A. Copper and Boer goats: Dealing with toxicity and deficiency. In Proceedings of the North American Veterinary Community (NAVC) Conference Proceedings, Orlando, FL, USA, 15–19 January 2011; pp. 296–297. [Google Scholar]
- Machen, R. Minerals, Texas Agricultural Extension Service. 2018. Available online: http://animalscience.tamu.edu/wp-content/uploads/sites/14/2012/04/nutrition-minerals.pdf (accessed on 14 December 2018).
- Koo, S.I.; Lee, C.C.; Sabin, L. The effect of copper deficiency on the hepatic synthesis and rate of plasma release of cholesterol. J. Nutr. Biochem. 1993, 4, 162–167. [Google Scholar] [CrossRef]
- Boggs, D.L.; Merkel, R.A. Live Animal Carcass Evaluation and Selection Manuel, 2nd ed.; Kendall/Hunt Publishing Co.: Dubuque, IA, USA, 1984. [Google Scholar]
- Solaiman, S.G.; Shoemaker, C.E.; D’Andrea, G.H. The effect of high Cu on health, growth performance, and Cu status. Small Rumin. Res. 2006, 60, 85–91. [Google Scholar] [CrossRef]
Item | Grain Mix (ppm) | ||
---|---|---|---|
0 ppm Mo | 5 ppm Mo | 10 ppm Mo | |
Ingredients, % as is | |||
Cracked corn | 44.0 | 44.0 | 44.0 |
Alfalfa pellets | 15.5 | 15.5 | 15.5 |
Whole oats | 17.0 | 17.0 | 17.0 |
Soybean meal, 49% | 17.5 | 17.5 | 17.5 |
Molasses | 5.0 | 5.0 | 5.0 |
Dicalcium phosphate | 0.5 | 0.5 | 0.5 |
Trace mineral mix | 0.5 | 0.00 | 0.00 |
Ammonium molybdate (54.1% Mo), mg | 0.0 | 935 | 1870 |
Item | Grain Mix (Mo, ppm) | ||||
---|---|---|---|---|---|
0 | 5 | 10 | Hay 1 | SEM | |
Nutrient contents, % DM | |||||
DM | 87.2 | 87.2 | 87.8 | 89.7 | 0.21 |
CP | 20.2 | 19.0 | 21.6 | 10.2 | 0.88 |
NDF | 18.6 | 19.9 | 18.4 | 69.5 | 0.97 |
ADF | 11.5 | 12.4 | 11.3 | 34.0 | 0.60 |
ADL | 0.94 | 1.42 | 1.05 | 2.85 | 0.23 |
Ether extract | 3.57 | 3.67 | 3.68 | 1.25 | 0.11 |
NFC | 51.7 | 52.3 | 50.5 | 15.8 | 0.80 |
Starch | 49.2 | 49.7 | 48.0 | 2.37 | 0.57 |
TDN | 80.8 | 80.4 | 80.7 | 59.7 | 0.56 |
Ash | 6.14 | 5.41 | 6.20 | 6.56 | 0.33 |
Trace minerals (ppm) | |||||
Fe | 328 | 242 | 259 | 151 | 24.9 |
Zn | 134 | 61.5 | 73.0 | 22.7 | 7.0 |
Mn | 118 | 67.5 | 71.0 | 68.2 | 6.61 |
Cu | 27.5 | 06.0 | 7.0 | 7.25 | 1.67 |
Mo Calculated Cu:Mo Ratio | 2.52 10.9:1 | 6.82 0.88:1 | 16.5 0.42:1 | 1.72 | 0.74 |
Item | Mo, ppm | SEM | Linear a | Quad | ||
---|---|---|---|---|---|---|
0 | 5 | 10 | ||||
Animal Performance | ||||||
Initial BW, kg | 26.0 | 25.9 | 25.1 | 1.04 | 0.57 | 0.81 |
Final BW, kg | 36.6 | 37.0 | 37.3 | 1.25 | 0.69 | 0.97 |
ADG, g | 125 | 130 | 143 | 14.7 | 0.43 | 0.88 |
DMI, kg | 1.07 | 1.00 | 1.02 | 0.01 | 0.87 | 0.82 |
Hay, g | 481 | 479 | 481 | 4.10 | 0.96 | 0.88 |
Grain, g | 525 | 523 | 542 | 3.19 | 0.01 | 0.21 |
DM, % BW | 3.58 | 3.69 | 3.64 | 0.17 | 0.89 | 0.67 |
Grain intake, % DM | 53.1 | 53.1 | 53.7 | 0.42 | 0.32 | 0.57 |
G:F ratio | 0.13 | 0.13 | 0.14 | 0.01 | 0.36 | 0.98 |
Item | Mo, ppm | SEM | Linear a | Quad | ||
---|---|---|---|---|---|---|
0 | 5 | 10 | ||||
Heart rate | 106 | 105 | 97.4 | 4.59 | 0.19 | 0.52 |
Respiration rate | 23.8 | 23.1 | 23.1 | 0.94 | 0.62 | 0.77 |
Ruminal contractions/min | 2.52 | 2.14 | 2.16 | 0.19 | 0.76 | 0.08 |
Body temperature, °C | 38.7 | 38.7 | 38.9 | 0.08 | 0.12 | 0.36 |
Body condition score (1 to 5) | 3.82 | 3.89 | 4.12 | 0.15 | 0.16 | 0.66 |
Item | Mo, ppm | SEM | Linear a | Quad | ||
---|---|---|---|---|---|---|
0 | 5 | 10 | ||||
Blood serum metabolites | ||||||
ALT, IU/L | 15.6 | 15.8 | 14.0 | 1.01 | 0.26 | 0.45 |
AMYL, IU/L | 52.7 | 35.6 | 42.9 | 7.61 | 0.37 | 0.19 |
CK, IU/L | 185 | 246 | 202 | 25.3 | 0.63 | 0.10 |
TRIG, mg/dL | 40.5 | 29.0 | 29.5 | 3.44 | 0.03 | 0.16 |
Cholesterol, mg/dL | 64.3 | 60.3 | 61.1 | 2.43 | 0.36 | 0.41 |
BUN, mg/dL | 19.8 | 18.1 | 19.3 | 0.78 | 0.65 | 0.12 |
Glucose, g/dL | 61.5 | 58.5 | 62.0 | 1.07 | 0.72 | 0.01 |
Total protein, g/dL | 6.46 | 6.13 | 6.18 | 0.09 | 0.03 | 0.09 |
ALB, g/dL | 2.47 | 2.33 | 2.46 | 0.05 | 0.14 | 0.25 |
Hemogram | ||||||
RBC, 106/µL | 13.9 | 13.4 | 13.5 | 0.14 | 0.02 | 0.12 |
Hemoglobin, g/dL | 10.2 | 9.71 | 9.96 | 0.17 | 0.29 | 0.07 |
Hematocrit, % | 26.3 | 26.3 | 25.5 | 0.35 | 0.11 | 0.37 |
MCV, fL | 18.9 | 19.6 | 18.9 | 0.26 | 0.99 | 0.04 |
MCH, pg | 7.33 | 7.23 | 7.40 | 0.08 | 0.56 | 0.17 |
MCHC, % | 38.9 | 37.0 | 39.3 | 0.67 | 0.68 | 0.02 |
WBC, 103/µL | 11.9 | 13.9 | 12.0 | 0.62 | 0.87 | 0.02 |
As a % of WBC | ||||||
Neutrophils | 50.9 | 48.4 | 47.3 | 1.96 | 0.19 | 0.77 |
Lymphocyte | 39.6 | 44.4 | 44.2 | 1.93 | 0.10 | 0.30 |
Item | Mo, ppm | SEM | Linear a | Quad | ||
---|---|---|---|---|---|---|
0 | 5 | 10 | ||||
Serum minerals | ||||||
Ca, mg/dL | 9.40 | 9.24 | 9.32 | 0.09 | 0.54 | 0.32 |
Na, mEq/L | 143 | 142 | 142 | 0.42 | 0.05 | 0.30 |
K, mEq/L | 5.0 | 4.84 | 4.81 | 0.09 | 0.15 | 0.60 |
Cl, mEq/L | 111 | 111 | 111 | 0.48 | 0.67 | 0.97 |
Cu, mg/L | 1.08 | 1.05 | 1.06 | 0.05 | 0.78 | 0.70 |
Fe, mg/L | 1.40 | 1.33 | 1.17 | 0.10 | 0.09 | 0.84 |
Zn, mg/L | 0.59 | 0.60 | 0.65 | 0.02 | 0.09 | 0.54 |
Liver, ppm | ||||||
Cu | 380 | 152 | 120 | 52.4 | 0.003 | 0.15 |
Mo | 5.17 | 4.93 | 6.03 | 0.32 | 0.07 | 0.11 |
Fe | 190 | 137 | 132 | 10.9 | 0.002 | 0.09 |
Zn | 94.7 | 88.3 | 102 | 7.24 | 0.50 | 0.28 |
Kidney, ppm | ||||||
Cu | 12.6 | 13.2 | 149 | 75.1 | 0.22 | 0.47 |
Mo | 2.38 | 3.02 | 7.38 | 0.88 | 0.001 | 0.10 |
Fe | 142 | 127 | 148 | 9.72 | 0.63 | 0.14 |
Zn | 63.0 | 68.7 | 157 | 46.6 | 0.17 | 0.48 |
Item | Mo, ppm | SEM | Linear a | Quad | ||
---|---|---|---|---|---|---|
0 | 5 | 10 | ||||
Ovalbumin | 86.7 | 46.7 | 33.5 | 11.5 | 0.001 | 0.35 |
PHA, mm | ||||||
Day 83 | 3.25 | 3.36 | 3.38 | 0.19 | 0.39 | 0.68 |
Day 84 | 4.33 | 4.84 | 3.81 | 0.18 | 0.06 | 0.003 |
Day 85 | 4.35 | 3.92 | 3.78 | 0.19 | 0.06 | 0.56 |
All periods | 4.63 | 4.06 | 3.34 | 0.14 | 0.002 | 0.30 |
Item | Mo, ppm | SEM | Linear a | Quad | ||
---|---|---|---|---|---|---|
0 | 5 | 10 | ||||
Liver, kg | 36.6 | 37.0 | 37.3 | 1.25 | 0.69 | 0.97 |
HCW, kg | 17.0 | 17.0 | 17.5 | 0.71 | 0.61 | 0.77 |
CCW, kg | 16.5 | 16.4 | 16.9 | 0.66 | 0.69 | 0.68 |
Shrink, % | 2.7 | 3.5 | 3.4 | 0.34 | 0.16 | 0.29 |
DP, % | 46.4 | 45.8 | 46.9 | 1.06 | 0.72 | 0.54 |
ADFT, cm | 0.17 | 0.12 | 0.23 | 0.03 | 0.21 | 0.61 |
BF, cm | 0.17 | 0.17 | 0.15 | 0.09 | 0.87 | 0.06 |
BWF, cm | 0.51 | 0.74 | 0.53 | 0.09 | 0.86 | 0.06 |
LMA, cm2 | 18.0 | 16.3 | 16.8 | 0.75 | 0.29 | 0.23 |
Selection criteria | 2.14 | 1.89 | 2.05 | 0.33 | 0.85 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solaiman, S.G.; Beguesse, K.A.; Min, B.R. Effect of High Molybdenum Diet on Copper Status, Growth Performance, Blood Metabolites, Select Liver and Kidney Minerals, and Immune Responses of Boer Crosses. Animals 2024, 14, 1604. https://doi.org/10.3390/ani14111604
Solaiman SG, Beguesse KA, Min BR. Effect of High Molybdenum Diet on Copper Status, Growth Performance, Blood Metabolites, Select Liver and Kidney Minerals, and Immune Responses of Boer Crosses. Animals. 2024; 14(11):1604. https://doi.org/10.3390/ani14111604
Chicago/Turabian StyleSolaiman, Sandra G., Kyla A. Beguesse, and Byeng R. Min. 2024. "Effect of High Molybdenum Diet on Copper Status, Growth Performance, Blood Metabolites, Select Liver and Kidney Minerals, and Immune Responses of Boer Crosses" Animals 14, no. 11: 1604. https://doi.org/10.3390/ani14111604
APA StyleSolaiman, S. G., Beguesse, K. A., & Min, B. R. (2024). Effect of High Molybdenum Diet on Copper Status, Growth Performance, Blood Metabolites, Select Liver and Kidney Minerals, and Immune Responses of Boer Crosses. Animals, 14(11), 1604. https://doi.org/10.3390/ani14111604