Welfare Assessment in Pigs Using the Salivary Proteome
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Definition of Stress
2.1. Stress Responses
2.2. Stress and Animal Welfare
3. Saliva as a Biological Matrix to Assess Welfare
4. The Salivary Proteome
4.1. Proteome Analysis
4.2. Potential Salivary Biomarkers for Stress in Pigs
4.3. Factors That Could Introduce Variation in Salivary Biomarker Concentration
4.3.1. Saliva Analysis Technique
4.3.2. Result Normalization
4.3.3. Effect of Contamination
5. Salivary Biomarkers to Identify Stress
6. Value of Salivary Stress Markers in Welfare Assessment
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coutellier, L.; Arnould, C.; Boissy, A.; Orgeur, P.; Prunier, A.; Veissier, I.; Meunier-Salaün, M.-C. Pig’s responses to repeated social regrouping and relocation during the growing-finishing period. Appl. Anim. Behav. Sci. 2007, 105, 102–114. [Google Scholar] [CrossRef]
- Piñeiro, C.; Piñeiro, M.; Morales, J.; Carpintero, R.; Campbell, F.M.; Eckersall, P.D.; Toussaint, M.J.; Alava, M.A.; Lampreave, F. Pig acute-phase protein levels after stress induced by changes in the pattern of food administration. Animal 2007, 1, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro, M.; Piñeiro, C.; Carpintero, R.; Morales, J.; Campbell, F.M.; Eckersall, P.D.; Toussaint, M.J.M.; Lampreave, F. Characterisation of the pig acute phase protein response to road transport. Vet. J. 2007, 173, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Miró, S.; Tecles, F.; Ramón, M.; Escribano, D.; Hernández, F.; Madrid, J.; Orengo, J.; Martínez-Subiela, S.; Manteca, X.; Cerón, J.J. Causes, consequences and biomarkers of stress in swine: An update. BMC Vet. Res. 2016, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Cerón, J.J.; Contreras-Aguilar, M.D.; Escribano, D.; Martínez-Miró, S.; López-Martínez, M.J.; Ortín-Bustillo, A.; Franco-Martínez, L.; Rubio, C.P.; Muñoz-Prieto, A.; Tvarijonaviciute, A.; et al. Basics for the potential use of saliva to evaluate stress, inflammation, immune system, and redox homeostasis in pigs. BMC Vet. Res. 2022, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Koolhaas, J.M.; Korte, S.M.; De Boer, S.F.; Van Der Vegt, B.J.; Van Reenen, C.G.; Hopster, H.; de Jong, I.C.; Ruis, M.A.; Blokhuis, H.J. Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 1999, 23, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Kim, J.J. Neurocognitive effects of stress: A metaparadigm perspective. Mol. Psychiatry 2023, 28, 2750–2763. [Google Scholar] [CrossRef]
- de Kloet, E.R.; Joëls, M.; Holsboer, F. Stress and the brain: From adaptation to disease. Nat. Rev. Neurosci. 2005, 6, 463–475. [Google Scholar] [CrossRef]
- Chrousos, G.P. The HPA axis and the stress response. Endocr. Res. 2000, 26, 513–514. [Google Scholar] [CrossRef]
- Timmermans, S.; Souffriau, J.; Libert, C. A general introduction to glucocorticoid biology. Front. Immunol. 2019, 10, 1545. [Google Scholar] [CrossRef]
- Keller-Wood, M.E.; Dallman, M.F. Corticosteroid inhibition of ACTH secretion. Endocr. Rev. 1984, 5, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Wiepkema, P.R.; Koolhaas, J.M. Stress and animal welfare. Anim. Welf. 1993, 2, 195–218. [Google Scholar] [CrossRef]
- Janssens, C.J.; Helmond, F.A.; Loyens, L.W.; Schouten, W.G.; Wiegant, V.M. Chronic stress increases the opioid-mediated inhibition of the pituitary-adrenocortical response to acute stress in pigs. Endocrinology 1995, 136, 1468–1473. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Stellar, E. Stress and the individual—Mechanisms leading to disease. Arch. Intern. Med. 1993, 153, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- Morrow-Tesch, J.L.; McGlone, J.J.; Salak-Johnson, J.L. Heat and social stress effects on pig immune measures. J. Anim. Sci. 1994, 72, 2599–2609. [Google Scholar] [CrossRef] [PubMed]
- Hyun, Y.; Ellis, M.; Riskowski, G.; Johnson, R.W. Growth performance of pigs subjected to multiple concurrent environmental stressors. J. Anim. Sci. 1998, 76, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Munsterhjelm, C.; Valros, A.; Heinonen, M.; Hälli, O.; Peltoniemi, O.A. Housing during early pregnancy affects fertility and behaviour of sows. Reprod. Domest. Anim. 2008, 43, 584–591. [Google Scholar]
- Hurtgen, J.P.; Leman, A.D. Seasonal influence on the fertility of sows and gilts. J. Am. Vet. Med. Assoc. 1980, 177, 631–635. [Google Scholar]
- Hewson, C.J. What is animal welfare? Common definitions and their practical consequences. Can. Vet. J. 2003, 44, 496–499. [Google Scholar]
- Mellor, D.J. Operational details of the five domains model and its key applications to the assessment and management of animal welfare. Animals 2017, 7, 60. [Google Scholar] [CrossRef]
- Saco, Y.; Peña, R.; Matas-Quintanilla, M.; Ibáñez-López, F.J.; Piñeiro, M.; Sotillo, J.; Bassols, A.; Gutiérrez, A.M. Influence of the circadian cycle, sex and production stage on the reference values of parameters related to stress and pathology in porcine saliva. Porcine Health Manag. 2023, 9, 42. [Google Scholar] [CrossRef]
- Gallagher, N.L.; Giles, L.R.; Wynn, P.C. The development of a circadian pattern of salivary cortisol secretion in the neonatal piglet. Biol. Neonate 2002, 81, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Dawes, C.; Ong, B.Y. Circadian rhythms in the flow rate and proportional contribution of parotid to whole saliva volume in man. Arch. Oral Biol. 1973, 18, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Escribano, D.; Gutiérrez, A.M.; Fuentes-Rubio, M.; Cerón, J.J. Saliva chromogranin A in growing pigs: A study of circadian patterns during daytime and stability under different storage conditions. Vet. J. 2014, 199, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Ruis, M.A.W.; Te Brake, J.H.; Engel, B.; Ekkel, E.D.; Buist, W.G.; Blokhuis, H.J.; Koolhaas, J.M. The circadian rhythm of salivary cortisol in growing pigs: Effects of age, gender, and stress. Physiol. Behav. 1997, 62, 623–630. [Google Scholar] [CrossRef] [PubMed]
- de Jong, I.C.; Prelle, I.T.; van de Burgwal, J.A.; Lambooij, E.; Korte, S.M.; Blokhuis, H.J.; Koolhaas, J.M. Effects of environmental enrichment on behavioral responses to novelty, learning, and memory, and the circadian rhythm in cortisol in growing pigs. Physiol. Behav. 2000, 68, 571–578. [Google Scholar] [CrossRef]
- Prims, S.; Vanden Hole, C.; Van Cruchten, S.; Van Ginneken, C.; Van Ostade, X.; Casteleyn, C. Hair or salivary cortisol analysis to identify chronic stress in piglets? Vet. J. 2019, 252, 105357. [Google Scholar] [CrossRef] [PubMed]
- Koren, L.; Mokady, O.; Karaskov, T.; Klein, J.; Koren, G.; Geffen, E. A novel method using hair for determining hormonal levels in wildlife. Anim. Behav. 2002, 63, 403–406. [Google Scholar] [CrossRef]
- Casal, N.; Manteca, X.; Peña, L.R.; Bassols, A.; Fàbrega, E. Analysis of cortisol in hair samples as an indicator of stress in pigs. J. Vet. Behav. 2017, 19, 1–6. [Google Scholar] [CrossRef]
- Issaq, H.J.; Conrads, T.P.; Janini, G.M.; Veenstra, T.D. Methods for fractionation, separation and profiling of proteins and peptides. Electrophoresis 2002, 23, 3048–3061. [Google Scholar] [CrossRef]
- Nägele, E.; Vollmer, M.; Hörth, P.; Vad, C. 2D-LC/MS techniques for the identification of proteins in highly complex mixtures. Expert Rev. Proteom. 2004, 1, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Karpievitch, Y.V.; Polpitiya, A.D.; Anderson, G.A.; Smith, R.D.; Dabney, A.R. Liquid chromatography mass spectrometry-based proteomics: Biological and technological aspects. Ann. Appl. Stat. 2010, 4, 1797–1823. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Y.; Zhang, T.; Shu, L.; Roepstorff, P.; Yang, F. Quantitative proteomics using isobaric labeling: A practical guide. Genom. Proteom. Bioinform. 2021, 19, 689–706. [Google Scholar] [CrossRef] [PubMed]
- Kulyyassov, A.; Fresnais, M.; Longuespée, R. Targeted liquid chromatography-tandem mass spectrometry analysis of proteins: Basic principles, applications, and perspectives. Proteomics 2021, 21, e2100153. [Google Scholar] [CrossRef] [PubMed]
- Prims, S.; Van Ostade, X.; Ayuso, M.; Dom, M.; Van Raemdonck, G.; Van Cruchten, S.; Casteleyn, C.; Van Ginneken, C. Chronic exposure to multiple stressors alters the salivary proteome of piglets. PLoS ONE 2023, 18, e0286455. [Google Scholar] [CrossRef] [PubMed]
- Muneta, Y.; Yoshikawa, T.; Minagawa, Y.; Shibahara, T.; Maeda, R.; Omata, Y. Salivary IgA as a useful non-invasive marker for restraint stress in pigs. J. Vet. Med. Sci. 2010, 72, 1295–1300. [Google Scholar] [CrossRef]
- Escribano, D.; Soler, L.; Gutiérrez, A.M.; Martínez-Subiela, S.; Cerón, J.J. Measurement of chromogranin A in porcine saliva: Validation of a time-resolved immunofluorometric assay and evaluation of its application as a marker of acute stress. Animal 2013, 7, 640–647. [Google Scholar] [CrossRef]
- Ortín-Bustillo, A.; Botía, M.; López-Martínez, M.J.; Martínez-Subiela, S.; Cerón, J.J.; González-Bulnes, A.; Manzanilla, E.G.; Goyena, E.; Tecles, F.; Muñoz-Prieto, A. Changes in S100A8/A9 and S100A12 and their comparison with other analytes in the saliva of pigs with diarrhea due to E. coli. Animals 2023, 13, 2556. [Google Scholar] [CrossRef]
- Contreras-Aguilar, M.D.; Tecles, F.; Martínez-Subiela, S.; Escribano, D.; Bernal, L.J.; Cerón, J.J. Detection and measurement of alpha-amylase in canine saliva and changes after an experimentally induced sympathetic activation. BMC Vet. Res. 2017, 13, 266. [Google Scholar] [CrossRef]
- Gutiérrez, A.M.; Nöbauer, K.; Soler, L.; Razzazi-Fazeli, E.; Gemeiner, M.; Cerón, J.J.; Miller, I. Detection of potential markers for systemic disease in saliva of pigs by proteomics: A pilot study. Vet. Immunol. Immunopathol. 2013, 151, 73–82. [Google Scholar] [CrossRef]
- Contreras-Aguilar, M.D.; Vallejo-Mateo, P.J.; Lamy, E.; Cerón, J.J.; Rubio, C.P. Changes in salivary analytes in cows due to the in vitro presence of feed. BMC Vet. Res. 2022, 18, 275. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Aguilar, M.D.; Escribano, D.; Martínez-Subiela, S.; Martínez-Miró, S.; Rubio, M.; Tvarijonaviciute, A.; Tecles, F.; Cerón, J.J. Influence of the way of reporting alpha-Amylase values in saliva in different naturalistic situations: A pilot study. PLoS ONE 2017, 12, e0180100. [Google Scholar] [CrossRef] [PubMed]
- Prims, S.; Van Raemdonck, G.; Vanden Hole, C.; Van Cruchten, S.; Van Ginneken, C.; Van Ostade, X.; Casteleyn, C. On the characterisation of the porcine gland-specific salivary proteome. J. Prot. 2019, 196, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, M.; Tecles, F.; Gutiérrez, A.; Otal, J.; Martínez-Subiela, S.; Cerón, J.J. Validation of an automated method for salivary alpha-amylase measurements in pigs (Sus scrofa domesticus) and its application as a stress biomarker. J. Vet. Diagn. Investig. 2011, 23, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Bosch, J.A. The use of saliva markers in psychobiology: Mechanisms and methods. Monogr. Oral Sci. 2014, 24, 99–108. [Google Scholar] [PubMed]
- Cook, N.J.; Schaefer, A.L.; Lepage, P.; Jones, S.M. Salivary vs. serum cortisol for the assessment of adrenal activity in swine. Can. J. Anim. Sci. 1996, 76, 329–335. [Google Scholar] [CrossRef]
- Sutherland, M.A.; Rodriguez-Zas, S.L.; Ellis, M.; Salak-Johnson, J.L. Breed and age affect baseline immune traits, cortisol, and performance in growing pigs. J. Anim. Sci. 2005, 83, 2087–2095. [Google Scholar] [CrossRef] [PubMed]
- Demirhan, H.; Yıldız, M.; Çelebi, Ö.Ö.; Baz, S.; İnal, B.B.; Yiğit, Ö. The role of fetuin-a and electrolytes in the etiology of sialolithiasis. Otolaryngol. Head Neck Surg. 2017, 156, 840–843. [Google Scholar] [CrossRef]
- Kivlighan, K.T.; Granger, D.A.; Schwartz, E.B.; Nelson, V.; Curran, M.; Shirtcliff, E.A. Quantifying blood leakage into the oral mucosa and its effects on the measurement of cortisol, dehydroepiandrosterone, and testosterone in saliva. Horm. Behav. 2004, 46, 39–46. [Google Scholar] [CrossRef]
- Kamodyova, N.; Baňasová, L.; Janšáková, K.; Koborová, I.; Tóthová, L.; Stanko, P.; Celec, P. Blood contamination in saliva: Impact on the measurement of salivary oxidative stress markers. Dis. Markers 2015, 2015, 479251. [Google Scholar] [CrossRef]
- Durdiaková, J.; Fábryová, H.; Koborová, I.; Ostatníková, D.; Celec, P. The effects of saliva collection, handling and storage on salivary testosterone measurement. Steroids 2013, 78, 1325–1331. [Google Scholar] [CrossRef]
- Kang, J.-H.; Kho, H.-S. Blood contamination in salivary diagnostics: Current methods and their limitations. Clin. Chem. Lab. Med. 2019, 57, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, A.; Cerón, J.J.; Ebrahim Razzazi-Fazeli, E.; Schlosser, S.; Tecles, F. Influence of different sample preparation strategies on the proteomic identification of stress biomarkers in porcine saliva. BMC Vet. Res. 2017, 13, 375. [Google Scholar] [CrossRef] [PubMed]
- Granger, D.A.; Cicchetti, D.; Rogosch, F.A.; Hibel, L.C.; Teisl, M.; Flores, E. Blood contamination in children’s saliva: Prevalence, stability, and impact on the measurement of salivary cortisol, testosterone, and dehydroepiandrosterone. Psychoneuroendocrinology 2007, 32, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-H.; Lee, Y.-H.; Kho, H.-S. Clinical factors affecting salivary transferrin level, a marker of blood contamination in salivary analysis. BMC Oral Health 2018, 18, 49. [Google Scholar] [CrossRef]
- Contreras-Aguilar, M.D.; Hevia, M.L.; Escribano, D.; Lamy, E.; Tecles, F.; Cerón, J.J. Effect of food contamination and collection material in the measurement of biomarkers in saliva of horses. Res. Vet. Sci. 2020, 129, 90–95. [Google Scholar] [CrossRef]
- Walz, A.; Stühler, K.; Wattenberg, A.; Hawranke, E.; Meyer, H.E.; Schmalz, G.; Blüggel, M.; Ruhl, S. Proteome analysis of glandular parotid and submandibular-sublingual saliva in comparison to whole human saliva by two-dimensional gel electrophoresis. Proteomics 2006, 6, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Guevara, R.D.; Pastor, J.J.; Manteca, X.; Tedo, G.; Llonch, P. Systematic review of animal-based indicators to measure thermal, social, and immune-related stress in pigs. PLoS ONE 2022, 17, e0266524. [Google Scholar] [CrossRef]
- Gutiérrez, A.M.; Martínez-Subiela, S.; Eckersall, P.D.; Cerón, J.J. C-reactive protein quantification in porcine saliva: A minimally invasive test for pig health monitoring. Vet. J. 2009, 181, 261–265. [Google Scholar] [CrossRef]
- Fuentes-Rubio, M.; Cerón, J.J.; de Torre, C.; Escribano, D.; Gutiérrez, A.M.; Tecles, F. Porcine salivary analysis by 2-dimensional gel electrophoresis in 3 models of acute stress: A pilot study. Can. J. Vet. Res. 2014, 78, 127–132. [Google Scholar]
- Gutiérrez, A.M.; Montes, A.; Gutiérrez-Panizo, C.; Fuentes, P.; De La Cruz-Sánchez, E. Gender influence on the salivary protein profile of finishing pigs. J. Proteom. 2017, 178, 107–113. [Google Scholar] [CrossRef] [PubMed]
- López-Arjona, M.; Escribano, D.; Mateo, S.V.; Contreras-Aguilar, M.D.; Rubio, C.P.; Tecles, F.; Cerón, J.J.; Martínez-Subiela, S. Changes in oxytocin concentrations in saliva of pigs after a transport and during lairage at slaughterhouse. Res. Vet. Sci. 2020, 133, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Miočević, O.; Cole, C.R.; Laughlin, M.J.; Buck, R.L.; Slowey, P.D.; Shirtcliff, E.A. Quantitative lateral flow assays for salivary biomarker assessment: A review. Front. Public Health 2017, 5, 133. [Google Scholar] [CrossRef] [PubMed]
- Khanna, P.; Walt, D.R. Salivary diagnostics using a portable point-of-service platform: A review. Clin. Ther. 2015, 37, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Alonso, M.E.; González-Montaña, J.R.; Lomillos, J.M. Consumers’ concerns and perceptions of farm animal welfare. Animals 2020, 10, 385. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Up-/Down-Regulation | Acute/Chronic Stress | Other Conditions | Circadian Rhythm | Storage Information | Influence of Collection Device | Effect of Gland Distribution | Effect of Age, Sex, Breed, Season or Estrus Cycle |
---|---|---|---|---|---|---|---|---|
Vomeromodulin-like protein | Down | Chronic | Age | |||||
Alpha-2-HS-glycoprotein | Up | Chronic | No | Age | ||||
Chitinase | Down | Chronic | Asthma | No | Age | |||
Lipocalin-1 | Down | Both | Disease | No | Age, sex, and estrus cycle | |||
Long palate lung and nasal epithelium protein 5 | Down | Chronic | Age | |||||
Odorant-binding protein | Down | Both | Disease | No | Age and sex | |||
Salivary lipocalin | Down | Acute | No | Sex | ||||
IgA | Up | Acute | Infection | Yes | No breed effect | |||
IgM | Down | Acute | Infection | |||||
α-amylase | Up | Acute | No | <4 days (4 °C), <3 months (−20 °C) | Yes | No | Age, no sex effect | |
IL-18 | Up | Acute | Yes | |||||
Chromogranin A | Up | Both | No | 2 days (4 °C), 1 month (−20 °C), up to 7 freeze-thaw cycles | Season, no age (17 vs. 21 weeks) and sex effect | |||
Serum amyloid A | Up | Both | No | |||||
Testosterone | Up | Acute | No | Yes | ||||
Albumin | Up | Acute | Infection and inflammation | No | ||||
Cortisol | Up | Both | Physical activity | Yes | 3 months (5 °C) | Yes | Age, sex, and breed | |
Prolactin inducible protein | Down | Acute | No | |||||
Adenosine deaminase | Down | Both | Lameness, rectal prolapse, fatigue, inflammation (up) | Yes | 4 days (4 °C), 1 month (−20 °C) | Age, sex, breed | ||
Carbonic anhydrase IV | Up | Presumably both | Snaring (inconsistent), non-infectious growth rate retardation | Yes (higher concentrations in parotid saliva) | No age (2 vs. 4 weeks) effect, effect of estrus cycle | |||
Protein S100-A8, calgranulin A, calprotectin | Up | Acute | Inflammation, immune-mediated diseases and sepsis (up) | |||||
Protein S100-A9, calprotectin, calgranulin B | Down | Acute | Inflammation, immune-mediated diseases and sepsis (up) | |||||
Protein S100-A12, calgranulin C | Down | Acute | Inflammation, immune-mediated diseases and sepsis (up) | Yes | Yes (higher concentrations in parotid saliva) | Age | ||
Double headed protease inhibitor SMG | Up | Acute | ||||||
Haemoglobin | Up | Both | Lameness | |||||
Total esterase activity | Up | Both | Pain discomfort | <1 day (4 °C), <1 month (−20 °C) | ||||
Butyrylcholinesterase | Up | Both | Pain discomfort | <1 day (4 °C), <1 month (−20 °C) | ||||
Lipase | Up | Both | Pain discomfort | <1 day (4 °C) | ||||
Oxytocin | Down | Both | ||||||
Total protein concentration | Up | Acute | Yes | Yes | Effect of age, not of sex |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prims, S.; Van Ginneken, C.; Van Ostade, X.; Casteleyn, C. Welfare Assessment in Pigs Using the Salivary Proteome. Animals 2024, 14, 1703. https://doi.org/10.3390/ani14111703
Prims S, Van Ginneken C, Van Ostade X, Casteleyn C. Welfare Assessment in Pigs Using the Salivary Proteome. Animals. 2024; 14(11):1703. https://doi.org/10.3390/ani14111703
Chicago/Turabian StylePrims, Sara, Chris Van Ginneken, Xaveer Van Ostade, and Christophe Casteleyn. 2024. "Welfare Assessment in Pigs Using the Salivary Proteome" Animals 14, no. 11: 1703. https://doi.org/10.3390/ani14111703
APA StylePrims, S., Van Ginneken, C., Van Ostade, X., & Casteleyn, C. (2024). Welfare Assessment in Pigs Using the Salivary Proteome. Animals, 14(11), 1703. https://doi.org/10.3390/ani14111703