Supplementing Monosodium Glutamate in Sow Diets Enhances Reproductive Performance in Lactating Sows and Improves the Growth of Suckling Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Animals Housing and Management for Feeding Trials
2.3. Measurement
2.4. Collection of Milk from Sows
2.5. Assay for Colostrum and Milk Composition
2.6. Statistical Analysis
3. Results
3.1. Reproduction Performance of Sows
3.2. Growth Performance of Suckling Piglets
3.3. Milk Profile in Lactating Sow
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wheeler, M.B.; Walters, E.M. Transgenic technology and applications in swine. Theriogenology 2001, 56, 1345–1369. [Google Scholar] [CrossRef] [PubMed]
- Quesnel, H.; Etienne, M.; Père, M.C. Influence of litter size on metabolic status and reproductive axis in primiparous sows. J. Anim. Sci. 2007, 85, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Manjarin, R.; Bequette, B.J.; Wu, G.; Trottier, N.L. Linking our understanding of mammary gland metabolism to amino acid nutrition. Amino Acids 2014, 46, 2447–2462. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Xiong, K.; Fang, R.; Li, M. Weaning stress and intestinal health of piglets: A review. Front. Immunol. 2022, 13, 1042778. [Google Scholar] [CrossRef] [PubMed]
- Sureshkumar, S.; Liu, Y.J.; Chen, N.B.; Kim, I.H. Dietary inclusion of glucose oxidase supplementation to corn-wheat-based diet enhance growth performance, nutrient digestibility, blood profile of lactating sows. J. Anim. Sci. Technol. 2021, 63, 778–789. [Google Scholar] [CrossRef]
- Rezaei, R.; Gabriel, A.S.; Wu, G. Dietary supplementation with branched-chain amino acids enhances milk production by lactating sows and the growth of suckling piglets. J. Anim. Sci. Biotechnol. 2022, 13, 65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Cho, S.; Kim, B.; Kim, I.H. Pinecone oil supplemented to multiparous sows from 107 days prenatal to 21 days postpartum improves reproductive performance and milk composition and affects serum parameters. J. Anim. Physiol. Anim. Nutr. 2024, 108, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Knabe, D.A. Free and protein-bound amino acids in sow’s colostrum and milk. J. Nutr. 1994, 124, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Boyd, D.R.; Kensinger, R.S.; Harrell, R.J.; Bauman, D.E. Nutrient Uptake and Endocrine Regulation of Milk Synthesis by Mammary Tissue of Lactating Sows2. J. Anim. Sci. 1995, 73, 36–56. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; Li, P.; Li, X.; Zhou, H.; Wang, F.; Li, D.; Yin, Y.; Wu, G. Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J. Nutr. 2008, 138, 1025–1032. [Google Scholar] [CrossRef]
- Ji, F.J.; Wang, L.X.; Yang, H.S.; Hu, A.; Yin, Y.L. Review: The roles and functions of glutamine on intestinal health and performance of weaning pigs. Anim. Int. J. Anim. Biosci. 2019, 13, 2727–2735. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Long, L.; Zong, E.; Huang, P.; Li, J.; Li, Y.; Ding, X.; Xiong, X.; Yin, Y.; Yang, H. Dietary sulfur amino acids affect jejunal cell proliferation and functions by affecting antioxidant capacity, Wnt/β-catenin, and the mechanistic target of rapamycin signaling pathways in weaning piglets. J. Anim. Sci. 2018, 96, 5124–5133. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, P.; Wang, J.; Li, X.; Gao, H.; Yin, Y.; Hou, Y.; Wu, G. Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 2009, 37, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.; Burrin, D.G. Measuring splanchnic amino acid metabolism in vivo using stable isotopic tracers. J. Anim. Sci. 2006, 84 (Suppl. 13), E60–E72. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Peng, J.; Xiong, Y.; Zhou, S.; Cheng, X. Effects of Dietary Glutamine and Glutamate Supplementation on Small Intestinal Structure, Active Absorption and DNA, RNA Concentrations in Skeletal Muscle Tissue of Weaned Piglets during d 28 to 42 of Age. Asian-Australas. J. Anim. Sci. 2002, 15, 238–242. [Google Scholar] [CrossRef]
- Lei, J.; Feng, D.; Zhang, Y.; Zhao, F.Q.; Wu, Z.; San Gabriel, A.; Fujishima, Y.; Uneyama, H.; Wu, G. Nutritional and regulatory role of branched-chain amino acids in lactation. Front. Biosci. (Landmark Ed.) 2012, 17, 2725–2739. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Nakamura, E.; Nakamura, H.; Hirota, M.; San Gabriel, A.; Nakamura, K.; Chotechuang, N.; Wu, G.; Uneyama, H.; Torii, K. Production of free glutamate in milk requires the leucine transporter LAT1. Am. J. Physiol. Cell Physiol. 2013, 305, C623–C631. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Ji, W.; Wang, J.; Li, B.; Hu, J.; Wu, X. Effects of dietary supplementation with yeast glycoprotein on growth performance, intestinal mucosal morphology, immune response and colonic microbiota in weaned piglets. Food Funct. 2019, 10, 2359–2371. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ahn, J.M.; Kim, I.H. Micelle silymarin supplementation to sows’ diet from day 109 of gestation to entire lactation period enhances reproductive performance and affects serum hormones and metabolites. J. Anim. Sci. 2021, 99, skab354. [Google Scholar] [CrossRef]
- Manso, H.E.; Filho, H.C.; de Carvalho, L.E.; Kutschenko, M.; Nogueira, E.T.; Watford, M. Glutamine and glutamate supplementation raise milk glutamine concentrations in lactating gilts. J. Anim. Sci. Biotechnol. 2012, 3, 2. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, Y.; Shu, X.G.; Li, T.; Li, F.; Tan, B.; Wu, Z.; Wu, G. Oral administration of MSG increases expression of glutamate receptors and transporters in the gastrointestinal tract of young piglets. Amino Acids 2013, 45, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, R.; Knabe, D.A.; Tekwe, C.D.; Dahanayaka, S.; Ficken, M.D.; Fielder, S.E.; Eide, S.J.; Lovering, S.L.; Wu, G. Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 2013, 44, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, R.; Gabriel, A.S.; Wu, G. Dietary supplementation with monosodium glutamate enhances milk production by lactating sows and the growth of suckling piglets. Amino Acids 2022, 54, 1055–1068. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Swine: Eleventh Revised Edition; The National Academies Press: Washington, DC, USA, 2012; p. 420. [Google Scholar]
- Knauer, M.T.; Baitinger, D.J. The Sow Body Condition Caliper. Appl. Eng. Agric. 2015, 31, 175–178. [Google Scholar]
- Zhang, Q.; Li, J.; Cao, M.; Li, Y.; Zhuo, Y.; Fang, Z.; Che, L.; Xu, S.; Feng, B.; Lin, Y.; et al. Dietary supplementation of Bacillus subtilis PB6 improves sow reproductive performance and reduces piglet birth intervals. Anim. Nutr. 2020, 6, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.P.; Yin, Y.L.; Qian, Y.; Li, L.L.; Li, F.N.; Tan, B.E.; Tang, X.S.; Huang, R.L. Effects of folic acid on the performance of suckling piglets and sows during lactation. J. Sci. Food Agric. 2011, 91, 2371–2377. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Wu, Z.; Dai, Z.; Wang, X.; Li, J.; Wang, B.; Wu, G. Fetal and neonatal programming of postnatal growth and feed efficiency in swine. J. Anim. Sci. Biotechnol. 2017, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Bazer, F.W.; Wu, G.; Johnson, G.A.; Wang, X. Environmental factors affecting pregnancy: Endocrine disrupters, nutrients and metabolic pathways. Mol. Cell. Endocrinol. 2014, 398, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Guoyao, W.; Fuller, W.B.; Gregory, A.J.; Robert, C.; Xilong, L.; Zhaolai, D.; Junjun, W.; Zhenlong, W. Maternal and fetal amino acid metabolism in gestating sows. Biosci. Proc. 2019. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.; Davis, T.; Jaeger, L.; Johnson, G.; Kim, S.; Knabe, D.; Meininger, C.; Spencer, T.; Yin, Y. Important roles for the arginine family of amino acids in swine nutrition and production. Livest. Sci. 2007, 112, 8–22. [Google Scholar] [CrossRef]
- Che, D.; Adams, S.; Zhao, B.; Qin, G.; Jiang, H. Effects of Dietary L-arginine Supplementation from Conception to Post- Weaning in Piglets. Curr. Protein Pept. Sci. 2019, 20, 736–749. [Google Scholar] [CrossRef]
- Kim, S.W.; Wu, G. Dietary arginine supplementation enhances the growth of milk-fed young pigs. J. Nutr. 2004, 134, 625–630. [Google Scholar] [CrossRef]
- Lozier, J.W.; VanHoy, G.M.; Jordan, B.A.; Muir, A.J.T.; Lakritz, J.; Hinds, C.A.; Niehaus, A.J. Complications and outcomes of swine that underwent cesarean section for resolution of dystocia: 110 cases (2013–2018). Vet. Surg. VS 2021, 50, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hu, C.; Cheng, C.; Cui, J.; Ji, Y.; Hao, X.; Li, Q.; Ren, W.; Deng, B.; Yin, Y.; et al. Unraveling the association of fecal microbiota and oxidative stress with stillbirth rate of sows. Theriogenology 2019, 136, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Kruse, S.; Traulsen, I.; Krieter, J. Analysis of water, feed intake and performance of lactating sows. Livest. Sci. 2011, 135, 177–183. [Google Scholar] [CrossRef]
- Hou, Y.; Wu, G. L-Glutamate nutrition and metabolism in swine. Amino Acids 2018, 50, 1497–1510. [Google Scholar] [CrossRef]
- Wu, G. Amino Acids: Biochemistry and Nutrition; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Li, P.; Knabe, D.A.; Kim, S.W.; Lynch, C.J.; Hutson, S.M.; Wu, G. Lactating porcine mammary tissue catabolizes branched-chain amino acids for glutamine and aspartate synthesis. J. Nutr. 2009, 139, 1502–1509. [Google Scholar] [CrossRef]
- O’Quinn, P.R.; Knabe, D.A.; Wu, G. Arginine catabolism in lactating porcine mammary tissue. J. Anim. Sci. 2002, 80, 467–474. [Google Scholar] [CrossRef]
- Boutry, C.; Bos, C.; Matsumoto, H.; Even, P.; Azzout-Marniche, D.; Tome, D.; Blachier, F. Effects of monosodium glutamate supplementation on glutamine metabolism in adult rats. Front. Biosci. (Elite Ed.) 2011, 3, 279–290. [Google Scholar] [CrossRef]
- Dai, Z.L.; Zhang, J.; Wu, G.; Zhu, W.Y. Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 2010, 39, 1201–1215. [Google Scholar] [CrossRef]
- Diether, N.E.; Willing, B.P. Microbial Fermentation of Dietary Protein: An Important Factor in Diet⁻Microbe⁻Host Interaction. Microorganisms 2019, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Principles of Animal Nutrition; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Jobgen, W.S.; Fried, S.K.; Fu, W.J.; Meininger, C.J.; Wu, G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem. 2006, 17, 571–588. [Google Scholar] [CrossRef] [PubMed]
Items | Basal Sow Diet | Basal Sow Diet with 2% MSG |
---|---|---|
Ingredient, % DM basis | ||
Corn | 41.93 | 40.96 |
Wheat | 23.00 | 23.00 |
Wheat bran | 8.31 | 8.32 |
Soybean meal, (48% CP) | 4.48 | 3.48 |
Dehulled Soybean meal, (44% CP) | 12.96 | 11.25 |
Molasses | 2.00 | 2.00 |
Soybean oil | 3.40 | 4.83 |
Monocalcium phosphate | 1.20 | 1.30 |
Limestone | 1.18 | 1.16 |
MgO | 0.02 | 0.02 |
Salt | 0.50 | 0.50 |
L-Threonine (99%) | 0.17 | 0.22 |
DL-Methionine (99%) | 0.02 | 0.03 |
L-Lysine HCl, (78%) | 0.31 | 0.41 |
Vit/Mineral premix 2 | 0.40 | 0.40 |
Choline (25%) | 0.12 | 0.12 |
Glumatic acid | - | 2.00 |
Total | 100.00 | 100.00 |
Chemical analysis (%) | ||
Crude protein | 16.50 | 16.50 |
Metabolizable energy (kcal/kg) | 3300 | 3300 |
Ether extract | 5.71 | 7.06 |
Ca | 0.76 | 0.76 |
Total phosphorus | 0.65 | 0.65 |
Available phosphorus | 0.35 | 0.35 |
L-Lysine HCl | 0.96 | 0.96 |
L-Threonine | 0.26 | 0.26 |
DL-Methionine | 0.65 | 0.65 |
L-glutamine | 3.50 | 3.89 |
L-glycine | 0.77 | 1.52 |
Items | CON | MSG | SEM 2 | p-Value |
---|---|---|---|---|
Parity | 3.5 | 3.2 | 0.5 | 0.788 |
Litter size | ||||
Total birth, head | 12.0 | 12.7 | 1.3 | 0.686 |
Mummification, head | 0.2 | 0.0 | 0.2 | 0.405 |
Stillbirth, head | 0.3 | 0.3 | 0.3 | 1.0 |
Total alive, head | 11.5 | 12.3 | 1.3 | 0.682 |
SUR1 3, % | 95.85 | 97.70 | 2.6 | 0.530 |
Body weight, kg | ||||
Initial | 225.1 | 208.7 | 19.4 | 0.379 |
Farrowing | 206.0 | 187.9 | 19.6 | 0.379 |
Weaning | 190.4 | 173.0 | 18.6 | 0.378 |
Ovulation | 192.8 | 175.9 | 13.4 | 0.379 |
Body weight difference 1 4 | 19.1 | 20.8 | 0.8 | 0.093 |
Body weight difference 2 4 | 15.7 b | 14.8 a | 0.4 | 0.019 |
Body weight difference 3 4 | 2.4 | 2.9 | 0.8 | 0.520 |
Backfat thickness, mm | ||||
Initial | 19.8 | 19.0 | 1.0 | 0.417 |
Farrowing | 18.2 | 17.8 | 0.9 | 0.557 |
Weaning | 15.8 | 15.8 | 0.8 | 1.0 |
Ovulation | 16.7 | 16.8 | 0.8 | 1.0 |
Backfat thickness difference 1 5 | 1.7 | 1.2 | 0.4 | 0.112 |
Backfat thickness difference 2 5 | 2.3 | 2.0 | 0.4 | 0.387 |
Backfat thickness difference 3 5 | 0.8 | 1.0 | 0.6 | 0.798 |
Body condition score | ||||
Initial | 3.5 | 3.0 | 0.4 | 0.153 |
Farrowing | 3.0 | 2.8 | 0.3 | 0.341 |
Weaning | 2.6 | 2.7 | 0.3 | 0.784 |
Ovulation | 3.1 | 3.2 | 0.4 | 0.738 |
ADFI, kg | ||||
Pregnant | 3.50 | 3.50 | - | - |
Lactation | 7.10 | 7.20 | 0.16 | 0.422 |
Ovulation | 4.00 | 4.00 | - | - |
Estrus interval, d | 5.2 | 4.7 | 1.2 | 0.678 |
Items | CON | MSG | SEM 2 | p-Value |
---|---|---|---|---|
INO | 11.5 | 11.8 | 0.4 | 0.282 |
FNO | 11.3 | 11.7 | 0.5 | 0.523 |
SUR2 3, % | 98.49 | 98.61 | 2.11 | 1.0 |
Body weight, kg | ||||
Birth weight | 1.25 | 1.26 | 0.11 | 0.873 |
Weaning | 6.02 b | 6.43 a | 0.19 | 0.020 |
ADG, g | 228 b | 246 a | 7.8 | 0.045 |
Items | CON | MSG | SEM 2 | p-Value |
---|---|---|---|---|
Milk yield, kg | 10.465 b | 11.659 a | 0.50 | 0.045 |
Week 2 | ||||
Fat, % | 10.28 | 10.50 | 0.3827 | 0.600 |
Protein, % | 4.95 | 5.62 | 0.3125 | 0.060 |
Lactose, % | 5.09 | 5.43 | 0.3782 | 0.296 |
Solids Not Fat, % | 11.28 | 11.17 | 0.4738 | 0.401 |
Total-solids, % | 20.10 | 20.26 | 0.2723 | 0.676 |
Frozen Point, ℃ | −0.65 | −0.65 | - | - |
Week 3 | ||||
Fat, % | 7.52 | 7.95 | 0.1765 | 0.095 |
Protein, % | 4.75 | 5.30 | 0.332 | 0.144 |
Lactose, % | 4.70 | 5.02 | 0.2978 | 0.402 |
Solids Not Fat, % | 9.61 | 9.44 | 0.5753 | 0.835 |
Total-solids, % | 18.25 | 18.60 | 0.28 | 0.173 |
Frozen Point, ℃ | −0.58 | −0.58 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.X.; Kim, I.H. Supplementing Monosodium Glutamate in Sow Diets Enhances Reproductive Performance in Lactating Sows and Improves the Growth of Suckling Piglets. Animals 2024, 14, 1714. https://doi.org/10.3390/ani14121714
Li TX, Kim IH. Supplementing Monosodium Glutamate in Sow Diets Enhances Reproductive Performance in Lactating Sows and Improves the Growth of Suckling Piglets. Animals. 2024; 14(12):1714. https://doi.org/10.3390/ani14121714
Chicago/Turabian StyleLi, Tian Xiang, and In Ho Kim. 2024. "Supplementing Monosodium Glutamate in Sow Diets Enhances Reproductive Performance in Lactating Sows and Improves the Growth of Suckling Piglets" Animals 14, no. 12: 1714. https://doi.org/10.3390/ani14121714
APA StyleLi, T. X., & Kim, I. H. (2024). Supplementing Monosodium Glutamate in Sow Diets Enhances Reproductive Performance in Lactating Sows and Improves the Growth of Suckling Piglets. Animals, 14(12), 1714. https://doi.org/10.3390/ani14121714