CO2 LASER versus Blade Scalpel Surgery in the Management of Nasopharyngeal Masses in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hedlund, C.S. The Pharynx: Diseases and Surgery. In Proceedings of the World Small Animal Veterinary Association World Congress Proceedings, New, Mexico City, Mexico, 11–14 May 2005. [Google Scholar]
- Hunt, G.B. Nasopharyngeal Disorders of Dogs and Cats. In Proceedings of the World Small Animal Veterinary Association World Congress Proceeding, Granada, Spain, 3–5 October 2002. [Google Scholar]
- Confer, W.; DePaoli, A. Primary neoplasms of the nasal cavity, paranasal sinuses and nasopharynx in the dog: A report of 16 cases from the files of the AFIP. Vet. Pathol. 2016, 15, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Hunt, G.B.; Perkins, M.C.; Foster, S.F.; Barrs, V.R.; Swinney, G.R.; Malik, R. Nasopharyngeal disorders of dogs and cats:A review and retrospective study. Comp. Cont. Educ. Pract. Vet. 2002, 24, 184–200. [Google Scholar]
- Judy, A.N.; Krebs, A.I.; Haynes, J.; Kieves, N.R. Nasopharyngeal Vascular Hamartoma in a Dog. Case Rep Vet Med. 2020, 2020, 9716179. [Google Scholar] [CrossRef]
- Fortin, J.S.; Shomper, J.; Williams, F., III; Royal, A.B. What is your diagnosis? Nasopharyngeal mass in a mixed breed dog. Vet. Clin. Pathol. 2018, 47, 320–321. [Google Scholar] [CrossRef]
- Carle, L.N.; Ko, C.C.; Castle, J.T. Nasopharyngeal carcinoma. Head Neck Pathol. 2012, 6, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Biller, B.; Berg, J.; Garrett, L.; Ruslander, D.; Abbott, B.; Patel, M.; Smith, D.; Bryan, C. AAHA Oncology Guidelines for Dogs and Cats. JAAHA 2016, 52, 181–204. [Google Scholar]
- Carozzi, G.; Zotti, A.; Alberti, M.; Rossi, F. Computed tomographic features of pharyngeal neoplasia in 25 dogs. Vet. Radiol. Ultrasound. 2015, 56, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Chong, V.F.; Fan, Y.F.; Mukherji, S.K. Malignancies of the Nasopharynx and Skull Base. In Oncologic Imaging; Elsevier: Oxford, UK, 2012; Chapter 13. [Google Scholar] [CrossRef]
- Jerjes, W.; Hamdoon, Z.; Hopper, C. CO2 lasers in the management of potentially malignant and malignant oral disorders. Head Neck Oncol. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Vitruk, P. Surgical CO2 laser demystified. Vet. Pract. News. 2013, 1, 28–29. [Google Scholar]
- Pang, P.; Andreana, S.; Aoki, A.; Coluzzi, D.; Obeidi, A.; Olivi, G.; Parker, S.; Rechmann, P.; Sulewski, J.; Sweeney, C.; et al. Laser energy in oral soft tissue applications. J. Laser Dent. 2010, 18, 123–131. [Google Scholar]
- Winkler, C.J. Laser Surgery in Veterinary Medicine; John Wiley & Sons: Hoboken, NJ, USA, 2019; ISBN 1119486025. [Google Scholar]
- Burkey, B.B.; Garrett, G. Use of the laser in the oral cavity. Otolaryngol. Clin. N. Am. 1996, 29, 949–961. [Google Scholar] [CrossRef]
- Santosh, B.S.; Aiyappan, H.K.; Choudhary, P.; Varsha, S.; Islam, M.; Daniel, D. Laser for Soft Tissue Procedures in Oral and Maxillofacial Surgery. J. Adv. Med. Dent. Sci. Res. 2018, 6, 46–50. [Google Scholar]
- Carreira, L.M.; Azevedo, P. Comparison of the Influence of CO2-laser and Scalpel Skin Incisions on the Surgical Wound Healing Process. ARC J. Anesthesiol. 2016, 1, 1–8. [Google Scholar] [CrossRef]
- Mowar, A.; Verma, A.; Trivedi, A.; Dubey, P. Use of lasers in Oral and Maxillofacial Surgery: An Overview. Arch. Dent. Oral Health 2019, 2, 5–10. [Google Scholar] [CrossRef]
- Thomson, P.J.; Wylie, J. Interventional laser surgery: An effective surgical and diagnostic tool in oral precancer management. Int. J. Oral. Maxillofac. Surg. 2002, 31, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Roodenburg, J.L.; Witjes, M.J.; de Veld, D.C.; Tan, I.B.; Nauta, J.M. lasers in dentistry. Use of lasers in oral and maxillofacial surgery. Ned. Tijdschr. Tandheelkd. 2002, 109, 470–474. [Google Scholar] [PubMed]
- Vitruk, P. Laser Physics And Equipment. In Laser Surgery in Veterinary Medicine; Winkler, C.J., Ed.; Wiley Blackwell: Hoboken, NJ, USA, 2019; pp. 3–13. [Google Scholar]
- Lal, K.; Parthiban, J.; Sargunar BA, N.U.; Prakash, C.A.; Anandh, B. Usefullness of laser in oral and maxillofacial surgery. Biomed. Pharma J. 2015, 8, 271–277. [Google Scholar] [CrossRef]
- Kaplan, I.; Giler, S. CO2 Laser Surgery; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-642-82182-0. [Google Scholar] [CrossRef]
- Vogel, A.; Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 2003, 103, 577–644. [Google Scholar] [CrossRef] [PubMed]
- Vitruk, P. Soft tissue cutting with CO2 and diode lasers. Vet. Pract. News. 2012, 11, 24. [Google Scholar]
- Rodriguez, D.P.; Orscheln, E.S.; Koch, B.L. Masses of the Nose, Nasal Cavity, and Nasopharynx in Children. RadioGraphics 2017, 37, 1704–1730. [Google Scholar] [CrossRef]
- Bolewska, A.; Słowińska, M.; Błońska, A.; Ceryn, J.; Grala, B.; Narbutt, J.; Ciążyńska, M.; Małecki, W.; Skibińska, M.; Lesiak, A.; et al. Tumor of the Nose—A Rare Manifestation of a Metastatic Lung Cancer. Clin. Cosmet. Investig. Dermatol. 2021, 14, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, N.F. Cancers and Tumors of the Lung and Airway in Dogs. 2018. Available online: https://www.msdvetmanual.com/dog-owners/lung-and-airway-disorders-of-dogs/cancers-and-tumors-of-the-lung-and-airway-in-dogs (accessed on 1 June 2024).
- Rassnick, K.M.; Goldkamp, C.E.; Erb, H.N.; Scrivani, P.V.; Njaa, B.L.; Gieger, T.L.; Turek, M.M.; McNiel, E.A.; Proulx, D.R.; Chun, R.; et al. Evaluation of factors associated with survival in dogs with untreated nasal carcinomas: 139 cases (1993–2003). J. Am. Vet. Med. Assoc. 2006, 229, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Bowles, K.; De Sandre Robinson, D.; Kubicek, L.; Lurie, D.; Milner, R.; Boston, S.E. Outcome of definitive fractionated radiation followed by exenteration of the nasal cavity in dogs with sinonasal neoplasia: 16 cases. Vet. Comp. Oncol. 2014, 14, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Mellanby, R.J.; Stevenson, R.K.; Herrtage, M.E.; White RA, S.; Dobson, J.M. Long-term outcome of 56 dogs with nasal tumours treated with four doses of radiation at intervals of seven days. Vet. Rec. 2002, 151, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.J.; Lurie, D.M.; Villamil, A.J. Evaluation of tumor volume reduction of nasal carcinomas versus sarcomas in dogs treated with definitive fractionated megavoltage radiation: 15 cases (2010–2016). BMC Res. Notes 2018, 11, 70. [Google Scholar] [CrossRef] [PubMed]
- Vitruk, P. How CO2 lasers cut, coagulate soft tissue. Vet. Prac. News. 2014, 12, 36–37. [Google Scholar]
- Vitruk, P. Oral soft tissue laser ablative and coagulative efficiencies spectra. Implant Practice. 2014, 7, 19–27. [Google Scholar]
- Levine, R.; Vitruk, P. Enhanced hemostasis and improved healing in CO2 laser-assisted soft tissue oral surgeries. Implant. Pract. US 2015, 8, 34–37. [Google Scholar]
- Vitruk, P. The ideal laser scalpel. In Laser Surgery in Veterinary Medicine; Winkler, C.J., Ed.; Wiley Blackwell: Hoboken, NJ, USA, 2019; pp. 32–41. [Google Scholar]
- Tambuwala, A.; Sangle, A.; Khan, A.; Sayed, A. Excision of Oral Leukoplakia by CO2 lasers Versus Traditional Scalpel:A Comparative Study. J. Maxillofac. Oral. Surg. 2014, 13, 320–327. [Google Scholar] [CrossRef]
- Demir, U.L.; Çevik, T.; Kasapoğlu, F. Is There a Change in the Treatment of T1 Glottic Cancer After CO2 laser? A Comparative Study with Cold Steel. Turk. Arch. Otorhinolaryngol. 2018, 56, 64–69. [Google Scholar] [CrossRef]
- Jerónimo, A.; Cavilhas, P.; Oliveira, L.; Montalvão, P.; Magalhães, M. Cirurgia laser CO2 no tratamento de tumores malignos glóticos. Rev. Port. De Otorrinolaringol. E Cir. De Cabeça E Pescoço 2019, 49, 235–241. [Google Scholar] [CrossRef]
- Barton, J.K.; Rollins, A.; Yazdanfar, S.; Pfefer, T.J.; Westphal, V.; Izatt, J.A. Photothermal coagulation of blood vessels: A comparison of high-speed optical coherence tomography and numerical modelling. Phys. Med. Biol. 2001, 46, 1665–1678. [Google Scholar] [CrossRef] [PubMed]
- Carreira, M.L.; Ramalho, R.; Nielsen, S.; Azevedo, P. Comparison of the Hemodynamic Response in General Anesthesia between Patients Submitted to Skin Incision with Scalpel and CO2 laser Using Dogs as an Animal Model. A Preliminary Study. ARC J. Anesthesiol. 2017, 2, 24–30. [Google Scholar] [CrossRef]
- Glazkova, A.; Vitruk, P. CO2 laser Surgery Post-Operative Pain and Healing: A Partial Literature Review. Dent. Sleep Pract. Winter 2019, 28–34. [Google Scholar]
- Jako, G.J. Laser surgery of the vocal cords. An experimental study with carbon dioxide lasers on dogs. Laryngoscope 1972, 12, 2204–2216. [Google Scholar] [CrossRef] [PubMed]
- Carreira, L.M. Comparative study on the plasmatic CRP level variation in dogs undergoing surgery with CO2 laser and Scalpel blade incisions in a pre- and post-surgical time-point. In Proceedings of the ALSC Symposium, Phoenix, AZ, USA, 29–31 March 2019. [Google Scholar]
- Schuenemann, R.; Pohl, S.; Oechtering, G.U. A novel approach to brachycephalic syndrome.Isolated laser-assisted turbinectomy of caudal aberrant turbinates(CAT LATE). Vet. Surg. 2017, 46, 32–38. [Google Scholar] [CrossRef]
- LeBlanc, A.K.; Mazcko, C.N.; Khanna, C. Defining the Value of a Comparative Approach to Cancer Drug Development. Vet. Comp. Oncol. 2016, 14, 2133–2138. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.; Azevedo, P.; Carreira, L.M. The phenomenon of skin contraction in CO2 LASER surgical incisions using superpulse and continuous emission mode—Preliminary study. Lasers Med. Sci. 2024, 39, 117. [Google Scholar] [CrossRef] [PubMed]
- Laver, T.; London, C.A.; Vail, D.M.; Biller, B.J.; Coy, J.; Thamm, D.H. Prospective evaluation of toceranib phosphate in metastatic canine osteosarcoma. Vet. Comp. Oncol. 2016, 14 (Suppl. 1), 60–71. [Google Scholar] [CrossRef]
- Morris, J.S.; Khammanivong, A.; DeCock, H.E.V. Canine intranasal tumors: A case series including outcome and literature review. BMC Vet. Res. 2017, 13, 39. [Google Scholar]
- Davis, J.L.; Feeney, D.A.; McEntee, M.C.; Page, R.L.; Hardy, R.M.; McCaw, D.L. Computed tomography and cross-sectional anatomy of the normal canine nasopharynx and paranasal sinuses. Vet. Radiol. Ultrasound. 2011, 52, 425–434. [Google Scholar]
- Morris, J.S.; Rajon, D.A.; Boswood, A. Nasopharyngeal Tumors in Dogs: A Review. J. Am. Anim. Hosp. Assoc. 2018, 54, 189–195. [Google Scholar]
Parameter | N | Type of Surgery Technique | ||||||
---|---|---|---|---|---|---|---|---|
Scalpel (n = 6) | CO2 Laser (n = 6) | |||||||
Mean ± SD | Mean ± SD | |||||||
Gender | 12 | Female | n = 3 | Male | n = 9 | |||
Age (years) | 12 | 11.9 ± 2.65 | 10.6 ± 3.12 | |||||
Weight (kg) | 12 | 19.29 ± 4.81 | 20.21± 4.05 | |||||
Surgical time (min) | 12 | 84 ± 14.7 | 64.6 ± 13.4 | |||||
Mass dimension (mm) | Total sample | Length | 5.30 ± 2.19 | 12 | 3.71 ± 1.13 | 7.53 ± 1.08 | ||
Width | 4.02 ± 1.44 | 12 | 3.25 ± 1.26 | 5.11 ± 0.87 | ||||
Height | 4.24 ± 2.06 | 12 | 3.26 ± 1.77 | 5.61 ± 160 | ||||
First meal time (hours) | 12 | 11.6 ± 3.2 | 7.3 ± 1.5 | |||||
Pain level (24 h later) | 12 | 1.16 ± 0.75 | 0 | |||||
Time to scar finally healing (days) | 12 | 11.6 ± 2.06 | 8.5 ± 1.64 | |||||
Relapse | 12 | Yes (n= 4) | Yes (n = 1) | |||||
First clinical signs associated with relapse | 12 | 52.16 ± 47.1 | 138 | |||||
Patients’ clinical signs | 12 | Clinical signs | % | |||||
stertor | 91.7 | |||||||
oral breathing | 83.3 | |||||||
nasal discharge | 66.7 | |||||||
anorexia | 66.7 | |||||||
cough | 50 | |||||||
dysphagia | 41.7 | |||||||
sneezing | 33.3 | |||||||
ptyalism | 33.3 | |||||||
vomiting | 25 | |||||||
Type of tumor | n | Scalpel (n) | CO2 laser (n) | |||||
Squamous cell carcinoma | 4 | 3 | 1 | |||||
Adenocarcinoma | 3 | 2 | 1 | |||||
Fibrosarcoma | 2 | 1 | 1 | |||||
Undifferentiated sarcoma | 2 | - | 2 | |||||
Lymphoma | 1 | - | 1 |
Parameter | One-Way ANOVA Test | ||
---|---|---|---|
F-Ratio | p-Value | ||
Age (years) | Blade scalpel vs. CO2 laser | 0.603 | 0.455 |
Body weight (kg) | Blade scalpel vs. CO2 laser | 0.129 | 0.725 |
Surgical time (min) | Blade scalpel vs. CO2 laser | 5.636 | 0.038 * |
First meal time (h) | Blade scalpel vs. CO2 laser | 8.989 | 0.013 * |
Pain level (24 h later) | Blade scalpel vs. CO2 laser | 14.411 | 0.003 * |
Time to scar finally healing (days) | Blade scalpel vs. CO2 laser | 8.636 | 0.014 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carreira, L.M.; Alexandre-Pires, G.; Azevedo, P. CO2 LASER versus Blade Scalpel Surgery in the Management of Nasopharyngeal Masses in Dogs. Animals 2024, 14, 1733. https://doi.org/10.3390/ani14121733
Carreira LM, Alexandre-Pires G, Azevedo P. CO2 LASER versus Blade Scalpel Surgery in the Management of Nasopharyngeal Masses in Dogs. Animals. 2024; 14(12):1733. https://doi.org/10.3390/ani14121733
Chicago/Turabian StyleCarreira, L. Miguel, Graça Alexandre-Pires, and Pedro Azevedo. 2024. "CO2 LASER versus Blade Scalpel Surgery in the Management of Nasopharyngeal Masses in Dogs" Animals 14, no. 12: 1733. https://doi.org/10.3390/ani14121733
APA StyleCarreira, L. M., Alexandre-Pires, G., & Azevedo, P. (2024). CO2 LASER versus Blade Scalpel Surgery in the Management of Nasopharyngeal Masses in Dogs. Animals, 14(12), 1733. https://doi.org/10.3390/ani14121733