Prevalence Study of Trichomonas gallinae in Domestic Pigeons in Northeastern Beijing and Experimental Model of Trichomoniasis in White King Squabs Measuring In Situ Apoptosis and Immune Factors in Crop and Esophagus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Prevalence of T. gallinae and Study Area
2.3. T. gallinae Challenge
2.4. T. gallinae Count
2.5. Histopathological Study
2.6. In Situ Detection of Apoptosis
2.7. RT-PCR Detection of Immune-Related Factors Expression
2.8. Statistical Analysis
3. Results
3.1. Prevalence of T. gallinae
3.2. Cumulative Mortality and Body Weight Changes after Challenging with T. gallinae
3.3. Pathological Changes in the Crop and Esophagus
3.4. Assessment of Apoptosis
3.5. Expression of Immune-Related Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehlhorn, H.; Al-Quraishy, S.; Aziza, A.; Hess, M. Fine structure of the bird parasites Trichomonas gallinae and Tetratrichomonas gallinarum from cultures. Parasitol. Res. 2009, 105, 751–756. [Google Scholar] [CrossRef] [PubMed]
- McDougald, L.R.; Cervantes, H.M.; Jenkins, M.C.; Hess, M.; Beckstead, R. Protozoal Infections. In Diseases of Poultry; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Begum, N.; Mamun, M.A.A.; Rahman, S.A.; Bari, A.S.M. Epidemiology and pathology of Trichomonas gallinae in the common pigeon (Columba livia). J. Bangladesh Agric. Univ. 2008, 6, 301–306. [Google Scholar] [CrossRef]
- Abaas Muzeal, F.; Khudeir, M.A. Pathological lesions of Trichomonas gallinae in Domastic pigeons (Columba livia) of Al-muthanna province, Iraq. Al-Qadisiyah J. Vet. Med. Sci. 2022, 21, 81–90. [Google Scholar]
- Forzán, M.J.; Vanderstichel, R.; Melekhovets, Y.F.; McBurney, S. Trichomoniasis in finches from the Canadian Maritime provinces—An emerging disease. Can. Vet. J. 2010, 51, 391. [Google Scholar] [PubMed]
- Marx, M.; Reiner, G.; Willems, H.; Rocha, G.; Hillerich, K.; Masello, J.F.; Mayr, S.L.; Moussa, S.; Dunn, J.C.; Thomas, R.C.; et al. High prevalence of Trichomonas gallinae in wild columbids across western and southern Europe. Parasit. Vectors 2017, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Wahhab, M.A.; Abdulrahman, N.R.; Ali, S.A.-K. A study of oropharyngeal parasites infection in doves and domestic pigeons in some villages of Garmian-Iraqi Kurdistan region. Kurd. J. Appl. Res. 2017, 2, 15–20. [Google Scholar] [CrossRef]
- Niedringhaus, K.D.; Burchfield, H.J.; Elsmo, E.J.; Cleveland, C.A.; Fenton, H.; Shock, B.C.; Muise, C.; Brown, J.D.; Munk, B.; Ellis, A. Trichomonosis due to Trichomonas gallinae infection in barn owls (Tyto alba) and barred owls (Strix varia) from the eastern United States. Vet. Parasitol. Reg. Stud. Rep. 2019, 16, 100281. [Google Scholar] [CrossRef] [PubMed]
- Lawson, B.; Robinson, R.A.; Colvile, K.M.; Peck, K.M.; Chantrey, J.; Pennycott, T.W.; Simpson, V.R.; Toms, M.P.; Cunningham, A.A. The emergence and spread of finch trichomonosis in the British Isles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 2852–2863. [Google Scholar] [CrossRef]
- Forrester, D.J.; Foster, G.W. Trichomonosis. In Parasitic Diseases of Wild Birds; John Wiley & Sons: Ames, IA, USA, 2008. [Google Scholar]
- Rijks, J.M.; Laumen, A.A.G.; Slaterus, R.; Stahl, J.; Grone, A.; Kik, M.L. Trichomonosis in Greenfinches (Chloris chloris) in the Netherlands 2009–2017: A Concealed Threat. Front. Vet. Sci. 2019, 6, 425. [Google Scholar] [CrossRef]
- Rogers, K.H.; Girard, Y.A.; Koenig, W.D.; Johnson, C.K. Ecologic Drivers and Population Impacts of Avian Trichomonosis Mortality Events in Band-Tailed Pigeons (Patagioenas fasciata) in California, USA. J. Wildl. Dis. 2016, 52, 484–494. [Google Scholar] [CrossRef]
- Brunthaler, R.; Teufelbauer, N.; Seaman, B.; Nedorost, N.; Bittermann, K.; Matt, J.; Weissenbacher-Lang, C.; Weissenbock, H. Trichomonosis in Austrian Songbirds-Geographic Distribution, Pathological Lesions and Genetic Characterization over Nine Years. Animals 2022, 12, 1306. [Google Scholar] [CrossRef] [PubMed]
- Herdt, P.D.; Pasmans, F. Pigeons. In Handbook of Avian Medicine; W.B. Saunders: Edinburgh, UK, 2009. [Google Scholar]
- Narcisi, E.M.; Sevoian, M.; Honigberg, B.M. Pathologic changes in pigeons infected with a virulent Trichomonas gallinae strain (Eiberg). Avian Dis. 1991, 35, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Samour, J.H.; Bailey, T.A.; Cooper, J.E. Trichomoniasis in birds of prey (order Falconiformes) in Bahrain. Vet. Rec. 1995, 136, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Rupiper, D.J. Diseases that affect race performance of homing pigeons. Part II: Bacterial, fungal, and parasitic diseases. J. Avian Med. Surg. 1998, 12, 138–148. [Google Scholar]
- Abbas, H.E.; El-Din, H.A.; TSoliman, E.K.; Tantawy, L.A. Some serum biochemical and pathological changes in squabs of domestic pigeons (Columba livia) infected with Trichomonas. J. Vet. Med. Res. 2010, 20, 85–98. [Google Scholar] [CrossRef]
- Borji, H.; Razmi, G.H.; Movassaghi, A.H.; Moghaddas, E.; Azad, M. Prevalence and pathological lesion of Trichomonas gallinae in pigeons of Iran. J. Parasit. Dis. 2011, 35, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Barcinski, M.A.; DosReis, G.A. Apoptosis in parasites and parasite-induced apoptosis in the host immune system: A new approach to parasitic diseases. Braz. J. Med. Biol. Res. 1999, 32, 395–401. [Google Scholar] [CrossRef]
- Obeagu, E.I. Role of cytokines in immunomodulation during malaria clearance. Ann. Med. Surg. 2024, 86, 2873–2882. [Google Scholar] [CrossRef]
- Zangger, H.; Mottram, J.C.; Fasel, N. Cell death in Leishmania induced by stress and differentiation: Programmed cell death or necrosis? Cell Death Differ. 2002, 9, 1126–1139. [Google Scholar] [CrossRef]
- Molestina, R.E.; Payne, T.M.; Coppens, I.; Sinai, A.P. Activation of NF-kappaB by Toxoplasma gondii correlates with increased expression of antiapoptotic genes and localization of phosphorylated IkappaB to the parasitophorous vacuole membrane. J. Cell Sci. 2003, 116, 4359–4371. [Google Scholar] [CrossRef]
- Leiriao, P.; Albuquerque, S.S.; Corso, S.; van Gemert, G.J.; Sauerwein, R.W.; Rodriguez, A.; Giordano, S.; Mota, M.M. HGF/MET signalling protects Plasmodium-infected host cells from apoptosis. Cell. Microbiol. 2005, 7, 603–609. [Google Scholar] [CrossRef]
- Johnston, C.J.C.; Smyth, D.J.; Kodali, R.B.; White, M.P.J.; Harcus, Y.; Filbey, K.J.; Hewitson, J.P.; Hinck, C.S.; Ivens, A.; Kemter, A.M.; et al. A structurally distinct TGF-beta mimic from an intestinal helminth parasite potently induces regulatory T cells. Nat. Commun. 2017, 8, 1741. [Google Scholar] [CrossRef]
- Sarkar, S.; Keswani, T.; Sengupta, A.; Mitra, S.; Bhattacharyya, A. Differential modulation of glial cell mediated neuroinflammation in Plasmodium berghei ANKA infection by TGF beta and IL 6. Cytokine 2017, 99, 249–259. [Google Scholar] [CrossRef]
- Allen, J.E.; Maizels, R.M. Th1-Th2: Reliable paradigm or dangerous dogma? Immunol. Today 1997, 18, 387–392. [Google Scholar] [CrossRef]
- John, J.L. The avian spleen: A neglected organ. Q. Rev. Biol. 1994, 69, 327–351. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, M.; Ghashghaei, O.; Khedri, J. First report of an outbreak trichomoniasis in turkey in Sistan, Iran. J. Parasit. Dis. 2016, 40, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Ni, A.; Li, Y.; Ge, P.; Wang, P.; Isa, A.M.; Shi, L.; Fan, J.; Sun, Y.; Sun, H.; Ma, H.; et al. Extraction and protein profiling of exosomes derived from Trichomonas gallinae in pigeon. Acta Vet. Et. Zootech. Sin. 2020, 51, 11. [Google Scholar] [CrossRef]
- Feng, S.Y.; Chang, H.; Li, F.H.; Wang, C.M.; Luo, J.; He, H.X. Prevalence and molecular characterization of Trichomonas gallinae from domestic pigeons in Beijing, China. Infect. Genet. Evol. 2018, 65, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.M.; Salaeh, N.M.K.; Ragni, M.; Swelum, A.A.; Alqhtani, A.H.; Abd El-Hack, M.E.; El-Saadony, M.T.; Attia, M.M. Incidence of gastrointestinal parasites in pigeons with an assessment of the nematocidal activity of chitosan nanoparticles against Ascaridia columbae. Poult. Sci. 2022, 101, 101820. [Google Scholar] [CrossRef]
- Preston-Mafham, R.A.; Sykes, A.H. Changes in body weight and intestinal absorption during infections with Eimeria acervulina in the chicken. Parasitology 1970, 61, 417–424. [Google Scholar] [CrossRef]
- Hinrichsen, L.K.; Labouriau, R.; Engberg, R.M.; Knierim, U.; Sorensen, J.T. Helminth infection is associated with hen mortality in Danish organic egg production. Vet. Rec. 2016, 179, 196. [Google Scholar] [CrossRef] [PubMed]
- Mesa, C.P.; Stabler, R.M.; Berthrong, M. Histopathological changes in the domestic pigeon infected with Trichomonas gallinae (Jones’ barn strain). Avian Dis. 1961, 5, 48–60. [Google Scholar] [CrossRef]
- Kallio, E.R.; Poikonen, A.; Vaheri, A.; Vapalahti, O.; Henttonen, H.; Koskela, E.; Mappes, T. Maternal antibodies postpone hantavirus infection and enhance individual breeding success. Proc. Biol. Sci. 2006, 273, 2771–2776. [Google Scholar] [CrossRef] [PubMed]
- Bienvenu, A.L.; Gonzalez-Rey, E.; Picot, S. Apoptosis induced by parasitic diseases. Parasit. Vectors 2010, 3, 106. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ni, A.; Zhang, R.; Li, Y.; Yuan, J.; Sun, Y.; Chen, J.; Ma, H. Identification of miRNA Associated with Trichomonas gallinae Resistance in Pigeon (Columba livia). Int. J. Mol. Sci. 2023, 24, 16453. [Google Scholar] [CrossRef] [PubMed]
- Tedla, M.G.; Every, A.L.; Scheerlinck, J.Y. Investigating immune responses to parasites using transgenesis. Parasit. Vectors 2019, 12, 303. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Carrillo, J.L.; Contreras-Cordero, J.F.; Gutiérrez-Coronado, O.; Villalobos-Gutiérrez, P.T.; Ramos-Gracia, L.G.; Hernández-Reyes, V.E. Cytokine profiling plays a crucial role in activating immune system to clear infectious pathogens. In Immune Response Activation and Immunomodulation; IntechOpen: London, UK, 2018. [Google Scholar]
- Tejaswini, P.; Vasundhara, M.; Deepti, R.; Arkajyoti, M.; Rahul, S.; Ashok, P.; Neelam, B.; David, M.; Jagneshwar, D.; Arup, S. Pro-inflammatory cytokine Interleukin-1β (IL-1β) controls Leishmania infection. Cytokine 2018, 112, 27–31. [Google Scholar]
- Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011, 117, 3720–3732. [Google Scholar] [CrossRef] [PubMed]
- Arend, W.R. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor. Rev. 2002, 13, 323–340. [Google Scholar] [CrossRef]
- Dunzendorfer, S.; Lee, H.-K.; Soldau, K.; Tobias, P.S. TLR4 is the signaling but not the lipopolysaccharide uptake receptor. J. Immunol. 2004, 173, 1166–1170. [Google Scholar] [CrossRef]
- Ting, J.P.; Trowsdale, J. Genetic control of MHC class II expression. Cell 2002, 109, S21–S33. [Google Scholar] [CrossRef] [PubMed]
- Owen, J.A.; Punt, J.; Stranford, S.A. Kuby Immunology; WH Freeman New York: New York, NY, USA, 2013. [Google Scholar]
- Meng, Y.; Wang, M.; Xie, X.; Di, T.; Zhao, J.; Lin, Y.; Xu, X.; Li, N.; Zhai, Y.; Wang, Y.; et al. Paeonol ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice by inhibiting the maturation and activation of dendritic cells. Int. J. Mol. Med. 2017, 39, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
Gene * | Accession Number | Primer Sequence (5′ to 3′) | Product Size (bp) |
---|---|---|---|
IL-1β | NM_001282824.1 | F: TGGCGTTTGTCCCTGATTTG | 56 |
R: CGTCTCTTCATTCAGGCTGC | |||
TGF-β | XM_005502350.2 | F: ACTGAGACTGTGCGTGAGTG | 104 |
R: AAGATGTCTCCGTTGGGCTG | |||
MHCⅡ | XM_013371611.1 | F: GGAACCATCGTGCCACCC | 98 |
R: GGCCAGAACTTGTCCACGTA | |||
TLR4 | XM_005498384.2 | F: ACGTGCATGGGACTGAATGT | 134 |
R: GTATGGAGCTGGCACCTTGT | |||
β-actin | NM_001199586.1 | F: GAGAAATTGTGCGTGACATCA | 152 |
R: CCTGAACCTCTCATTGCCA |
Breed | Male | Female | Adults | Squabs | Average |
---|---|---|---|---|---|
Tai Shen | 29.03% (31) * | 16.13% (31) | 22.58% (62) | 57.41% (54) | 38.79% (116) |
Silver King | 16.67% (30) | 3.33% (30) | 10.00% (60) | 58.00% (50) | 31.82% (110) |
White King | 45.71% (35) | 28.57% (35) | 37.14% (70) | 56.25% (32) | 43.14% (102) |
Shen Wang | 30.00% (30) | 23.33% (30) | 26.67% (60) | 37.88% (66) | 32.54% (126) |
White Carneau | 10.00% (30) | 6.67% (30) | 8.33% (60) | 43.48% (69) | 27.13% (129) |
Average | 26.92% (156) | 16.03% (156) | 21.47% (312) | 49.08% (271) | 34.31% (583) |
Days Post Infection | 1 | 2 | 3 | 5 | 7 |
---|---|---|---|---|---|
Control group | 0 | 0 | 0 | 0 | 0 |
Challenged group (parasite/mL) | 1.52 × 104 | 1.68 × 104 | 3.25 × 104 | 7.22 × 104 | 3.16 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, A.; Li, Y.; Isa, A.M.; Wang, P.; Shi, L.; Fan, J.; Ge, P.; Jiang, L.; Sun, Y.; Ma, H.; et al. Prevalence Study of Trichomonas gallinae in Domestic Pigeons in Northeastern Beijing and Experimental Model of Trichomoniasis in White King Squabs Measuring In Situ Apoptosis and Immune Factors in Crop and Esophagus. Animals 2024, 14, 1869. https://doi.org/10.3390/ani14131869
Ni A, Li Y, Isa AM, Wang P, Shi L, Fan J, Ge P, Jiang L, Sun Y, Ma H, et al. Prevalence Study of Trichomonas gallinae in Domestic Pigeons in Northeastern Beijing and Experimental Model of Trichomoniasis in White King Squabs Measuring In Situ Apoptosis and Immune Factors in Crop and Esophagus. Animals. 2024; 14(13):1869. https://doi.org/10.3390/ani14131869
Chicago/Turabian StyleNi, Aixin, Yunlei Li, Adamu Mani Isa, Panlin Wang, Lei Shi, Jing Fan, Pingzhuang Ge, Linlin Jiang, Yanyan Sun, Hui Ma, and et al. 2024. "Prevalence Study of Trichomonas gallinae in Domestic Pigeons in Northeastern Beijing and Experimental Model of Trichomoniasis in White King Squabs Measuring In Situ Apoptosis and Immune Factors in Crop and Esophagus" Animals 14, no. 13: 1869. https://doi.org/10.3390/ani14131869
APA StyleNi, A., Li, Y., Isa, A. M., Wang, P., Shi, L., Fan, J., Ge, P., Jiang, L., Sun, Y., Ma, H., & Chen, J. (2024). Prevalence Study of Trichomonas gallinae in Domestic Pigeons in Northeastern Beijing and Experimental Model of Trichomoniasis in White King Squabs Measuring In Situ Apoptosis and Immune Factors in Crop and Esophagus. Animals, 14(13), 1869. https://doi.org/10.3390/ani14131869