Heat Production of Iberian Pig Exposed to High Temperature and Effect of Dietary Supplementation with Betaine or Zinc
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Treatments and Diets
2.2. Chemical Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ross, J.W.; Hale, B.J.; Gabler, N.K.; Rhoads, R.P.; Keating, A.F.; Baumgard, L.H. Physiological consequences of heat stress in pigs. Anim. Prod. Sci. 2015, 55, 1381–1390. [Google Scholar] [CrossRef]
- Renaudeau, D.; Hue, E.; Noblet, J. Acclimation to high ambient temperature in Large White and Caribbean Creole growing pigs. J. Anim. Sci. 2007, 85, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bote, C.J. Sustained utilization of the Iberian pig breed. Meat Sci. 1998, 49, S17–S27. [Google Scholar] [CrossRef]
- Gilbert, H.; Billon, Y.; Brossard, L.; Faure, J.; Gatellier, P.; Gondret, F.; Labussière, E.; Lebret, B.; Lefaucheur, L.; Le Floch, N.; et al. Review: Divergent selection for residual feed intake in the growing pig. Animal 2017, 11, 1427–1439. [Google Scholar] [CrossRef] [PubMed]
- Cholewa, J.M.; Guimarães-Ferreira, L.; Zanchi, N.E. Effects of betaine on performance and body composition: A review of recent findings and potential mechanisms. Amino Acids 2014, 46, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ward, T.L.; Ji, F.; Peng, C.; Zhu, L.; Gong, L.; Dong, B. Effects of zinc sources and levels of zinc amino acid complex on growth performance, hematological and biochemical parameters in weanling pigs. Asian-Australas. J. Anim. Sci. 2018, 31, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Schrama, J.W.; Heetkamp, M.J.W.; Simmins, P.H.; Gerrits, W.J.J. Dietary betaine supplementation affects energy metabolism of pigs. J. Anim. Sci. 2003, 81, 1202–1209. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Tanabe, S.; Suzuki, T. Cellular zinc is required for intestinal epithelial barrier maintenance via the regulation of claudin-3 and occludin expression. Am. J. Physiol. Liver Physiol. 2016, 311, G105–G116. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cao, Y.; Zhou, X.; Wang, F.; Shan, T.; Li, Z.; Xu, W.; Li, C. Effects of zinc sulfate pretreatment on heat tolerance of Bama miniature pig under high ambient temperature. J. Anim. Sci. 2015, 93, 3421–3430. [Google Scholar] [CrossRef]
- Sanz Fernandez, M.V.; Pearce, S.C.; Gabler, N.K.; Patience, J.F.; Wilson, M.E.; Socha, M.T.; Torrison, J.L.; Rhoads, R.P.; Baumgard, L.H. Effects of supplemental zinc amino acid complex on gut integrity in heat-stressed growing pigs. Animal 2014, 8, 43–50. [Google Scholar] [CrossRef]
- Pardo, Z.; Seiquer, I.; Lachica, M.; Nieto, R.; Lara, L.; Fernández-Fígares, I. Exposure of growing Iberian pigs to heat stress and effects of dietary betaine and zinc on heat tolerance. J. Therm. Biol. 2022, 106, 103230. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012.
- Nieto, R.; Lara, L.; Barea, R.; García-Valverde, R.; Aguinaga, M.A.; Conde-Aguilera, J.A.; Aguilera, J.F. Response analysis of the Iberian pig growing from birth to 150 kg body weight to changes in protein and energy supply. J. Anim. Sci. 2012, 90, 3809–3820. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, E. Report of Sub-Committee on Constants and Factors. In Proceedings of the 3rd Symposium on Energy Metabolism of Farm Animals, Troon, UK, May 1964; Baxter, K.L., Ed.; Academic Press: London, UK, 1965; Volume 11, pp. 441–443. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications); U.S. Government Publishing Office: Washington, DC, USA, 1970.
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.T.; Aarnink, A.J.; Verstegen, M.W.; Gerrits, W.J.; Heetkamp, M.J.; Kemp, B.; Canh, T.T. Effects of increasing temperatures on physiological changes in pigs at different relative humidities. J. Anim. Sci. 2005, 83, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fígares, I.; Wray-Cahen, D.; Steele, N.C.; Campbell, R.G.; Hall, D.D.; Virtanen, E.; Caperna, T.J. Effect of dietary betaine on nutrient utilization and partitioning in the young growing feed restricted pig. J. Anim. Sci. 2002, 80, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Collin, A.; Van Milgen, J.; Dubois, S.; Noblet, J. Effect of high temperature and feeding level on energy utilization in piglets. J. Anim. Sci. 2001, 79, 1849–1857. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Feng, Y.; Yang, P.; Feng, J.; Lin, H.; Gu, X. Nutritional and physiological responses of finishing pigs exposed to a permanent heat exposure during three weeks. Arch. Anim. Nutr. 2014, 68, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Pearce, S.C.; Gabler, N.K.; Ross, J.W.; Escobar, J.; Patience, J.F.; Rhoads, R.P.; Baumgard, L.H. The effects of heat stress and plane of nutrition on metabolism in growing pigs. J. Anim. Sci. 2013, 91, 2108–2118. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, S.M.; Boyd, R.D.; Zier-Rush, C.E.; Ferket, P.R.; Haydon, K.D.; van Heugten, E. Effect of natural betaine and ractopamine HCl on whole-body and carcass growth in pigs housed under high ambient temperatures1. J. Anim. Sci. 2017, 95, 3047–3056. [Google Scholar] [CrossRef]
- Lan, R.; Kim, I. Effects of feeding diets containing essential oils and betaine to heat-stressed growing-finishing pigs. Arch. Anim. Nutr. 2018, 72, 368–378. [Google Scholar] [CrossRef]
- Mayorga, E.J.; Kvidera, S.K.; Horst, E.A.; Al-Qaisi, M.; Dickson, M.J.; Seibert, J.T.; Lei, S.; Keating, A.F.; Ross, J.W.; Rhoads, R.P.; et al. Effects of zinc amino acid complex on biomarkers of gut integrity and metabolism during and following heat stress or feed restriction in pigs. J. Anim. Sci. 2018, 96, 4173–4185. [Google Scholar] [CrossRef] [PubMed]
- European Commission (EC). Commission Implementing Regulation (EU) 2016/1095 of 6 July 2016. Off. J. Eur. Union 2016, 182, 7–27. [Google Scholar]
- Le Bellego, L.; Van Milgen, J.; Noblet, J. Effect of high ambient temperature on protein and lipid deposition and energy utilization in growing pigs. Anim. Sci. 2002, 75, 85–96. [Google Scholar] [CrossRef]
- Collin, A.; Lebreton, Y.; Fillaut, M.; Vincent, A.; Thomas, F.; Herpin, P. Effects of exposure to high temperature and feeding level on regional blood flow and oxidative capacity of tissues in piglets. Exp. Physiol. 2001, 86, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.; Hernández, L.; Buenabad, L.; Avelar, E.; Bernal, H.; Baumgard, L.H.; Cervantes, M. Effect of heat stress on the endogenous intestinal loss of amino acids in growing pigs. J. Anim. Sci. 2016, 94, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.; Pérez, J.F.; Baucells, M.D.; Mourot, J.; Gasa, J. Comparative digestibility and lipogenic activity in Landrace and Iberian finishing pigs fed ad libitum corn- and corn-sorghum-acorn-based diets. Livest. Prod. Sci. 2002, 77, 195–205. [Google Scholar] [CrossRef]
- González-Valero, L.; Rodríguez-López, J.M.; Lachica, M.; Fernández-Fígares, I. Contribution of portal-drained viscera to heat production in Iberian gilts fed a low-protein diet: Comparison to Landrace. J. Sci. Food Agric. 2016, 96, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Kouba, M.; Hermier, D.; Le Dividich, J. Influence of a high ambient temperature on stearoyl-CoA-desaturase activity in the growing pig. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1999, 124, 7–13. [Google Scholar] [CrossRef]
- Rojas-Cano, M.; Lachica, M.; Lara, L.; Haro, A.; Fernández-Fígares, I. Portal-drained viscera heat production in Iberian pigs fed betaine- and conjugated linoleic acid-supplemented diets. J. Sci. Food Agric. 2017, 97, 679–685. [Google Scholar] [CrossRef]
- Qu, H.; Yan, H.; Lu, H.; Donkin, S.S.; Ajuwon, K.M. Heat stress in pigs is accompanied by adipose tissue-specific responses that favor increased triglyceride storage. J. Anim. Sci. 2016, 94, 1884–1896. [Google Scholar] [CrossRef]
- Qu, H.; Ajuwon, K.M. Adipose tissue-specific responses reveal an important role of lipogenesis during heat stress adaptation in pigs. J. Anim. Sci. 2018, 96, 975–989. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.; Cota, S.E.M.; Ibarra, N.O.; Arce, N.; Htoo, J.K.; Cervantes, M. Effect of heat stress on the serum concentrations of free amino acids and some of their metabolites in growing pigs. J. Anim. Sci. 2016, 94, 2835–2842. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Wu, W.; Fang, W.; Tang, S.; Xin, H.; Xie, J.; Zhang, H. Effects of long-term heat exposure on cholesterol metabolism and immune responses in growing pigs. Livest. Sci. 2019, 230, 103857. [Google Scholar] [CrossRef]
Ingredients | |
---|---|
Barley grain, g/kg as fed | 700 |
Corn, g/kg as fed | 143.7 |
Soybean meal, g/kg as fed | 127 |
Calcium phosphate, g/kg as fed | 9.3 |
Calcium carbonate, g/kg as fed | 6.2 |
Sodium chloride, g/kg as fed | 3.0 |
L-Lysine (50%), g/kg as fed | 5.0 |
L-Threonine (50%), g/kg as fed | 2.1 |
Methionine hydroxy-analog (75%), g/kg as fed | 0.7 |
Vitamins and minerals 2, g/kg as fed | 3.0 |
Chemical analysis | |
Dry matter, g/kg as fed | 899 |
Ash, g/kg as fed | 48.6 |
Ether extract, g/kg as fed | 17.5 |
Crude protein, g/kg as fed | 145.9 |
aNDFom 3, g/kg as fed | 140.7 |
ADFom 4, g/kg as fed | 44.5 |
Lignin(sa) 5, g/kg as fed | 2.1 |
Gross energy (MJ/kg) | 16.6 |
TN-CON | HT-CON | TN-CON-PF 1 | HT-BET | HT-ZN | SEM | p-Value | |
---|---|---|---|---|---|---|---|
BW | 64.2 | 60.8 | 58.6 | 64.9 | 56.0 | 3.30 | 0.907 |
ME intake | 1786 | 1707 | 1585 | 1715 | 1651 | 56.0 | 0.832 |
HP | 976 | 792 | 830 | 879 | 851 | 30.8 | 0.411 |
RE 2 | 811 | 915 | 755 | 837 | 799 | 35.5 | 0.689 |
CO2 | 49.9 | 38.9 | 42.5 | 43.9 | 41.7 | 1.32 | 0.143 |
O2 | 42.1 | 36.0 | 36.3 | 39.4 | 38.7 | 1.12 | 0.418 |
RQ | 1.19 a | 1.08 b | 1.17 ab | 1.11 ab | 1.08 b | 0.010 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lachica, M.; Pardo, Z.; Lara, L.; Nieto, R.; Fernández-Fígares, I. Heat Production of Iberian Pig Exposed to High Temperature and Effect of Dietary Supplementation with Betaine or Zinc. Animals 2024, 14, 2033. https://doi.org/10.3390/ani14142033
Lachica M, Pardo Z, Lara L, Nieto R, Fernández-Fígares I. Heat Production of Iberian Pig Exposed to High Temperature and Effect of Dietary Supplementation with Betaine or Zinc. Animals. 2024; 14(14):2033. https://doi.org/10.3390/ani14142033
Chicago/Turabian StyleLachica, Manuel, Zaira Pardo, Luis Lara, Rosa Nieto, and Ignacio Fernández-Fígares. 2024. "Heat Production of Iberian Pig Exposed to High Temperature and Effect of Dietary Supplementation with Betaine or Zinc" Animals 14, no. 14: 2033. https://doi.org/10.3390/ani14142033
APA StyleLachica, M., Pardo, Z., Lara, L., Nieto, R., & Fernández-Fígares, I. (2024). Heat Production of Iberian Pig Exposed to High Temperature and Effect of Dietary Supplementation with Betaine or Zinc. Animals, 14(14), 2033. https://doi.org/10.3390/ani14142033