Nutritional Partitioning among Sympatric Ungulates in Eastern Tibet
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Preservation
2.3. Species Identification from Fecal Samples
2.4. Dietary Identification
2.4.1. DNA Extraction
2.4.2. PCR
2.5. Dietary Data Analysis
2.6. Data Statistical Analysis
3. Results
3.1. Spatial Distribution
3.2. Food Composition
3.3. Food Types and Ecological Niche
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scogings, P.F. The ecology of browsing and grazing II. Afr. J. Range Forage Sci. 2020, 37, 197–198. [Google Scholar] [CrossRef]
- Kasahara, M.; Fujii, S.; Tanikawa, T.; Mori, A.S. Ungulates decelerate litter decomposition by altering litter quality above and below ground. Eur. J. For. Res. 2016, 135, 849–856. [Google Scholar] [CrossRef]
- Valente, A.M.; Acevedo, P.; Figueiredo, A.M.; Fonseca, C.; Torres, R.T. Overabundant wild ungulate populations in Europe: Management with consideration of socio-ecological consequences. Mammal Rev. 2020, 50, 353–366. [Google Scholar] [CrossRef]
- Khanyari, M.; Zhumabai Uulu, K.; Luecke, S.; Mishra, C.; Suryawanshi, K.R. Understanding population baselines: Status of mountain ungulate populations in the Central Tien Shan Mountains, Kyrgyzstan. Mammalia 2021, 85, 16–23. [Google Scholar] [CrossRef]
- HilleRisLambers, J.; Adler, P.B.; Harpole, W.S.; Levine, J.M.; Mayfield, M.M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 227–248. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Tucker, C.M. Should environmental filtering be abandoned? Trends. Ecol. Evol. 2017, 32, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Behrenfeld, M.J.; Bisson, K.M. Neutral theory and plankton biodiversity. Annu. Rev. Mar. Sci. 2024, 16, 283–305. [Google Scholar] [CrossRef] [PubMed]
- Sunday, J.M.; Bates, A.E.; Dulvy, N.K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. Ser. B 2011, 278, 1823–1830. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.Z.; Wang, C.J.; Marquet, P.A. Environmental heterogeneity as a driver of terrestrial biodiversity on a global scale. Prog. Phys. Geogr. 2023, 47, 912–930. [Google Scholar] [CrossRef]
- Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 2010, 85, 183–206. [Google Scholar] [CrossRef]
- Namgail, T.; Mishra, C.; De Jong, C.B.; Van Wieren, S.E.; Prins, H.H.T. Effects of herbivore species richness on the niche dynamics and distribution of blue sheep in the Trans-Himalaya. Divers. Distrib. 2009, 15, 940–947. [Google Scholar] [CrossRef]
- Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, N. Comparison of dietary diversity and niche overlap of sympatric sika deer and roe deer based on DNA barcoding in northeast China. Eur. J. Wildl. Res. 2023, 69, 115. [Google Scholar] [CrossRef]
- Vieira, E.M.; Paise, G. Temporal niche overlap among insectivorous small mammals. Integr. Zool. 2011, 6, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Goodyear, S.E.; Pianka, E.R. Spatial and temporal variation in diets of sympatric lizards (genus Ctenotus) in the Great Victoria Desert, Western Australia. J. Herpetol. 2011, 45, 265–271. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Z.; Teng, L. Summer foraging strategy of alpine musk deer (Moschus sifanicus) in the Helan Mountains China. Chin. J. Wildl. 2018, 39, 215–223. [Google Scholar]
- Song, Y.; Gong, H.; Zeng, Z. Summer food habits of serow. Chin. J. Zool. 2005, 40, 50–56. [Google Scholar]
- Li, B.; Lin, G.; XIE, J. Feeding habits of white-lipped deer (Cervus albirostris) in a semi-natural enclosure of Tuole Nanshan. SC. J. Zool. 2014, 33, 840–845. [Google Scholar]
- Zheng, S.; Pi, A. The ecological study of alpine musk deer (Moschus chrysogaster). Curr. Zool. Sin. 1979, 25, 176–186. [Google Scholar]
- Zheng, R.; Bao, Y. Study methods and procedures for ungulate food habits. Acta Ecol. Sin. 2004, 24, 1532–1539. [Google Scholar]
- Yan, L.; Wang, P.; Shi, Q. Applications of animals diet analysis based on DNA metabarcoding in ecological research. Acta Ecol. Sin. 2023, 43, 3007–3019. [Google Scholar]
- Hussain, T.; Ashraf, I.; Ahmed, I.; Ruby, T.; Rafay, M.; Abdullah, M.; Siddiqa, N.; Nawaz, S.; Akhtar, S. Comparison of diet analysis of Eurasian sparrowhawk, Accipiter nisus and black kite, Milvus migrans (Accipitridae: Accipitriformes) from Southern Punjab, Pakistan. Pak. J. Zool. 2016, 48, 789–794. [Google Scholar]
- Salinas-Ramos, V.B.; Herrera Montalvo, L.G.; León-Regagnon, V.; Arrizabalaga-Escudero, A.; Clare, E.L. Dietary overlap and seasonality in three species of mormoopid bats from a tropical dry forest. Mol. Ecol. 2015, 24, 5296–5307. [Google Scholar] [CrossRef] [PubMed]
- Aylward, C.M.; Statham, M.J.; Barthman-Thompson, L.; Kelt, D.A.; Sacks, B.N. Dietary characterization of the endangered salt marsh harvest mouse and sympatric rodents using DNA metabarcoding. Ecol. Evol. 2022, 12, e9121. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, P.; Luan, X.; Jiang, G. Application and comparison of fecal microscopic analysis and DNA metabarcoding technology for dietary analysis of wild boar. Chin. J. Wildl. 2022, 43, 645–653. [Google Scholar]
- Czernik, M.; Taberlet, P.; Świsłocka, M.; Czajkowska, M.; Duda, N.; Ratkiewicz, M. Fast and efficient DNA-based method for winter diet analysis from stools of three cervids: Moose, red deer, and roe deer. Acta Theriol. 2013, 58, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Guha, S.; Kashyap, V.K. Development of novel heminested PCR assays based on mitochondrial 16s rRNA gene for identification of seven pecora species. BMC Genet. 2005, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Bolnick, D.I.; Ingram, T.; Stutz, W.E.; Snowberg, L.K.; Lau, O.L.; Pauli, J.S. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc. R. Soc. Ser. B 2010, 277, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Zhang, S.; He, Z. Preliminary study on the diet of serow (Capricornis sumatraensis) in Gaoligong Mountain. Sci. Technol. Inf. 2008, 32, 59+19. [Google Scholar]
- Pi, N. Observations on the Grazing diet of white-lipped deer (Przewalskium albirostris). Chin. J. Wildl. 1980, 15, 31–34. [Google Scholar]
- Díaz, S.; Lavorel, S.; McIntyre, S.; Falczuk, V.; Casanoves, F.; Milchunas, D.G.; Skarpe, C.; Rusch, G.; Sternberg, M.; Noy-Meir, I.; et al. Plant trait responses to grazing—A globalsSynthesis. Glob. Chang. Biol. 2007, 13, 313–341. [Google Scholar] [CrossRef]
- Van Tran, D.; Terui, S.; Nomoto, K.; Nishikawa, K. Ecological niche differentiation of two salamanders (Caudata: Hynobiidae) from Hokkaido Island, Japan. Ecol. Res. 2021, 36, 281–292. [Google Scholar] [CrossRef]
- Kraft, N.J.B.; Godoy, O.; Levine, J.M. Plant Functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. USA 2015, 112, 797–802. [Google Scholar] [CrossRef] [PubMed]
- White, C.R.; Blackburn, T.M.; Seymour, R.S. Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling. Evolution 2009, 63, 2658–2667. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.B.; Shrestha, B.B.; Thapa, A.; Saud, P.; Jiang, Z. Selection of latrine sites by Himalayan musk deer (Moschus leucogaster) in Neshyang Valley, Annapurna Conservation Area, Nepal. J. Appl. Anim. Res. 2018, 46, 920–926. [Google Scholar] [CrossRef]
- Shi, X.; Li, X.; Wei, C. Avian and mammal diversities and their altitudinal and seasonal distribution patterns in Yarlung Zangbo Grand Canyon, China. Chin. Biodivers. 2023, 31, 64–76. [Google Scholar] [CrossRef]
Name | Alpine Musk Deer | White-Lipped Deer | Red Serow |
---|---|---|---|
Niche breadth | 3.82 ± 0.25 | 4.53 ± 0.46 | 4.20 ± 0.33 |
Shannon index | 2.38 ± 0.09 | 2.62 ± 0.15 | 2.57 ± 0.12 |
Pielou’s evenness | 0.48 ± 0.02 | 0.55 ± 0.03 | 0.54 ± 0.03 |
Simpson index | 0.69 ± 0.02 | 0.71 ± 0.04 | 0.73 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Pei, C.; Zhang, H.; Wang, Y.; Zhang, B.; Hu, D. Nutritional Partitioning among Sympatric Ungulates in Eastern Tibet. Animals 2024, 14, 2205. https://doi.org/10.3390/ani14152205
Luo Z, Pei C, Zhang H, Wang Y, Zhang B, Hu D. Nutritional Partitioning among Sympatric Ungulates in Eastern Tibet. Animals. 2024; 14(15):2205. https://doi.org/10.3390/ani14152205
Chicago/Turabian StyleLuo, Zhengwei, Chao Pei, Haonan Zhang, Yichen Wang, Baofeng Zhang, and Defu Hu. 2024. "Nutritional Partitioning among Sympatric Ungulates in Eastern Tibet" Animals 14, no. 15: 2205. https://doi.org/10.3390/ani14152205
APA StyleLuo, Z., Pei, C., Zhang, H., Wang, Y., Zhang, B., & Hu, D. (2024). Nutritional Partitioning among Sympatric Ungulates in Eastern Tibet. Animals, 14(15), 2205. https://doi.org/10.3390/ani14152205