Environment DNA Reveals Fish Diversity in a Canyon River within the Upper Pearl River Drainage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Region, eDNA Sampling, and Sample Preservation
2.2. DNA Extraction, Amplification, and Sequencing
2.3. Bioinformatics Processing
2.4. Statistical Analyses
3. Results
3.1. Fish Composition
3.2. Alpha and Beta Diversity Analyses
4. Discussion
4.1. Fish Composition and Community
4.2. Effects of Dams on Fish Diversity
4.3. Performance and Limitations of eDNA Technique in a Canyon River
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kegerries, R.; Albrecht, B.; McKinstry, M.C.; Rogers, R.J.; Valdez, R.A.; Barkalow, A.L.; Gilbert, E.I.; Mohn, H.E.; Healy, B.; Smith, E.O. Small-bodied fish surveys demonstrate native fish dominance over 300 kilometers of the Colorado River through Grand Canyon, Arizona. West. N. Am. Nat. 2020, 80, 672–685. [Google Scholar] [CrossRef]
- Minckley, W. Native fishes of the Grand Canyon region: An obituary. Colo. River Ecol. Dam Manag. 1991, 124, 126–177. [Google Scholar]
- Wang, Q. Study on the Impact of Mountain River Habitat on River Biodiversity. Ph.D. Thesis, Chongqing University, Chongqing, China, 2011. [Google Scholar]
- Wyżga, B.; Amirowicz, A.; Radecki-Pawlik, A.; Zawiejska, J. Hydromorphological conditions, potential fish habitats and the fish community in a mountain river subjected to variable human impacts, the Czarny Dunajec, Polish Carpathians. River Res. Appl. 2009, 25, 517–536. [Google Scholar] [CrossRef]
- Yard, M.D.; Coggins, L.G., Jr.; Baxter, C.V.; Bennett, G.E.; Korman, J. Trout Piscivory in the Colorado River, Grand Canyon: Effects of Turbidity, Temperature, and Fish Prey Availability. Trans. Am. Fish. Soc. 2011, 140, 471–486. [Google Scholar] [CrossRef]
- Jager, H.I.; Chandler, J.A.; Lepla, K.B.; Van Winkle, W. A theoretical study of river fragmentation by dams and its effects on white sturgeon populations. Environ. Biol. Fishes 2001, 60, 347–361. [Google Scholar] [CrossRef]
- Bohmann, K.; Evans, A.; Gilbert, M.T.P.; Carvalho, G.R.; Creer, S.; Knapp, M.; Yu, D.W.; de Bruyn, M. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 2014, 29, 358–367. [Google Scholar] [CrossRef] [PubMed]
- He, M. Fish diversity and its influencing factors in the upper and middle reaches of Tingjiang River. Fujian J. Agric. Sci. 2016, 31, 566–574. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, Y.; Zhan, A.; Dong, C.; Zhao, J.; Yao, M. Environmental DNA captures native and non-native fish community variations across the lentic and lotic systems of a megacity. Sci. Adv. 2022, 8, eabk0097. [Google Scholar] [CrossRef]
- Liu, H.; Liu, T. Research on the development plan of Mabie River main stream cascade. Heilongjiang Sci. Technol. Water Conserv. 2013, 41, 156–158. [Google Scholar]
- Barbarossa, V.; Schmitt, R.J.P.; Huijbregts, M.A.J.; Zarfl, C.; King, H.; Schipper, A.M. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl. Acad. Sci. USA 2020, 117, 3648–3655. [Google Scholar] [CrossRef]
- Gehrke, P.C.; Gilligan, D.M.; Barwick, M. Changes in fish communities of the Shoalhaven River 20 years after construction of Tallowa Dam, Australia. River Res. Appl. 2002, 18, 265–286. [Google Scholar] [CrossRef]
- Liu, X.; Olden, J.D.; Wu, R.; Ouyang, S.; Wu, X. Dam Construction Impacts Fish Biodiversity in a Subtropical River Network, China. Diversity 2022, 14, 476. [Google Scholar] [CrossRef]
- Morita, K.; Morita, S.H.; Yamamoto, S. Effects of habitat fragmentation by damming on salmonid fishes: Lessons from white-spotted charr in Japan. Ecol. Res. 2009, 24, 711–722. [Google Scholar] [CrossRef]
- Turgeon, K.; Turpin, C.; Gregory-Eaves, I. Dams have varying impacts on fish communities across latitudes: A quantitative synthesis. Ecol. Lett. 2019, 22, 1501–1516. [Google Scholar] [CrossRef]
- Wang, M.; Yang, R.; Jin, Z.; Wang, Z.; Jin, S.; Luo, S. Research on fish protection strategy of small and medium mountain river in the reaches of water conservancy and hydropower construction: Taking Mabiehe River as an example. Environ. Impact Assess. 2023, 45, 69–76. [Google Scholar] [CrossRef]
- Cheng, R.; Luo, Y.; Li, Q.; Zhang, Y.; Liu, Z.; Chen, Q.; Li, Y.; Shen, Y. Application of eDNA metabarcoding for monitoring the fish diversity of the Jiangjin to Fuling section of the upper reaches of the Yangtze River. Hydrobiologia 2023, 850, 4067–4088. [Google Scholar] [CrossRef]
- Doi, H.; Inui, R.; Akamatsu, Y.; Kanno, K.; Yamanaka, H.; Takahara, T.; Minamoto, T. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 2017, 62, 30–39. [Google Scholar] [CrossRef]
- Evans, N.T.; Li, Y.; Renshaw, M.A.; Olds, B.P.; Deiner, K.; Turner, C.R.; Jerde, C.L.; Lodge, D.M.; Lamberti, G.A.; Pfrender, M.E. Fish community assessment with eDNA metabarcoding: Effects of sampling design and bioinformatic filtering. Can. J. Fish. Aquat. Sci. 2017, 74, 1362–1374. [Google Scholar] [CrossRef]
- Hänfling, B.; Lawson Handley, L.; Read, D.S.; Hahn, C.; Li, J.; Nichols, P.; Blackman, R.C.; Oliver, A.; Winfield, I.J. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 2016, 25, 3101–3119. [Google Scholar] [CrossRef]
- Jiang, P.; Xu, Y.; Zhang, S.; Xu, S.; Cai, Y.; Yang, Y.; Chen, Z.; Li, M. Advancing fish diversity monitor in degraded marine ecosystem with environmental DNA approach: Unveiling hidden riches. Ecol. Indic. 2024, 160, 111893. [Google Scholar] [CrossRef]
- Mauvisseau, Q.; Kalogianni, E.; Zimmerman, B.; Bulling, M.; Brys, R.; Sweet, M. eDNA-based monitoring: Advancement in management and conservation of critically endangered killifish species. Environ. DNA 2020, 2, 601–613. [Google Scholar] [CrossRef]
- Minamoto, T.; Yamanaka, H.; Takahara, T.; Honjo, M.N.; Kawabata, Z. Surveillance of fish species composition using environmental DNA. Limnology 2012, 13, 193–197. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, J.; Yao, M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods Ecol. Evol. 2020, 11, 1609–1625. [Google Scholar] [CrossRef]
- Kumar, G.; Reaume, A.M.; Farrell, E.; Gaither, M.R. Comparing eDNA metabarcoding primers for assessing fish communities in a biodiverse estuary. PLoS ONE 2022, 17, e0266720. [Google Scholar] [CrossRef]
- Taberlet, P.; Bonin, A.; Zinger, L.; Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Sales, N.G.; Pessali, T.C.; Andrade Neto, F.R.; Carvalho, D.C. Introgression from non-native species unveils a hidden threat to the migratory Neotropical fish Prochilodus hartii. Biol. Invasions 2018, 20, 555–566. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Wu, L. Ichthyology of Guizhou; Guizhou People Press: Guiyang, China, 1989. [Google Scholar]
- Shaw, J.L.A.; Clarke, L.J.; Wedderburn, S.D.; Barnes, T.C.; Weyrich, L.S.; Cooper, A. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Conserv. 2016, 197, 131–138. [Google Scholar] [CrossRef]
- Yamamoto, S.; Masuda, R.; Sato, Y.; Sado, T.; Araki, H.; Kondoh, M.; Minamoto, T.; Miya, M. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 2017, 7, 40368. [Google Scholar] [CrossRef]
- Wang, W.; Yang, J.; Chen, X. Current status and conservation strategies of fish germplasm resources of Nanpanjiang River system in Yunna. J. Hydroecology 2011, 32, 19–29. [Google Scholar] [CrossRef]
- Burgoa Cardás, J.; Deconinck, D.; Márquez, I.; Peón Torre, P.; Garcia-Vazquez, E.; Machado-Schiaffino, G. New eDNA based tool applied to the specific detection and monitoring of the endangered European eel. Biol. Conserv. 2020, 250, 108750. [Google Scholar] [CrossRef]
- Strickland, G.J.; Roberts, J.H. Utility of eDNA and occupancy models for monitoring an endangered fish across diverse riverine habitats. Hydrobiologia 2019, 826, 129–144. [Google Scholar] [CrossRef]
- Wood, Z.T.; Erdman, B.F.; York, G.; Trial, J.G.; Kinnison, M.T. Experimental assessment of optimal lotic eDNA sampling and assay multiplexing for a critically endangered fish. Environ. DNA 2020, 2, 407–417. [Google Scholar] [CrossRef]
- Xian, D.; Luo, G.; Luo, S.; Wang, L.; Cui, Y. Current status and sustainable development strategy of sturgeon culture in Guizhou province. Chin. Anim. Husb. Vet. Abstr. 2012, 28, 40+50. [Google Scholar]
- Wan, A.; Zhang, X.; Fang, Y.; Zhong, M.; Li, N.; An, S. Beware of the spread and reproduction of exotic green sunfish in Dabie Mountains. Acta Hydrobiol. Sin. 2015, 39, 685. [Google Scholar]
- Zhang, X.; Wang, H.; Wan, A.; Fang, Y.; Liu, Z.; Zheng, A.; Chen, M.; Yu, D. Fishes in headwater streams of the Pihe River Basin: Spatial distribution pattern and its main influencing factors. J. Lake Sci. 2017, 29, 176–185. [Google Scholar] [CrossRef]
- Dong, C.; Shen, Z.; Wang, H.; Li, G.; Cai, X.; Li, Y. Invasion status, harm, and a prevention-control strategy for exotic freshwater organisms in Hainan Province. J. Hydroecol. 2020, 41, 85–91. [Google Scholar] [CrossRef]
- Fang, M. Preliminary investigation of tilapia in Hua′an reaches of Jiulong River. J. Biosaf. 2015, 24, 201–207. [Google Scholar]
- Gao, J.; Ouyang, X.; Chen, B.; Jourdan, J.; Plath, M. Molecular and morphometric evidence for the widespread introduction of Western mosquitofish Gambusia affinis (Baird and Girard, 1853) into freshwaters of mainland China. BioInvasions Rec. 2017, 6, 281–289. [Google Scholar] [CrossRef]
- Geletu, T.T.; Tang, S.; Xing, Y.; Zhao, J.J.A.L.R. Ecological niche and life-history traits of redbelly tilapia (Coptodon zillii, Gervais 1848) in its native and introduced ranges. Aquat. Living Resour. 2024, 37, 1–11. [Google Scholar] [CrossRef]
- Gu, D.; Jia, T.; Wei, H.; Fang, M.; Yu, F.; Shu, L.; Wang, X.; Li, G.; Cai, X.; Mu, X.; et al. Biotic resistance to fish invasions in southern China: Evidence from biomass, habitat, and fertility limitation. Ecol. Appl. 2024, 33, e2819. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Wang, X. Global distribution, entry routes, mechanisms and consequences of invasive freshwater fish. Biodivers. Sci. 2016, 24, 672–685. [Google Scholar] [CrossRef]
- Wei, H.; Hu, Y.; Li, S.; Chen, F.; Luo, D.; Gu, D.; Xu, M.; Mu, X.; Yang, Y. A review of freshwater fish introductions to the Guangdong province, China. Aquat. Ecosyst. Health Manag. 2019, 22, 396–407. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Y.; Tao, J. Ecological invasion of Gambusia affinis: A review. J. Ecol. 2009, 28, 950–958. [Google Scholar]
- Banks, S.C.; Cary, G.J.; Smith, A.L.; Davies, I.D.; Driscoll, D.A.; Gill, A.M.; Lindenmayer, D.B.; Peakall, R. How does ecological disturbance influence genetic diversity? Trends Ecol. Evol. 2013, 28, 670–679. [Google Scholar] [CrossRef]
- Pimentel, J.d.S.M.; Ludwig, S.; Resende, L.C.; Brandão-Dias, P.F.P.; Pereira, A.H.; de Abreu, N.L.; Rosse, I.C.; Martins, A.P.V.; Facchin, S.; Lopes, J.d.M.; et al. Genetic evaluation of migratory fish: Implications for conservation and stocking programs. Ecol. Evol. 2020, 10, 10314–10324. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Li, W.; Castello, L.; Murphy, B.R.; Xie, S. Potential effects of dam cascade on fish: Lessons from the Yangtze River. Rev. Fish Biol. Fish. 2015, 25, 569–585. [Google Scholar] [CrossRef]
- Jackson, D.C.; Marmulla, G. The influence of dams on river fisheries. FAO Fish. Tech. Pap. 2001, 419, 1–44. [Google Scholar]
- Poff, N.L.; Olden, J.D.; Merritt, D.M.; Pepin, D.M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl. Acad. Sci. USA 2007, 104, 5732–5737. [Google Scholar] [CrossRef]
- Oliveira, A.G.; Baumgartner, M.T.; Gomes, L.C.; Dias, R.M.; Agostinho, A.A. Long-term effects of flow regulation by dams simplify fish functional diversity. Freshw. Biol. 2018, 63, 293–305. [Google Scholar] [CrossRef]
- Roberts, T.R. On the river of no returns: Thailand’s Pak Mun Dam and its fish ladder. Nat. Hist. Bull. Siam Soc. 2001, 49, 189. [Google Scholar]
- Liermann, C.R.; Nilsson, C.; Robertson, J.; Ng, R.Y. Implications of dam obstruction for global freshwater fish diversity. BioScience 2012, 62, 539–548. [Google Scholar] [CrossRef]
- Sansom, B.J.; Sassoubre, L.M. Environmental DNA (eDNA) shedding and decay rates to model freshwater mussel eDNA transport in a river. Environ. Sci. Technol. 2017, 51, 14244–14253. [Google Scholar] [CrossRef]
- Pilliod, D.S.; Goldberg, C.S.; Arkle, R.S.; Waits, L.P. Factors influencing detection of eDNA from a stream-dwelling amphibian. Mol. Ecol. Resour. 2014, 14, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Dejean, T.; Valentini, A.; Duparc, A.; Pellier-Cuit, S.; Pompanon, F.; Taberlet, P.; Miaud, C. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 2011, 6, e23398. [Google Scholar] [CrossRef]
- Stewart, K.A. Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodivers. Conserv. 2019, 28, 983–1001. [Google Scholar] [CrossRef]
- Barnes, M.A.; Chadderton, W.L.; Jerde, C.L.; Mahon, A.R.; Turner, C.R.; Lodge, D.M. Environmental conditions influence eDNA particle size distribution in aquatic systems. Environ. DNA 2021, 3, 643–653. [Google Scholar] [CrossRef]
- Saito, T.; Doi, H. Effect of salinity and water dilution on environmental DNA degradation in freshwater environments. biorxiv 2021. [Google Scholar] [CrossRef]
- Strickler, K.M.; Fremier, A.K.; Goldberg, C.S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 2015, 183, 85–92. [Google Scholar] [CrossRef]
- Alvarez, A.J.; Yumet, G.M.; Santiago, C.L.; Toranzos, G.A. Stability of manipulated plasmid DNA in aquatic environments. Environ. Toxicol. Water Qual. Int. J. 1996, 11, 129–135. [Google Scholar] [CrossRef]
- Zhu, B. Degradation of plasmid and plant DNA in water microcosms monitored by natural transformation and real-time polymerase chain reaction (PCR). Water Res. 2006, 40, 3231–3238. [Google Scholar] [CrossRef]
- Díaz-Ferguson, E.E.; Moyer, G.R. History, applications, methodological issues and perspectives for the use environmental DNA (eDNA) in marine and freshwater environments. Rev. Biol. Trop. 2014, 62, 1273–1284. [Google Scholar] [CrossRef]
- Wei, N.; Nakajima, F.; Tobino, T. Effects of treated sample weight and DNA marker length on sediment eDNA based detection of a benthic invertebrate. Ecol. Indic. 2018, 93, 267–273. [Google Scholar] [CrossRef]
- Nichols, R.V.; Vollmers, C.; Newsom, L.A.; Wang, Y.; Heintzman, P.D.; Leighton, M.; Green, R.E.; Shapiro, B. Minimizing polymerase biases in metabarcoding. Mol. Ecol. Resour. 2018, 18, 927–939. [Google Scholar] [CrossRef]
- Stadhouders, R.; Pas, S.D.; Anber, J.; Voermans, J.; Mes, T.H.; Schutten, M. The effect of primer-template mismatches on the detection and quantification of nucleic acids using the 5′ nuclease assay. J. Mol. Diagn. 2010, 12, 109–117. [Google Scholar] [CrossRef]
- Cannon, M.; Hester, J.; Shalkhauser, A.; Chan, E.R.; Logue, K.; Small, S.T.; Serre, D. In silico assessment of primers for eDNA studies using PrimerTree and application to characterize the biodiversity surrounding the Cuyahoga River. Sci. Rep. 2016, 6, 22908. [Google Scholar] [CrossRef]
- Davy, C.M.; Kidd, A.G.; Wilson, C.C. Development and validation of environmental DNA (eDNA) markers for detection of freshwater turtles. PLoS ONE 2015, 10, e0130965. [Google Scholar] [CrossRef]
- Wilcox, T.M.; McKelvey, K.S.; Young, M.K.; Jane, S.F.; Lowe, W.H.; Whiteley, A.R.; Schwartz, M.K. Robust detection of rare species using environmental DNA: The importance of primer specificity. PLoS ONE 2013, 8, e59520. [Google Scholar] [CrossRef]
- Singer, G.; Fahner, N.; Barnes, J.; McCarthy, A.; Hajibabaei, M. Comprehensive biodiversity analysis via ultra-deep patterned flow cell technology: A case study of eDNA metabarcoding seawater. Sci. Rep. 2019, 9, 5991. [Google Scholar] [CrossRef]
- Keskin, E.; Unal, E.M.; Atar, H.H. Detection of rare and invasive freshwater fish species using eDNA pyrosequencing: Lake Iznik ichthyofauna revised. Biochem. Syst. Ecol. 2016, 67, 29–36. [Google Scholar] [CrossRef]
- Holman, L.E.; Chng, Y.; Rius, M. How does eDNA decay affect metabarcoding experiments? Environ. DNA 2022, 4, 108–116. [Google Scholar] [CrossRef]
- Xia, Z.; Zhan, A.; Gao, Y.; Zhang, L.; Haffner, G.D.; MacIsaac, H.J. Early detection of a highly invasive bivalve based on environmental DNA (eDNA). Biol. Invasions 2018, 20, 437–447. [Google Scholar] [CrossRef]
- Yoshitake, K.; Yoshinaga, T.; Tanaka, C.; Mizusawa, N.; Reza, M.S.; Tsujimoto, A.; Kobayashi, T.; Watabe, S. HaCeD-Seq: A novel method for reliable and easy estimation about the fish population using haplotype count from eDNA. Mar. Biotechnol. 2019, 21, 813–820. [Google Scholar] [CrossRef]
- Bylemans, J.; Gleeson, D.M.; Duncan, R.P.; Hardy, C.M.; Furlan, E.M. A performance evaluation of targeted eDNA and eDNA metabarcoding analyses for freshwater fishes. Environ. DNA 2019, 1, 402–414. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, Y.; Cheng, R.; Wang, W.; Duan, C.; Liu, Z.; Chen, Q.; Li, Y.; Wang, M.; Luo, Y. Diversity and spatiotemporal dynamics of fish communities in the Chongqing section of the upper Yangtze River based on eDNA metabarcoding. Ecol. Evol. 2023, 13, e10681. [Google Scholar] [CrossRef]
- Deiner, K.; Walser, J.-C.; Mächler, E.; Altermatt, F. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol. Conserv. 2015, 183, 53–63. [Google Scholar] [CrossRef]
- Egan, S.P.; Barnes, M.A.; Hwang, C.T.; Mahon, A.R.; Feder, J.L.; Ruggiero, S.T.; Tanner, C.E.; Lodge, D.M. Rapid invasive species detection by combining environmental DNA with light transmission spectroscopy. Conserv. Lett. 2013, 6, 402–409. [Google Scholar] [CrossRef]
- Brannock, P.M.; Halanych, K.M. Meiofaunal community analysis by high-throughput sequencing: Comparison of extraction, quality filtering, and clustering methods. Mar. Genom. 2015, 23, 67–75. [Google Scholar] [CrossRef]
- Renshaw, M.A.; Olds, B.P.; Jerde, C.L.; McVeigh, M.M.; Lodge, D.M. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol–chloroform–isoamyl alcohol DNA extraction. Mol. Ecol. Resour. 2015, 15, 168–176. [Google Scholar] [CrossRef]
- Djurhuus, A.; Port, J.; Closek, C.J.; Yamahara, K.M.; Romero-Maraccini, O.; Walz, K.R.; Goldsmith, D.B.; Michisaki, R.; Breitbart, M.; Boehm, A.B. Evaluation of filtration and DNA extraction methods for environmental DNA biodiversity assessments across multiple trophic levels. Front. Mar. Sci. 2017, 4, 314. [Google Scholar] [CrossRef]
- Majaneva, M.; Diserud, O.H.; Eagle, S.H.; Boström, E.; Hajibabaei, M.; Ekrem, T. Environmental DNA filtration techniques affect recovered biodiversity. Sci. Rep. 2018, 8, 4682. [Google Scholar] [CrossRef] [PubMed]
- Pilliod, D.S.; Goldberg, C.S.; Arkle, R.S.; Waits, L.P. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 2013, 70, 1123–1130. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Miaud, C.; Pompanon, F.; Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 2008, 4, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Valentini, A.; Taberlet, P.; Miaud, C.; Civade, R.; Herder, J.; Thomsen, P.F.; Bellemain, E.; Besnard, A.; Coissac, E.; Boyer, F. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 2016, 25, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, C.S.; Turner, C.R.; Deiner, K.; Klymus, K.E.; Thomsen, P.F.; Murphy, M.A.; Spear, S.F.; McKee, A.; Oyler-McCance, S.J.; Cornman, R.S. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 2016, 7, 1299–1307. [Google Scholar] [CrossRef]
- Hinlo, R.; Gleeson, D.; Lintermans, M.; Furlan, E. Methods to maximise recovery of environmental DNA from water samples. PLoS ONE 2017, 12, e0179251. [Google Scholar] [CrossRef]
- Spens, J.; Evans, A.R.; Halfmaerten, D.; Knudsen, S.W.; Sengupta, M.E.; Mak, S.S.; Sigsgaard, E.E.; Hellström, M. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: Advantage of enclosed filter. Methods Ecol. Evol. 2017, 8, 635–645. [Google Scholar] [CrossRef]
Species | ZCH | WGK | LXK | BX | XTK | XTB | CLHD | LYZ | NXH | MLH | MLB | MJH | MLZ | DXG | ZJD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acipenser baerii | 373 | 0 | 0 | 211 | 536 | 972 | 225 | 482 | 400 | 0 | 1419 | 740 | 146 | 0 | 172 |
Neosalanx taihuensis | 316 | 0 | 223 | 0 | 0 | 353 | 0 | 0 | 604 | 241 | 215 | 574 | 220 | 359 | 385 |
Zacco platypus | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
Opsariichthys uncirostris | 222 | 255 | 0 | 0 | 315 | 290 | 169 | 321 | 0 | 244 | 0 | 0 | 0 | 213 | 193 |
Ctenopharyngodon idella | 6584 | 5215 | 4004 | 2169 | 4060 | 8476 | 2918 | 5246 | 5228 | 5072 | 5506 | 5155 | 3017 | 3979 | 3496 |
Mylopharyngodon piceus | 678 | 402 | 443 | 308 | 316 | 1479 | 878 | 592 | 631 | 759 | 232 | 418 | 394 | 1181 | 786 |
Squaliobarbus curriculus | 1786 | 1849 | 2567 | 2755 | 1146 | 747 | 876 | 3224 | 1722 | 2160 | 1840 | 820 | 1782 | 2318 | 3126 |
Abbottina rivularis | 172 | 99 | 162 | 143 | 100 | 78 | 102 | 85 | 73 | 191 | 216 | 254 | 103 | 85 | 328 |
Pseudorasbora parva | 4040 | 4207 | 2587 | 1584 | 1770 | 4365 | 2215 | 2741 | 2882 | 2481 | 2579 | 2332 | 2742 | 2309 | 3291 |
Hemibagrus macropterus | 0 | 0 | 212 | 0 | 0 | 0 | 238 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Hemibarbus labeo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 228 |
Squalidus argentatus | 2 | 3 | 270 | 54 | 792 | 1180 | 175 | 617 | 852 | 582 | 260 | 815 | 551 | 685 | 821 |
Saurogobio dabryi | 513 | 204 | 367 | 2 | 0 | 427 | 447 | 0 | 0 | 0 | 1 | 0 | 115 | 208 | 1 |
Sarcocheilichthys nigripinnis | 689 | 1515 | 556 | 797 | 1031 | 711 | 1548 | 1112 | 1036 | 1086 | 2175 | 1856 | 290 | 2088 | 834 |
Chanodichthys mongolicus | 244 | 11 | 20 | 183 | 810 | 562 | 430 | 517 | 346 | 592 | 625 | 219 | 553 | 407 | 644 |
Culter alburnus | 86 | 1080 | 1099 | 376 | 751 | 202 | 805 | 263 | 161 | 870 | 745 | 673 | 363 | 593 | 56 |
Hemiculter leucisculus | 29 | 299 | 258 | 447 | 187 | 53 | 497 | 35 | 24 | 29 | 481 | 499 | 39 | 40 | 762 |
Xenocypris microlepis | 6973 | 5117 | 6695 | 5104 | 3426 | 6243 | 5290 | 6769 | 5126 | 6216 | 6398 | 3737 | 6607 | 4194 | 5447 |
Hypophthalmichthys molitrix | 257 | 10 | 0 | 124 | 5 | 521 | 0 | 1 | 2 | 479 | 282 | 269 | 0 | 452 | 0 |
Hypophthalmichthys nobilis | 783 | 217 | 227 | 8 | 728 | 520 | 413 | 7 | 668 | 241 | 41 | 38 | 370 | 21 | 6 |
Cyprinus carpio | 9695 | 9886 | 8380 | 7229 | 10,209 | 11,485 | 9406 | 11,579 | 9746 | 12,477 | 12,308 | 10,508 | 6967 | 12,336 | 15,162 |
Carassius auratus | 16,925 | 21,667 | 18,266 | 12,517 | 18,641 | 20,998 | 15,229 | 17,573 | 16,585 | 18,986 | 17,880 | 14,914 | 16,757 | 16,457 | 13,686 |
Acrossocheilus kreyenbergii | 0 | 121 | 0 | 3 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 179 | 184 | 1 |
Acrossocheilus longipinnis | 0 | 1 | 1 | 7 | 6 | 3 | 4 | 0 | 1 | 1 | 1 | 0 | 2 | 1 | 1 |
Acrossocheilus parallens | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2905 | 0 | 0 | 0 |
Acrossocheilus yunnanensis | 0 | 0 | 0 | 0 | 0 | 0 | 1216 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Spinibarbus sinensis | 1 | 716 | 0 | 1 | 0 | 0 | 242 | 308 | 0 | 0 | 244 | 2 | 166 | 486 | 0 |
Onychostoma gerlachi | 0 | 0 | 1 | 5 | 2 | 1 | 9160 | 1116 | 1 | 1 | 1 | 798 | 709 | 1555 | 1536 |
Percocypris pingi | 0 | 114 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Discogobio tetrabarbatus | 0 | 1 | 1 | 54 | 4 | 3975 | 949 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 2 |
Semilabeo obscurus | 0 | 0 | 0 | 1 | 0 | 281 | 304 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cirrhinus molitorella | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 234 | 1 | 0 | 0 | 0 |
Acanthorhodeus chankaensis | 1666 | 1413 | 1000 | 653 | 794 | 1759 | 2786 | 849 | 1086 | 1888 | 990 | 879 | 877 | 383 | 1222 |
Acheilognathus tonkinensis | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 176 | 0 |
Rhodeus ocellatus | 274 | 53 | 1429 | 466 | 4 | 491 | 2 | 0 | 3 | 2 | 0 | 3 | 5 | 203 | 6 |
Rhodeus sinensis | 2923 | 4583 | 3044 | 1417 | 1503 | 2706 | 2184 | 1861 | 1558 | 2128 | 1343 | 2746 | 2045 | 1640 | 2707 |
Schizothorax lissolabiatus | 165 | 651 | 0 | 197 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 169 | 0 | 203 | 257 |
Schistura fasciolata | 362 | 8 | 0 | 147 | 1 | 139 | 586 | 31 | 244 | 0 | 0 | 0 | 0 | 526 | 0 |
Misgurnus anguillicaudatus | 1279 | 614 | 238 | 0 | 0 | 1 | 150 | 0 | 0 | 0 | 1 | 5753 | 552 | 1 | 438 |
Paramisgurnus dabryanus | 0 | 3 | 0 | 149 | 1 | 259 | 255 | 0 | 0 | 0 | 238 | 0 | 2 | 1 | 428 |
Sinibotia pulchra | 0 | 0 | 65 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sinibotia robusta | 0 | 0 | 0 | 283 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
Clarias gariepinus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 217 |
Silurus asotus | 1004 | 2191 | 1208 | 1336 | 1583 | 625 | 1408 | 1590 | 1236 | 1855 | 1402 | 874 | 725 | 2129 | 1527 |
Pseudobagrus crassilabris | 0 | 0 | 0 | 0 | 230 | 256 | 0 | 0 | 0 | 0 | 224 | 0 | 0 | 0 | 0 |
Hemibarbus maculatus | 1 | 0 | 0 | 145 | 228 | 0 | 677 | 0 | 0 | 0 | 116 | 424 | 0 | 277 | 0 |
Tachysurus fulvidraco | 10,037 | 8990 | 11,189 | 6900 | 9309 | 11,975 | 8444 | 11,300 | 6764 | 8626 | 7763 | 10,899 | 8825 | 8101 | 9917 |
Glyptothorax fukiensis | 0 | 0 | 0 | 204 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pareuchiloglanis longicauda | 0 | 0 | 0 | 246 | 0 | 0 | 595 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ictalurus punctatus | 0 | 0 | 0 | 110 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 435 | 1 | 0 | 0 |
Sinobdella sinensis | 468 | 1044 | 1454 | 315 | 1010 | 839 | 352 | 623 | 659 | 667 | 796 | 878 | 194 | 1130 | 570 |
Gambusia affinis | 234 | 859 | 1038 | 592 | 1149 | 1215 | 1104 | 880 | 886 | 527 | 263 | 544 | 910 | 1423 | 1188 |
Oryzias latipes | 0 | 0 | 232 | 1 | 299 | 1 | 144 | 261 | 550 | 0 | 237 | 0 | 313 | 2 | 196 |
Rhinogobius cliffordpopei | 2028 | 2500 | 2055 | 1054 | 1798 | 1708 | 1915 | 1499 | 1334 | 1217 | 1052 | 2141 | 1021 | 691 | 1467 |
Rhinogobius similis | 1701 | 1547 | 2654 | 2689 | 3428 | 4826 | 2905 | 1341 | 2906 | 2820 | 1808 | 3581 | 2027 | 660 | 3241 |
Anabas testudineus | 62 | 79 | 135 | 63 | 84 | 72 | 53 | 99 | 164 | 57 | 55 | 70 | 74 | 73 | 221 |
Channa maculata | 0 | 0 | 0 | 125 | 0 | 533 | 0 | 0 | 223 | 0 | 0 | 0 | 422 | 148 | 1 |
Coptodon zillii | 708 | 551 | 145 | 11 | 19 | 294 | 1024 | 0 | 308 | 130 | 3292 | 4601 | 204 | 1330 | 241 |
Lepomis cyanellus | 1 | 0 | 1 | 1 | 0 | 4 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Siniperca scherzeri | 434 | 0 | 801 | 241 | 4 | 276 | 1 | 682 | 0 | 223 | 377 | 396 | 810 | 356 | 210 |
Pop | Observed Species | Shannon | Simpson | Pielou_J |
---|---|---|---|---|
ZCH | 37 | 2.5860 | 0.8864 | 0.7162 |
WGK | 37 | 2.5413 | 0.8743 | 0.7038 |
LXK | 37 | 2.5765 | 0.8810 | 0.7135 |
BX | 47 | 2.6009 | 0.8820 | 0.6755 |
XTK | 37 | 2.4912 | 0.8639 | 0.6899 |
XTB | 44 | 2.6745 | 0.8924 | 0.7068 |
CLHD | 44 | 2.8479 | 0.9095 | 0.7526 |
LYZ | 33 | 2.4893 | 0.8748 | 0.7119 |
NXH | 34 | 2.5520 | 0.8777 | 0.7237 |
MLH | 32 | 2.4693 | 0.8698 | 0.7125 |
MLB | 43 | 2.5951 | 0.8816 | 0.6900 |
MJH | 38 | 2.8040 | 0.9112 | 0.7708 |
MLZ | 38 | 2.5445 | 0.8699 | 0.6995 |
DXG | 44 | 2.6849 | 0.8851 | 0.7095 |
ZJD | 43 | 2.6690 | 0.8916 | 0.7096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.; Wang, M.; Ma, W.; Gu, D.; Jin, Z.; Yang, R.; Qian, Z.; Song, C.; Wang, Z.; Jin, S. Environment DNA Reveals Fish Diversity in a Canyon River within the Upper Pearl River Drainage. Animals 2024, 14, 2433. https://doi.org/10.3390/ani14162433
Luo S, Wang M, Ma W, Gu D, Jin Z, Yang R, Qian Z, Song C, Wang Z, Jin S. Environment DNA Reveals Fish Diversity in a Canyon River within the Upper Pearl River Drainage. Animals. 2024; 14(16):2433. https://doi.org/10.3390/ani14162433
Chicago/Turabian StyleLuo, Si, Meng Wang, Weizhong Ma, Dangen Gu, Zhijun Jin, Ruiqi Yang, Zhen Qian, Chengwen Song, Zexin Wang, and Shiyu Jin. 2024. "Environment DNA Reveals Fish Diversity in a Canyon River within the Upper Pearl River Drainage" Animals 14, no. 16: 2433. https://doi.org/10.3390/ani14162433
APA StyleLuo, S., Wang, M., Ma, W., Gu, D., Jin, Z., Yang, R., Qian, Z., Song, C., Wang, Z., & Jin, S. (2024). Environment DNA Reveals Fish Diversity in a Canyon River within the Upper Pearl River Drainage. Animals, 14(16), 2433. https://doi.org/10.3390/ani14162433