Clinical Modalities for Enhancing Reproductive Efficiency in Buffaloes: A Review and Practical Aspects for Veterinary Practitioners
Abstract
:Simple Summary
Abstract
1. Introduction
2. ART Technologies Applied to Buffalo Reproduction
2.1. ES Protocols for Buffaloes
2.1.1. Ovsynch Protocol
2.1.2. Prostaglandins
2.1.3. Progesterone
Name of Synchronization Protocol | Protocol | Estrous Induction Rate | Fertility Rate | Bibliography |
---|---|---|---|---|
Ovsynch | Day 0 GnRH Day 7 PGF2α Day 9 GnRH Day 10 AI | 60% of acyclic buffaloes 81% of cyclic buffaloes, 75.8% | 20% 20–40%, 18%, 35.8% | [34,35,39] |
Insulin Ovsynch protocol | Day 0 GnRH Day 7 PGF2α Day 9 Insulin Day 10 AI | 81.9% | 66.66%, 40% | [31,39] |
Double Ovsynch protocol | Day 0 GnRH Day 7 PGF2α Day 9 GnRH Day 16 PGF2α Day 18 GnRH Day 19 AI | 88.3% | 44.4% | [38] |
Mifepristone Ovsynch protocol | Day 0 GnRH Day 7 PGF2α Day 9 GnRH and mifepristone Day 10 AI | 86.1%, 82.4% | 45.4% | [40] |
Progesterone protocols | Day 0–Day 15 PRID | 78% | 60% | [56,57] |
Prostaglandins protocol | Day 0 PGF2α Day 11 PGF2α 50–96 h AI | 60% breeding season 86.6% breeding season | 47.8–53% | [49,50] |
Heatsynch protocol | Day 0 GnRH Day 7 PGF2α Day 9 Estradiol Day 10 AI | 80% | 62% | [41] |
Estradoublesynch protocol | Day 0 PGF2α Day 2 GnRH Day 9 PGF2α Day 11 Estradiol Day 12 AI | 85% | 64% | [42,43] |
2.2. Artificial Insemination
3. Hormonal Interventions and Protocols for Optimal Ovulation and Conception
4. Optimizing the Interval to AI and Fertility in Buffalo Herds: Diagnosis and Treatment of Common Functional and Inflammatory Pathologies Affecting the Reproductive System
4.1. Anestrus
4.2. Ovarian Cysts
4.3. Metritis and Endometritis
4.4. Retention of the Placenta
4.5. Repeat Breeding
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marai, I.F.M.; Haeeb, A.A.M. Buffalo’s biological functions as affected by heat stress—A review. Livest. Sci. 2010, 127, 89–109. [Google Scholar] [CrossRef]
- Nanda, A.S.; Brar, P.S.; Prabhakar, S. Enhancing reproductive performance in dairy buffalo: Major constraints and achievements. Reprod. Suppl. 2003, 61, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Warriach, H.M.; McGill, D.M.; Bush, R.D.; Wynn, P.C.; Chohan, K.R. A review of recent developments in buffalo reproduction—A review. Asian-Australas. J. Anim. Sci. 2015, 28, 451–455. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gill, R.S.; Gangwar, P.C.; Kooner, D.S. Studies on oestrous behaviour of buffaloes. Indian J. Anim. Sci. 1973, 43, 472–475. [Google Scholar] [PubMed]
- Roy, K.S.; Prakash, B.S. Plasma progesterone, oestradiol-17β and total oestrogen profiles in relation to oestrous behaviour during induced ovulation in Murrah buffalo heifers. J. Anim. Physiol. Anim. Nutr. 2009, 93, 486–495. [Google Scholar] [CrossRef]
- Ciornei, S.G.; Rosca, P. Upgrading the fixed-time artificial insemination (FTAI) protocol in Romanian bualoes. Front. Vet. Sci. 2023, 10, 1265060. [Google Scholar] [CrossRef]
- Marin, D.F.D.; de Souza, E.B.; de Brito, V.C.; Nascimento, C.V.; Ramos, A.S.; Filho, S.T.R.; da Costa, N.N.; Cordeiro, M.D.S.; Santos, S.D.S.D.; Ohashi, O.M. In vitro embryo production in buffaloes: From the laboratory to the farm. Anim. Reprod. 2019, 16, 260–266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Galli, C.; Duchi, R.; Colleoni, S.; Lagutina, I.; Lazzari, G. Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo and horses: From the research laboratory to clinical practice. Theriogenology 2014, 81, 138–151. [Google Scholar] [CrossRef]
- Yang, C.Y.; Pang, C.Y.; Yang, B.Z.; Li, R.C.; Lu, Y.Q.; Liang, X.W. Optimization of cryopreservation of buffalo (Bubalus bubalis) blastocysts produced by in vitro fertilization and somatic cell nuclear transfer. Theriogenology 2012, 78, 1437–1445. [Google Scholar] [CrossRef]
- Yang, B.Z.; Yang, C.Y.; Li, R.C.; Qin, G.S.; Zhang, X.F.; Pang, C.Y.; Chen, M.T.; Huang, F.X.; Li, Z.; Zheng, H.Y.; et al. An inter-subspecies cloned buffalo (Bubalus bubalis) obtained by transferring of cryopreserved embryos via somatic cell nuclear transfer. Reprod. Domest. Anim. 2010, 45, e21–e25. [Google Scholar] [CrossRef] [PubMed]
- Chohan, K.R. Estrus synchronization with lower dose of PGF2α and subsequent fertility in subestrous buffalo. Theriogenology 1998, 50, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Abulaiti, A.; Naseer, Z.; Ahmed, Z.; Wang, D.; Hua, G.; Yang, L. Effect of Different Synchronization Regimens on Reproductive Variables of Crossbred (Swamp × Riverine) Nulliparous and Multiparous Buffaloes during Peak and Low Breeding Seasons. Animals 2022, 12, 415. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Rensis, F.; López-Gatius, F. Protocols for synchronizing estrus and ovulation in buffalo (Bubalus bubalis): A review. Theriogenology 2007, 67, 209–216. [Google Scholar] [CrossRef]
- Barile, V.L.; Terzano, G.M.; Pacelli, C.; Todini, L.; Malfatti, A.; Barbato, O. LH peak and ovulation after two different estrus synchronization treatments in buffalo cows in the daylight-lengthening period. Theriogenology 2015, 84, 286–293. [Google Scholar] [CrossRef]
- Roelofs, J.B.; van Eerdenburg, F.J.C.M.; Soede, N.M.; Kemp, B. Various behavioural signs of estrus and their relationship with time of ovulation in dairy cattle. Theriogenology 2005, 63, 1366–1377. [Google Scholar] [CrossRef] [PubMed]
- Saumande, J.; Humblot, P. The variability in the interval between estrus and ovulation in cattle and its determinants. Anim. Reprod. Sci. 2005, 85, 171–182. [Google Scholar] [CrossRef]
- Abdulkareem, T.A.; Eidan, S.M.; Al-Sharifi, S.A.; Al-Mousawi SM, A.; Dhaydan, M.N. Effect of hCG hormone administration on estrus induction and reproductive performance of anestrus Iraqi buffaloes (Bubalus bubalis). Buffalo Bull. 2021, 40, 499–502. Available online: https://kuojs.lib.ku.ac.th/index.php/BufBu/article/view/2377 (accessed on 17 June 2024).
- Pandey, A.K.; Ghuman, S.; Dhaliwal, G.S.; Agarwal, S.K.; Phogat, J.B. Impact of Buserelin Acetate or hCG Administration on the Day of First Artificial Insemination on Subsequent Luteal Profile and Conception Rate in Murrah Buffalo (Bubalus bubalis). Reprod. Domest. Anim. 2016, 51, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Purohit, G.N. Ovarian and oviductal pathologies in the buffalo: Occurrence, diagnostic and therapeutic approaches. Asian Pac. J. Reprod. 2014, 3, 156–168. [Google Scholar] [CrossRef]
- Nam, N.; Aiumlamai, S. Repoductive disorders in the water buffalo. J. Sci. Dev. 2010, 8, 253–258. [Google Scholar]
- Saxena, G.; Rani, S.; Danodia, H.K.; Purohit, G.N. Pathological conditions in genital tract of female buffaloes (Bubalus bubalis). Pak. Vet. J. 2006, 26, 91–93. [Google Scholar]
- Harun-Or-Rashid, M.; Sarkar, A.K.; Hasan, M.M.I.; Hasan, M.; Juyena, N.S. Productive, reproductive, and estrus characteristics of different breeds of buffalo cows in Bangladesh. J. Adv. Vet. Anim. Res. 2019, 6, 553–560. [Google Scholar] [CrossRef]
- Hamouda, M.; Saber, A.; Al-Shabebi, A. Incidence of infertility in female buffaloes due to some reproductive disorders. Adv. Anim. Vet. Sci. 2020, 8, 1188–1193. [Google Scholar] [CrossRef]
- Oswin Perera, B.M. Reproduction in water buffalo: Comparative aspects and implications for management. J. Reprod. Fertil. Suppl. 1999, 54, 157–168. [Google Scholar] [PubMed]
- Singh, I.; Balhara, A.K. New approaches in buffalo artificial insemination programs with special reference to India. Theriogenology 2016, 86, 194–199. [Google Scholar] [CrossRef]
- Campanile, G.; Baruselli, P.S.; Neglia, G.; Vecchio, D.; Gasparrini, B.; Gimenes, L.U.; Zicarelli, L.; D’Occhio, M.J. Ovarian function in the buffalo and implications for embryo development and assisted reproduction. Anim. Reprod. Sci. 2010, 121, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Longobardi, V.; Zullo, G.; Salzano, A.; De Canditiis, C.; Cammarano, A.; De Luise, L.; Puzio, M.V.; Neglia, G.; Gasparrini, B. Resveratrol prevents capacitation-like changes and improves in vitro fertilizing capability of buffalo frozen-thawed sperm. Theriogenology 2017, 88, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zullo, G.; Albero, G.; Neglia, G.; De Canditiis, C.; Bifulco, G.; Campanile, G.; Gasparrini, B. L-Ergothioneine supplementation during culture improves quality of bovine in vitro produced embryos. Theriogenology 2016, 85, 688–697. [Google Scholar] [CrossRef]
- Purohit Govind, N.T.; Pankaj, P.; Munesh, G.; Mitesh, S.; Chandra, A.; Atul, P.; Surya, G.; Trilok, A.; Shanker, A.; Surya, P. Estrus synchronization in buffaloes: Prospects, approaches and limitations. Pharma Innov. J. 2019, 8, 54–62. [Google Scholar] [CrossRef]
- Perera, B.M. Reproductive cycles of buffalo. Anim. Reprod. Sci. 2011, 124, 194–199. [Google Scholar] [CrossRef]
- Gupta, K.K.; Shukla, S.N.; Inwati, P.; Shrivastava, O.P. Fertility response in postpartum anoestrus buffaloes (Bubalus bubalis) using modified Ovsynch based timed insemination protocols. Vet. World 2015, 8, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Devkota, B.; Shah, S.; Gautam, G. Reproduction and Fertility of Buffaloes in Nepal. Animals 2023, 13, 70. [Google Scholar] [CrossRef]
- Karen, A.M.; Darwish, S.A. Efficacy of Ovsynch protocol in cyclic and acyclic Egyptian buffaloes in summer. J. Anim. Reprod. Sci. 2010, 119, 17–23. [Google Scholar] [CrossRef]
- Derar, R.; Hussein, H.A.; Fahmy, S.; El-Sherry, T.M.; Megahed, G. Ovarian response and progesterone profile during the Ovsynch protocol in buffalo heifers and post-partum buffalo-cows (Bubalus bubalis). Buff. Bull. 2012, 31, 52–60. [Google Scholar]
- Kumar, P.R.; Shukla, S.N.; Shrivastava, O.P.; Mishra, A.; Purkayastha, R.D. Therapeutic management of true anoestrus in dairy Buffaloes (Bubalus bubalis) using PMSG with metabolic Hormone. Vet. Pract. 2013, 14, 323–324. [Google Scholar]
- Presicce, G.A.; Vistocco, D.; Capuano, M.; Navas, L.; Salzano, A.; Bifulco, G.; Campanile, G.; Neglia, G. Pregnancies following Protocols for Repetitive Synchronization of Ovulation in Primiparous Buffaloes in Different Seasons. Vet. Sci. 2022, 9, 616. [Google Scholar] [CrossRef]
- Renesis, F.D.; Ronchi, G.; Guarneri, P.; Nguyen, B.X.; Presicce, G.A.; Huszenicza, G.; Scaramuzzi, R.J. Efficacy of the Ovsynch protocol for synchronization of ovulation and fixed time artificial insemination in Murrah buffaloes (Bubalus bubalis). Theriogenology 2005, 63, 1824–1831. [Google Scholar]
- Hoque, M.D.; Nazmul, T.; Anup, K.; Akter, M.; Shamsuddin, M. Evaluation of ovsynch protocols for timed artificial insemination in water buffaloes in Bangladesh. Turk. J. Vet. Anim. Sci. 2014, 38, 418–424. [Google Scholar] [CrossRef]
- Pandey, A.K.; Gunwant, P.; Soni, N.; Kavita Kumar, S.; Kumar, A.; Magotra, A.; Singh, I.; Phogat, J.B.; Sharma, R.K.; Bangar, Y.; et al. Genotype of MTNR1A gene regulates the conception rate following melatonin treatment in water buffalo. Theriogenology 2019, 128, 1–7. [Google Scholar] [CrossRef]
- Abulaiti, A.; El-Qaliouby, H.S.; El Bahgy, H.E.K.; Naseer, Z.; Ahmed, Z.; Hua, G.; Yang, L. GPGMH, a New Fixed Timed-AI Synchronization Regimen for Swamp and River Crossbred Buffaloes (Bubalus bubalis). Front. Vet. Sci. 2021, 8, 646247. [Google Scholar] [CrossRef]
- Karuppanasamy, K.; Sharma, R.K.; Phulia, S.K.; Jerome, A.; Kavya, K.M.; Ghuman SP, S.; Krishnaswamy, N. Ovulatory and fertility response using modified Heatsynch and Ovsynch protocols in the anovular Murrah buffalo (Bubalus bubalis). Theriogenology 2017, 95, 83–88. [Google Scholar] [CrossRef]
- Mirmahmoudi, R.; Souri, M.; Prakash, B.S. Comparison of endocrine changes, timing of 335 ovulations, ovarian follicular growth, and efficacy associated with Estradoublesynch and 336 Heatsynch protocols in Murrah buffalo cows (Bubalus bubalis). Theriogenology 2014, 82, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Nan, L.; Sabek, A.; Wang, H.; Luo, X.; Hua, G.; Zhang, S. Evaluation of Ovsynch versus modified Ovsynch program on pregnancy rate in water buffaloes: A meta-analysis. Trop. Anim. Health Prod. 2021, 53, 397. [Google Scholar] [CrossRef] [PubMed]
- Markandeya, N.M.; Bharkad, G.P. Effect of cloprostenol on conception rate during spring in suboestrus murrah buffaloes. Indian Vet. J. 2002, 79, 1205–1206. [Google Scholar]
- Michael, J.D.; Ghuman, S.S.; Neglia, G.; Della Valle, G.; Baruselli, P.S.; Zicarelli, L.; Visintin, J.A.; Sarkar, M.; Campanile, G. Exogenous and endogenous factors in seasonality of reproduction in buffalo: A review. Theriogenology 2020, 150, 186–192. [Google Scholar]
- Brito, L.F.; Satrapa, R.; Marson, E.P.; Kastelic, J.P. Efficacy of PGF (2alpha) to synchronize estrus in water buffalo cows (Bubalus bubalis) is dependent upon plasma progesterone concentration, corpus luteum size and ovarian follicular status before treatment. Anim. Reprod. Sci. 2002, 73, 23–35. [Google Scholar] [CrossRef]
- Samir, H.; El-Sherbiny, H.R.; Ahmed, A.E.; Ahmad Sindi, R.; Al Syaad, K.M.; Abdelnaby, E.A. Administration of Estradiol Benzoate Enhances Ovarian and Uterine Hemodynamics in Postpartum Dairy Buffaloes. Animals 2023, 13, 2340. [Google Scholar] [CrossRef]
- Baruselli, P.S.; Soares, J.G.; Gimenes, L.U.; Monteiro, B.M.; Olazarri, M.J. Control of buffalo dynamics for artificial insemination, superovulation and in vitro embryo production. Buffalo Bull. 2013, 32, 160–176. [Google Scholar]
- Hussein, H.A.; Abdel-Raheem, S.M. Effect of feed intake restriction on reproductive performance and pregnancy rate in Egyptian buffalo heifers. Trop. Anim. Health Prod. 2013, 45, 1001–1006. [Google Scholar] [CrossRef]
- Honparkhe, M.; Singh, J.; Dadarwal, D. Estrus induction and fertility rates in response to exogenous hormonal administration in postpartum anestrus and subestrus bovines and buffaloes. J. Vet. Med. Sci. 2008, 70, 1327–1331. [Google Scholar] [CrossRef]
- Totewad, G.D.; Dhoble, R.L.; Sawale, A.G.; Naik, P.M.; Ambore, P.M. Induction of estrus using cloprostenol by intra vulvo-submucosal route in sub estrus buffalo. Vet. World 2009, 2, 381–382. [Google Scholar]
- Hussain, P.M.; Honnappa, T.G. Synchronization of estrus in bovines. Indian J. Anim. Reprod. 2008, 29, 58–61. [Google Scholar]
- Suadsong, S. Control of estrus and ovulation in cows. Thai. J. Vet. Med. 2011, 41, 95–98. [Google Scholar]
- Goodman, R.L.; Herbison, A.E.; Lehman, M.N.; Navarro, V.M. Neuroendocrine control of gonadotropin-releasing hormone: Pulsatile and surge modes of secretion. J. Neuroendocrinol. 2022, 34, e13094. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghuman, S.; Honparkhe, M.; Singh, J. Comparison of ovsynch and progesterone-based protocol for induction of synchronized ovulation and conception rate in subestrous buffalo during low-breeding season. Iran. J. Vet. Res. 2014, 15, 375–378. [Google Scholar] [PubMed] [PubMed Central]
- Singh, J.; Ghuman, S.P.S.; Honparkhe, M.; Singh, N. Investigations on dominant follicle development, estrus response, ovulation time and fertility in PRID-treated anestrous buffalo heifers. Indian J. Anim. Sci. 2009, 79, 773–777. [Google Scholar]
- Neglia, G.; de Nicola, D.; Esposito, L.; Salzano, A.; D’Occhio, M.J.; Fatone, G. Reproductive management in buffalo by artificial insemination. Theriogenology 2020, 150, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Salzano, A.; Licitra, F.; D’Onofrio, N.; Balestrieri, M.L.; Limone, A.; Campanile, G.; D’Occhio, M.J.; Neglia, G. Space allocation in intensive Mediterranean buffalo production influences the profile of functional biomolecules in milk and dairy products. J. Dairy Sci. 2019, 102, 7717–7722. [Google Scholar] [CrossRef]
- Baruselli, P.S.; de Carvalho, N.A.T.; Gasparrini, B.; Campanile, G.; D’Occhio, M.J. Review: Development, adoption, and impact of assisted reproduction in domestic buffaloes. Animal 2023, 17 (Suppl. S1), 100764. [Google Scholar] [CrossRef] [PubMed]
- Rossi, P.; Vecchio, D.; Neglia, G.; Di Palo, R.; Gasparrini, B.; D’Occhio, M.J.; Campanile, G. Seasonal fluctuations in the response of Italian Mediterranean buffaloes to synchronization of ovulation and timed artificial insemination. Theriogenology 2014, 82, 132–137. [Google Scholar] [CrossRef]
- Neglia, G.; Capuano, M.; Balestrieri, A.; Cimmino, R.; Iannaccone, F.; Palumbo, F.; Presicce, G.A.; Campanile, G. Effect of consecutive re-synchronization protocols for ovulation on pregnancy rate in buffalo (Bubalus bubalis) heifers out of the breeding season. Theriogenology 2018, 113, 120–126. [Google Scholar] [CrossRef]
- Uddin, A.H.M.M.; Petrovski, K.R.; Song, Y.; Garg, S.; Kirkwood, R.N. Application of Exogenous GnRH in Food Animal Production. Animals 2023, 13, 1891. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carvalho, N.; Nagasaku, E.; Vannucci, F.; Toledo, L.; Baruselli, P.S. Ovulation and conception rates according intravaginal progesterone device and hCG or GnRH to induce ovulation in buffalo during the off breeding season. Ital. J. Anim. Sci. 2007, 6, 646–648. [Google Scholar] [CrossRef]
- Monteiro, B.M.; De Souza, D.C.; Vasconcellos, G.S.F.M.; Corrêa, T.B.; Vecchio, D.; De Sá Filho, M.F.; De Carvalho, N.a.T.; Baruselli, P.S. Ovarian responses of dairy buffalo cows to timed artificial insemination protocol, using new or used progesterone devices, during the breeding season (autumn–winter). Anim. Sci. J. 2016, 87, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Chishti, G.A.; Mehmood, M.U.; Jamal, M.A.; Mehmood, K.; Shahzad, M.; Tahir, M.Z. The effect of GnRH administration/insemination time on follicular growth rate, ovulation intervals, and conception rate of Nili Ravi buffalo heifers in 7–day-CIDR Co-synch. Trop. Anim. Health Prod. 2021, 53, 558. [Google Scholar] [CrossRef] [PubMed]
- Haider, M.; Hassan, M.; Khan, A.; Husnain, A.; Bilal, M.; Pursley, J.; Ahmad, N. Effect of timing of insemination after CIDR removal with or without GnRH on pregnancy rates in Nili-Ravi buffalo. Anim. Reprod. Sci. 2015, 163, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, N.A.T.; Nichi, M.; Henriquez, C.E.P.; Oliveira, C.A.; Baruselli, P.S. Use of Human Chorionic Gonadotropin (hCG) for fixed-time artificial insemination in buffalo (Bubalus bubalis). Anim. Reprod. 2007, 4, 98–102. [Google Scholar]
- Butani, M.G.; Dhami, A.J.; Shah, R.G.; Sarvaiya, N.P.; Killedar, A. Management of repeat breeding in buffaloes under field conditions using hormonal and antibacterial therapies. Buffalo Bull. 2016, 35, 83–92. [Google Scholar]
- Sah, S.K.; Nakao, T. A Clinical Study of Anestrus Buffaloes in Southern Nepal. J. Reprod. Dev. 2010, 56, 208–211. [Google Scholar] [CrossRef]
- Devkota, B.; Nakao, T.; Kobayashi, K.; Sato, H.; Sah, S.K.; Singh, D.K.; Dhakal, I.P.; Yamagishi, N. Effects of treatment for anestrus in water buffaloes with PGF2α and GnRH in comparison with vitamin-mineral supplement, and some factors influencing treatment effects. J. Vet. Med. Sci. 2013, 75, 1623–1627. [Google Scholar] [CrossRef]
- McDougall, S. Effects of treatment of anestrus dairy cows with gonadotropin-releasing hormone, prostaglandin, and progesterone. J. Dairy Sci. 2010, 93, 1944–1959. [Google Scholar] [CrossRef]
- Purkayastha, R.D.; Shukla, S.N.; Shrivastava, O.P.; Kumar, P.R. A comparative therapeutic management of anoestrus in buffaloes using insulin and GnRH. Vet. World 2015, 8, 804–807. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghuman, S.P.S.; Singh, J.; Honparkhe, M.; Dadarwal, D.; Dhliwal, G.S.; Singh, S.T. Fate of dominant follicle in summer anoestrus buffaloes. Indian J. Anim. Reprod. 2010, 31, 7–10. [Google Scholar]
- Puranik, P.; Sadasiva Rao, K.; Solmon Raju, K.G. Effect of GnRH, PMSG and Placentrax on reproductive performance of post partum true anoestrus in Murrah buffaloes. Indian J. Anim. Res. 2010, 44, 201–204. [Google Scholar]
- El-Wishy, A.B. The postpartum buffalo. II. Acyclicity and anestrus. Anim. Reprod. Sci. 2007, 97, 216–236. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Thakur, M.S.; Agrawal, R.G.; Quadri, M.A.; Shukla, S.N. Effect of pretreatment with Insulin on ovarian and fertility response in true anoestrus buffaloes to Gonadotrophin-Releasing hormone. Buffalo Bull. 2010, 29, 172–179. [Google Scholar]
- Kezele, P.R.; Nilson, E.E.; Skinner, M.K. Insulin but not insulin like growth factors-1 promotes the primordial to primary follicle transition. Mol. Cell Endocrinol. 2002, 198, 37–43. [Google Scholar] [CrossRef]
- El-Wishy, A.B. The postpartum buffalo: I. Endocrinology, uterine involution and ovarian activity. Anim. Reprod. Sci. 2007, 97, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Baruselli, P.S.; Reis, E.L.; Marques, M.O.; Nasser, L.F.T.; Bó, G.A. The use of hormonal treatments to improve reproductive performance of anestrous beef cattle in tropical climates. Anim. Reprod. Sci. 2004, 82, 479–486. [Google Scholar] [CrossRef]
- Mittal, D.; Garg, U.K.; Jatav, G.P.; Shukla, S.; Sharda, R. Prevalence of different pathological affections of ovaries in buffaloes (Bubalus bubalis) in Malwa region of Madhya Pradesh. Buffalo Bull. 2010, 29, 39–42. [Google Scholar]
- Ali, A.; Kahriman, M. Ovarian cysts in buffaloes: Epidemiology, clinical signs, and treatment. Trop. Anim. Health Prod. 2014, 46, 45–54. [Google Scholar]
- Noseir, W.M.B.; Sosa, G.A.M. Treatment of Ovarian Cysts in Buffaloes with Emphasis to Echotexture Analysis. J. Dairy Vet. Anim. Res. 2015, 2, 00030. [Google Scholar] [CrossRef]
- Khan, M.Z.; Khan, M.A. Reproductive disorders in buffaloes with a focus on ovarian cysts. Buffalo Bull. 2018, 37, 303–311. [Google Scholar]
- AL-Jabri, K.M.S.; Al-Jubouri, A.A.K.; AL-Hamary, A.K.; Jasim, H.M. Relationship between hormonal change and ovarian cyst in buffalo. J. Pharm. Sci. Res. 2019, 11, 2042–2047. [Google Scholar]
- Azawi, O.I.; Omran, S.N.; Hadad, J.J. A study on postpartum metritis in Iraqi buffalo cows: Bacterial causes and treatment. Reprod. Domest. Anim. 2008, 43, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, E.; Lassa, H.; Markiewicz, H.; Kaptur, M.; Nadolny, M.; Niewitecki, W.; Ziętara, J. Sensitivity to antibiotics of Arcanobacterium pyogenes and Escherichia coli from the uteri of cows with metritis/endometritis. Vet. J. 2011, 187, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Azawi, O.I. Pathogenesis of Postpartum Metritis in Buffaloes: A Review; International Buffalo Information Centre, Office of The University Library, Kasetsart University: Bangkok, Thailand, 2013. [Google Scholar]
- Azawi, O.I.; Omran, S.N.; Hadad, J.J. A study of endometritis causing repeat breeding of cycling iraqi buffalo cows. Reprod. Domest. Anim. 2008, 43, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Upadhayay, S.; Bhordia, A.; Singh, A.; Kumar, A. Clinical Intervention of Puerperal Metritis in Indian Water Buffaloes (Bubalus bubalis) in Meerut, Uttar Pradesh. Int. J. Appl. Res. Vet. Med. 2021, 19, 33–38. [Google Scholar]
- Babji, B.R.; GAbhinav Kumar Reddy GAmbica Ranjith Kumar, S. Therapeutic Management of Endometritis in a Buffalo: A Case Report. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 2292–2297. [Google Scholar] [CrossRef]
- Oresnik, A. Effect of health and reproductive disorders on milk yield and fertility in dairy cow. Bov. Prod. 1995, 29, 43–45. [Google Scholar] [CrossRef]
- Kunbhar, H.K.; lah Memon, A.U. Incidence of Placental Retention in Kundhi Buffalo around Tandojam, Pakistan. Pak. J. Life Soc. Sci. 2011, 9, 21–23. [Google Scholar]
- Afridi, G.S.; Ishaque, M.; Ahmed, S. Estimation of costs and returns factors productivity in livestock enterprise inNorthern areas of Pakistan. Pak. J. Life Soc. Sci. 2009, 7, 43–51. [Google Scholar]
- Channa, A.A.; Kunbhar, H.K.; Samo, M.U.; Mirbahar, K.B.; Kaka, I. Treatment of retention of placenta and its effect on subsequent fertility rate in buffaloes. Pak. J Agric. Agric. Eng. Vet. Sci. 2006, 22, 40–43. [Google Scholar]
- Dabas, V.S.; Chaudhari, C.F.; Chaudhari, N.F.; Modi, L.C. Retained placenta and its management in buffaloes. Indian Buffalo J. 2011, 9, 36–37. [Google Scholar]
- Saraswat, C.S.; Purohit, G.N. Repeat breeding: Incidence, risk factors and diagnosis in buffaloes. Asian Pac. J. Reprod. 2016, 5, 87–95. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, D.; Roy, B. Studies on repeat breeding of buffaloes. Buffalo Bull. 2011, 30, 177–187. [Google Scholar]
- Kumar, R.; Singh, R. Incidence of repeat breeding in buffaloes under rural conditions. Indian J. Anim. Sci. 2009, 79, 442–444. [Google Scholar]
- Ghulam, M.; Sahar, R.; Aayesha, A.; Heresh, J.; Xiang, H. Prevalence of repeat breeding in buffalo and its effective possible future strategies. Pak. J. Sci. 2019, 71, 213–216. [Google Scholar] [CrossRef]
- Modi, L.C.; Patel, P.A.; Patel, S.P.; Patel, G.G.; Joshi, A.H.; Suthar, D.N. Prevalence of Reproductive Problems in Buffalo in Mehsana Milk-Shed Areaof Gujarat. Int. J. Agro Vet. Med. Sci. 2011, 5, 424–428. [Google Scholar]
- Khan, H.M.; Bhakat, M.; Mohanty, T.K.; Gupta, A.K.; Raina, V.S.; Mir, M.S. Peripartum reproductive disorders in buffaloes-An overview. Vet Scan 2009, 4, 38. [Google Scholar]
- Purohit, G.N. Recent developments in the diagnosis and therapy of repeat breeding cows and buffaloes. CABI Rev. 2008, 2008, 1–34. [Google Scholar] [CrossRef]
- Santos, J.E.P.; Thatcher, W.W.; Pool, L.; Overton, M.W. Effect of human chorionic gonadotropinon luteal function and reproductive performance of high-producing lactating Holstein dairy cows. J. Anim. Sci. 2001, 79, 2881–2894. [Google Scholar] [CrossRef] [PubMed]
- Deka, R.P.; Magnusson, U.; Grace, D.; Randolph, T.F.; Shome, R.; Lindahl, J.F. Estimates of the Economic Cost Caused by Five Major Reproductive Problems in Dairy Animals in Assam and Bihar, India. Animals 2021, 11, 3116. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Nanda, A.S.; Adams, G.P. The reproductive pattern and efficiency of female buffaloes. Anim. Reprod. Sci. 2000, 60, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Purohit, G.N.; Gaur, M.; Shekher, C. Infertility Management in Female Buffaloes. In Bubaline Theriogenology; Purohit, G.N., Ed.; International Veterinary Information Service: Ithaca, NY, USA, 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coman, S.; Berean, D.I.; Cimpean, R.; Ciupe, S.; Coman, I.; Bogdan, L.M. Clinical Modalities for Enhancing Reproductive Efficiency in Buffaloes: A Review and Practical Aspects for Veterinary Practitioners. Animals 2024, 14, 2642. https://doi.org/10.3390/ani14182642
Coman S, Berean DI, Cimpean R, Ciupe S, Coman I, Bogdan LM. Clinical Modalities for Enhancing Reproductive Efficiency in Buffaloes: A Review and Practical Aspects for Veterinary Practitioners. Animals. 2024; 14(18):2642. https://doi.org/10.3390/ani14182642
Chicago/Turabian StyleComan, Stefan, Daniel Ionut Berean, Raluca Cimpean, Simona Ciupe, Ioan Coman, and Liviu Marian Bogdan. 2024. "Clinical Modalities for Enhancing Reproductive Efficiency in Buffaloes: A Review and Practical Aspects for Veterinary Practitioners" Animals 14, no. 18: 2642. https://doi.org/10.3390/ani14182642
APA StyleComan, S., Berean, D. I., Cimpean, R., Ciupe, S., Coman, I., & Bogdan, L. M. (2024). Clinical Modalities for Enhancing Reproductive Efficiency in Buffaloes: A Review and Practical Aspects for Veterinary Practitioners. Animals, 14(18), 2642. https://doi.org/10.3390/ani14182642