Revealing the Therapeutic Potential of Muscle-Derived Mesenchymal Stem/Stromal Cells: An In Vitro Model for Equine Laminitis Based on Activated Neutrophils, Anoxia–Reoxygenation, and Myeloperoxidase
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Cells
2.3. The Preparation and Characterization of the Activated Neutrophil Supernatant
2.3.1. Equine neutrophils were obtained from blood collected by jugular venipuncture on 5 healthy horses using ethylene diamine tetraacetic acid (EDTA) tubes, as described by Pycock et al. [27]. Briefly, the neutrophils were isolated at room temperature (18–22 °C) by centrifugation (400× g, 30 min at 20 °C) on a discontinuous percoll density gradient. The polymorphonuclear fraction was collected in DPBS, counted, and diluted into DMEM high glucose + 10% FBS to obtain a suspension of 2 million neutrophils/mL. The neutrophils were stimulated by adding 1 µL of cytochalasin B (5 mg/mL) per ml of cell suspension in the medium and incubating them for 30 min at 37 °C. Thereafter, 10 µL of fMLP (10−4 M) per ml of cell suspension was added and cells were incubated for 30 min at 37 °C. The control conditions were performed in parallel with cell suspensions without the addition of CB and fMLP or with the replacement of the stimulating molecules by DMSO, the solvent used for their solubilisation (Ctrl DMSO). Finally, the cell suspensions were centrifuged for 5 min at 600× g and the supernatants were collected and stored at −20 °C for future experiments. The activated neutrophil and non-activated neutrophil supernatants were called ANS and NANS, respectively
2.3.2. The active free MPO and the active MPO bound to the NETs were measured in the supernatants (NANS and ANS) after neutrophil incubation and stimulation, according to the techniques described by Storms et al., 2024 [10]
2.3.3. The Measurement of Active MPO by SIEFED
2.3.4. The NET-Bound-MPO Activity
2.4. The Effect of the NANS and the ANS on Hacat Metabolism in Normoxia and in Anoxia
2.5. The Effect of mdMSCs on HaCaT Metabolism
2.6. HaCaT–MPO Activity and Immunolocalization
2.6.1. HaCaT Incubation with the ANS
2.6.2. HaCaT Incubation with MPO
2.6.3. The Measurement of the HaCaT–MPO Activity
2.6.4. The Detection of HaCaT–MPO by Immunocytology
2.7. The Effects of mdMSCs on HaCaT–MPO Activity
2.8. Statistical Analyses
3. Results
3.1. Free MPO and NET-Bound MPO Released by Neutrophils
3.2. The Effect of Normoxia and Anoxia on HaCaT Metabolism in the Presence of Neutrophil Supernatants
3.3. Effect of mdMSC on HaCaT Metabolism Submitted to Normoxia or Anoxia with the ANS
3.4. The Active MPO from the ANS and the Purified Equine MPO Are Captured by HaCaT
3.5. MdMSCs Added to Pre-Treated MPO HaCaT Cells Inhibit the In Situ Activity of MPO
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menzies-Gow, N.J.; Stevens, K.; Barr, A.; Camm, I.; Pfeiffer, D.; Marr, C.M. Severity and outcome of equine pasture-associated laminitis managed in first opinion practice in the UK. Vet. Rec. 2010, 167, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Katz, L.M.; Bailey, S.R. A review of recent advances and current hypotheses on the pathogenesis of acute laminitis. Equine Vet. J. 2012, 44, 752–761. [Google Scholar] [CrossRef] [PubMed]
- van Eps, A.W. Acute laminitis: Medical and supportive therapy. Vet. Clin. North Am. Equine Pract. 2010, 26, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Peroni, J.F.; Harrison, W.E.; Moore, J.N.; Graves, J.E.; Lewis, S.J.; Krunkosky, T.M.; Robertson, T.P. Black walnut extract-induced laminitis in horses is associated with heterogeneous dysfunction of the laminar microvasculature. Equine Vet. J. 2005, 37, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Hurley, D.J.; Parks, R.J.; Reber, A.J.; Donovan, D.C.; Okinaga, T.; Vandenplas, M.L.; Peroni, J.; Moore, J. Dynamic changes in circulating leukocytes during the induction of equine laminitis with black walnut extract. Vet. Immunol. Immunopathol. 2006, 110, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Loftus, J.P.; Belknap, J.K.; Stankiewicz, K.M.; Black, S.J. Laminar xanthine oxidase, superoxide dismutase and catalase activities in the prodromal stage of black-walnut induced equine laminitis. Equine Vet. J. 2007, 39, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Leise, B. The role of neutrophils in equine laminitis. Cell Tissue Res. 2018, 371, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Galantino-Homer, H.; Brooks, S.A. Genetics and Signaling Pathways of Laminitis. Vet. Clin. N. Am. Equine Pract. 2020, 36, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Riggs, L.M.; Franck, T.; Moore, J.N.; Krunkosky, T.M.; Hurley, D.J.; Peroni, J.F.; de la Rebière, G.; Serteyn, D.A. Neutrophil myeloperoxidase measurements in plasma, laminar tissue, and skin of horses given black walnut extract. Am. J. Vet. Res. 2007, 68, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Storms, N.; de la Rebière, G.; Franck, T.; Mouithys Mickalad, A.; Sandersen, C.; Ceusters, J.; Serteyn, D. Neutrophil extracellular traps and active myeloperoxidase concentrate in lamellar tissue of equids with naturally occurring laminitis. Vet. Immunol. Immunopathol. 2024, 270, 110738. [Google Scholar] [CrossRef] [PubMed]
- Aratani, Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 2018, 640, 47–52. [Google Scholar] [CrossRef] [PubMed]
- French, K.R.; Pollitt, C.C. Equine laminitis: Loss of hemidesmosomes in hoof secondary epidermal lamellae correlates to dose in an oligofructose induction model: An ultrastructural study. Equine Vet. J. 2004, 36, 230–235. [Google Scholar] [CrossRef]
- Shepherd, H.M.; Gauthier, J.M.; Terada, Y.; Li, W.; Krupnick, A.S.; Gelman, A.E.; Kreisel, D. Updated Views on Neutrophil Responses in Ischemia-Reperfusion Injury. Transplantation 2022, 106, 2314–2324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Serteyn, D.; de la Rebière de Pouyade, G.; Sandersen, C.; Salciccia, A.; Grulke, S. Muscle Mitochondrial Dysfunction in Horses Affected by Acute Laminitis. Bioenergetics 2014, 3, 1000120. [Google Scholar] [CrossRef]
- He, L.; Liu, R.; Yue, H.; Zhang, X.; Pan, X.; Sun, Y.; Shi, J.; Zhu, G.; Qin, C.; Guo, Y. Interaction between neutrophil extracellular traps and cardiomyocytes contributes to atrial fibrillation progression. Signal Transduct. Target. Ther. 2023, 8, 279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sørensen, O.; Borregaard, N. Neutrophil extracellular trap —The dark side of neutrophils. J. Clin. Investig. 2016, 126, 1612–1620. [Google Scholar] [CrossRef]
- Delgado-Rizo, V.; Martínez-Guzmán, M.; Iñiguez-Gutierrez, L.; García-Orozco, A.; Alvarado-Navarro, A.; Fafutis-Morris, M. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front. Immunol. 2017, 8, 81. [Google Scholar] [CrossRef] [PubMed]
- Tablin, A.; Li, R. A comparative review of neutrophil extracellular traps in sepsis Front. Vet. Sci. 2018, 5, 291. [Google Scholar]
- Zhang, F.; Li, Y.; Wu, J.; Zhang, J.; Cao, P.; Sun, Z.; Wang, W. The role of extracellular traps in ischemia reperfusion injury. Front. Immunol. 2022, 13, 1022380. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jennaro, T.S.; Puskarich, M.A.; Evans, C.R.; Karnovsky, A.; Flott, T.L.; McLellan, L.A.; Jones, A.E.; Stringer, K.A. Sustained Perturbation of Metabolism and Metabolic Subphenotypes Are Associated With Mortality and Protein Markers of the Host Response. Crit. Care Explor. 2023, 5, e0881. [Google Scholar] [CrossRef] [PubMed]
- Miceli, V.; Bulati, M.; Gallo, A.; Iannolo, G.; Busà, R.; Conaldi, P.G.; Zito, G. Role of Mesenchymal Stem/Stromal Cells in Modulating Ischemia/Reperfusion Injury: Current State of the Art and Future Perspectives. Biomedicines 2023, 11, 689. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rowart, P.; Erpicum, P.; Detry, O.; Weekers, L.; Grégoire, C.; Lechanteur, C.; Briquet, A.; Beguin, Y.; Krzesinski, J.M.; Jouret, F. Mesenchymal Stromal Cell Therapy in Ischemia/Reperfusion Injury. J. Immunol. Res. 2015, 2015, 602597. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yao, J.; Zheng, J.; Cai, J.; Zeng, K.; Zhou, C.; Zhang, J.; Li, S.; Li, H.; Chen, L.; He, L.; et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion injury by suppressing oxidative stress and neutrophil inflammatory response. FASEB J. 2019, 33, 1695–1710. [Google Scholar] [CrossRef] [PubMed]
- Magaña-Guerrero, F.S.; Domínguez-López, A.; Martínez-Aboytes, P.; Buentello-Volante, B.; Garfias, Y. Human Amniotic Membrane Mesenchymal Stem Cells inhibit Neutrophil Extracellular Traps through TSG-6. Sci. Rep. 2017, 7, 12426. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ceusters, J.; Lejeune, J.P.; Sandersen, C.; Niesten, A.; Lagneaux, L.; Serteyn, D. From skeletal muscle to stem cells: An innovative and minimally-invasive process for multiple species. Sci. Rep. 2017, 7, 696. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barrett, J.; MacDonald, S. Use of Biologics and Stem Cells in the Treatment of Other Inflammatory Diseases in the Horse. Vet. Clin. N. Am. Equine Pract. 2023, 39, 553–563. [Google Scholar] [CrossRef]
- Pycock, J.F.; Allen, W.E.; Morris, T.H. Rapid, single-step isolation of equine neutrophils on a discontinuous Percoll density gradient. Res. Vet. Sci. 1987, 42, 411–412. [Google Scholar] [CrossRef] [PubMed]
- Braissant, O.; Astasov-Frauenhoffer, M.; Waltimo, T.; Bonkat, G. A review of methods to determine viability, vitality, and metabolic rates in microbiology. Front. Microbiol. 2020, 11, 547458. [Google Scholar] [CrossRef]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium salts and formazan products in cell biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 2018, 120, 159–167. [Google Scholar] [CrossRef]
- Marin, W.; Marin, D.; Ao, X.; Liu, Y. Mitochondria as a therapeutic target for cardiac ischemia-reperfusion injury (Review). Int. J. Mol. Med. 2021, 47, 485–499. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, R.; Zhang, C.; Xiang, Z.; Lin, T.; Ling, J.; Hu, H. Role of mitochondria in renal ischemia-reperfusion injury. FEBS J. 2024. [Google Scholar] [CrossRef] [PubMed]
- Burn, G.L.; Foti, A.; Marsman, G.; Patel, D.F.; Zychlinsky, A. The Neutrophil. Immunity 2021, 54, 1377–1391. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.M.; Nakhle, J.; Griessinger, E.; Vignais, M.L. Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle 2018, 17, 712–721. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, D.; Gao, Y.; Liu, J.; Huang, Y.; Yin, J.; Feng, Y.; Shi, L.; Meloni, B.P.; Zhang, C.; Zheng, M.; et al. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct. Target. Ther. 2021, 6, 65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Franck, T.; Storms, N.; Ceusters, J.; Sandersen, C.; de la Rebière, G.; Mouithys-Mickalad, A.; Serteyn, D. Targeting Mitochondria 2023 Abstract Book. J. Mitochondria Plast. Endosymbiosis 2023, 1 (Suppl. S1), 2270281. [Google Scholar] [CrossRef]
In Situ Peroxidase Activity (Fluorescence Units) | ||||
---|---|---|---|---|
HaCaT + MPO 250 ng/mL | HaCaT + MPO 500 ng/mL | |||
Horse | mdMSCs− | mdMSCs+ | mdMSCs− | mdMSCs+ |
1 | 40.97 | 28.20 | 232.20 | 87.03 |
2 | 37.90 | 19.02 | 196.10 | 121.30 |
3 | 73.79 | 23.59 | 155.20 | 93.76 |
4 | 302.60 | 122.10 | 734.80 | 487.40 |
5 | 146.80 | 130.70 | 657.80 | 571.70 |
6 | 86.64 | 67.65 | 547.80 | 318.80 |
Mean | 114.78 | 65.21 | 420.65 | 280.00 |
SD | 100.13 | 50.53 | 255.93 | 212.94 |
p-Values | 0.12 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serteyn, D.; Storms, N.; Mouithys-Mickalad, A.; Sandersen, C.; Niesten, A.; Duysens, J.; Graide, H.; Ceusters, J.; Franck, T. Revealing the Therapeutic Potential of Muscle-Derived Mesenchymal Stem/Stromal Cells: An In Vitro Model for Equine Laminitis Based on Activated Neutrophils, Anoxia–Reoxygenation, and Myeloperoxidase. Animals 2024, 14, 2681. https://doi.org/10.3390/ani14182681
Serteyn D, Storms N, Mouithys-Mickalad A, Sandersen C, Niesten A, Duysens J, Graide H, Ceusters J, Franck T. Revealing the Therapeutic Potential of Muscle-Derived Mesenchymal Stem/Stromal Cells: An In Vitro Model for Equine Laminitis Based on Activated Neutrophils, Anoxia–Reoxygenation, and Myeloperoxidase. Animals. 2024; 14(18):2681. https://doi.org/10.3390/ani14182681
Chicago/Turabian StyleSerteyn, Didier, Nazaré Storms, Ange Mouithys-Mickalad, Charlotte Sandersen, Ariane Niesten, Julien Duysens, Hélène Graide, Justine Ceusters, and Thierry Franck. 2024. "Revealing the Therapeutic Potential of Muscle-Derived Mesenchymal Stem/Stromal Cells: An In Vitro Model for Equine Laminitis Based on Activated Neutrophils, Anoxia–Reoxygenation, and Myeloperoxidase" Animals 14, no. 18: 2681. https://doi.org/10.3390/ani14182681
APA StyleSerteyn, D., Storms, N., Mouithys-Mickalad, A., Sandersen, C., Niesten, A., Duysens, J., Graide, H., Ceusters, J., & Franck, T. (2024). Revealing the Therapeutic Potential of Muscle-Derived Mesenchymal Stem/Stromal Cells: An In Vitro Model for Equine Laminitis Based on Activated Neutrophils, Anoxia–Reoxygenation, and Myeloperoxidase. Animals, 14(18), 2681. https://doi.org/10.3390/ani14182681