Infrared Thermography as a Diagnostic Tool for the Assessment of Mastitis in Dairy Ruminants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Mastitis in Dairy Ruminants
3. Monitoring of Mastitis
4. Infrared Thermography
5. Infrared Thermography for the Evaluation of Udder Health Status
5.1. Detection of Mastitis
5.1.1. Cows
5.1.2. Buffaloes
5.1.3. Sheep
Animals | Time | Temperature (°C) (Mean ± SD/Mean ± SE) | Sensitivity/Specificity/ Accuracy (%) | Reference | |
---|---|---|---|---|---|
Healthy | Mastitis | ||||
COWS | |||||
49 Brown Swiss and 45 Holstein Friesian cows | BM | 33.2 ± 0.52 SD | CMT (i) L1: 34.1 ± 0.29 SD (ii) L2: 35.0 ± 0.25 SD (iii) L3: 36.2 ± 0.23 SD | - | [73] |
70 Gyr cows | AMM | A. SCC: <105 cells/mL (i) Upper: 34.0 ± 0.02 SE (ii) Median: 32.7 ± 0.05 SE (iii) Lower: 32.2 ± 0.06 SE B. SCC: 105–2 × 105 cells/mL (i) Upper: 34.0 ± 0.04 SE (ii) Median: 32.4 ± 0.08 SE (iii) Lower: 32.5 ± 0.09 SE | A. SCC: >2 × 105–3 × 105 cells/mL (i) Upper: 33.7 ± 0.12 SE (ii) Median: 32.9 ± 0.15 SE (iii) Lower: 32.0 ± 0.05 SE B. SCC: >3 × 105 cells/mL (i) Upper: 34.1 ± 0.02 SE (ii) Median: 32.6 ± 0.05 SE (iii) Lower: 31.6 ± 0.04 SE | - | [75] |
62 Brown Swiss cows | BMM, BAM | 33.5 ± 0.09 SE | A. SCC: 35.8 ± 0.08 SE B. CMT: (i) L1: 34.6 ± 0.12 SE (ii) L2: 35.7 ± 0.07 SE (iii) L3: 36.3 ± 0.07 SE | SCC: 4 × 105 cells/mL (Se: 95.6, Sp: 93.6, Ac: 98.5) | [76] |
5 Holstein Friesien cows | /2h | 34.1–37.7 | 34.5–39.7 | Se: 100.0, Sp: 96.0 | [77] |
98 Holstein Friesien cows | - | 33.1 ± 0.17 SD | (i) Staphylococcus aureus: 32.0 ± 0.23 SD (ii) Staphylococcus agalactiae: 32.9 ± 0.36 SD (iii) Staphylococcus uberis: 31.9 ± 0.24 SD (iv) Coagulase-negative staphylococci: 32.9 ± 0.33 SD | - | [78] |
14 Deoni cows | BMM, BAM | (i) Morning: 36.2 ± 0.06 SD (ii) Evening: 37.1 ± 0.21 SD | 37.6 ± 0.29 SD | Se: 54.1–100.0 Sp: 69.2–100.0 | [82] |
155 Holstein Friesian cows | BM | Tmax (i) SCC: 2 × 105 cells/mL 34.2 ± 0.17 SE (ii) SCC: 4 × 105 cells/mL 34.4 ± 0.16 SE | Tmax (i) SCC: 2 × 105 cells/mL 35.8 ± 0.15 SE (ii) SCC: 4 × 105 cells/mL 36.1 ± 0.22 SE | (i) SCC: 2 × 105 cells/mL Se: 78.6, Sp: 77.9 (ii) SCC: 4 × 105 cells/mL Se: 71.4, Sp: 71.6 | [83] |
105 Holstein cows | During predawn and morning hours | 32.4–32.6 | (i) SCM: 32.9 (ii) IMI/MG: 33.5 | A. Hand milking (i) SCM: (Se: 53.0, Sp: 89.0, Ac: 71.0) (ii) MG/IMI: (Se: 83.0, Sp: 93.0, Ac: 88.0) B. Machine milking (i) SCM: (Se: 42.0, Sp: 97.0, Ac: 70.0) (ii) MG: (Se: 82.0, Sp: 89.0, Ac: 85.0) (iii) IMI: (Se: 82.0, Sp: 98.0, Ac: 90.0) | [85] |
25 Sahiwal cows | BMM, AMM, during morning milking | (i) USST BM: 35.0 ± 0.11 SE Milking: 35.7 ± 0.06 SE AM: 35.8 ± 0.06 SE (ii) TSST: BM: 35.0 ± 0.12 SE AM: 35.5 ± 0.05 SE (iii) SCM: 32.8 ± 0.12 SE (iv) EBST: 36.4 ± 0.15 SE | A. SCM (i) USST: BM: 36.6 ± 0.05 SE Milking: 36.4 ± 0.02 SE AM: 36.5 ± 0.03 SE (ii) TSST: BM: 36.1 ± 0.04 SE AM: 36.3 ± 0.02 SE (iii) SCM: 33.9 ± 0.05 SE (iv) EBST: 36.9 ± 0.05 SE B. CM (i) USST: BM: 37.5 ± 0.06 SE Milking: 37.0 ± 0.06 SE AM: 37.4 ± 0.08 SE (ii) TSST: BM: 36.9 ± 0.05 SE AM: 37.0 ± 0.07 SE (iii) SCM: 34.9 ± 0.06 SE (iv) EBST: 37.6 ± 0.06 SE | A. SCM Se: 89.0–97.0 Sp: 83.0–94.0 Ac: 96.0–99.0 B. CM Se: 89.0–97.0 Sp: 93.0–98.0 Ac: 98.0–99.0 | [86] |
54 Sahiwal cows | BM | (i) Teat apex temperature: 34.9 ± 0.11 SE (ii) TSST: 35.7 ± 0.16 SE (iii) USST: 37.3 ± 0.09 SE | A. SCM (i) Teat apex temperature: 37.4 ± 0.14 SE (ii) TSST: 38.6 ± 0.20 SE (iii) USST: 39.2 ± 0.21 SE B. CM (i) Teat apex temperature: 37.8 ± 0.07 SE (ii) TSST: 39.1 ± 0.08 SE (iii) USST: 40.3 ±0.09 SE | A. SCM Se: 94.0 Sp: 93.0 Ac: 98.0 B. CM Se: 98.0 Sp: 97.0 Ac: 95.0 | [87] |
BUFFALOES | |||||
35–40 Murrah buffaloes | BM | Seasonal temperature range (i) USST: 30.3–36.8 (ii) TSST: 30.5–36.0 | Seasonal temperature range A. SCM (i) USST: 32.5–38.6 (ii) TSST: 32.9–37.6 B. CM (i) USST: 34.3–40.0 (ii) TSST: 34.5–39.1 | A. SCM Se: 88.0–98.0 Sp: 85.0–99.0 Ac: 84.0–99.0 B. CM Se: 91.0–97.0 Sp: 89.0–99.0 Ac: 98.0–99.0 | [90] |
SHEEP | |||||
37 Santa Ines sheep | BM | 36.1 (33.6–38.6) | (i) SCM: 36.3 (33.8–39.0) (ii) CM: 35.9 (33.4–38.4) | - | [91] |
48 Manchega 35 Lacaune ewes | BM, AM | 33.6 ± 0.28 SE 33.5 ± 1.13 SE | (i) SCM: 33.1 ± 0.28 SE (ii) CM: 33.5 ± 1.13 SE | - | [92] |
GOATS | |||||
104 Skopelos goats | - | (i) Tmax: 38.1 ± 0.58 SD (ii) Tmean: 36.9 ± 0.58 SD | A. Fibrosis (i) Tmax: 37.8 ± 0.59 SD (ii) Tmean: 36.5 ± 0.71 SD B. Fibrosis and asymmetry (i) Tmax: 37.7 ± 0.68 SD (ii) Tmean: 36.4 ± 0.81 SD | - | [95] |
5.1.4. Goats
5.2. Evaluation of Milking Machine Effects on Teats and Udder Skin Surface Temperature
5.3. Setting the Basis for IRT and Evaluation of the Factors Affecting USST
5.4. Integration of Thermal Imaging Data into Prediction Algorithms
6. Future Perspectives, Challenges, and Limitations of Infrared Thermography for the Diagnosis of Mastitis
6.1. Perspectives
6.2. Challenges
6.3. Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grout, L.; Baker, M.G.; French, N.; Hales, S. A Review of Potential Public Health Impacts Associated With the Global Dairy Sector. Geohealth 2020, 4, e2019GH000213. [Google Scholar] [CrossRef] [PubMed]
- Lemma, H.D.; Mengistu, A.; Kuma, T.; Kuma, B. Improving Milk Safety at Farm-Level in an Intensive Dairy Production System: Relevance to Smallholder Dairy Producers. Food Qual. Saf. 2018, 2, 135–143. [Google Scholar] [CrossRef]
- Clay, N.; Garnett, T.; Lorimer, J. Dairy Intensification: Drivers, Impacts and Alternatives. Ambio 2020, 49, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Bicknell, K.; Renwick, A. Production Intensification and Animal Health Expenditure on Dairy Farms in New Zealand. J. Dairy Sci. 2020, 103, 1598–1607. [Google Scholar] [CrossRef]
- Lam, T.; Olde Riekerink, R.G.M.; Sampimon, O.C.; Smith, H. Mastitis Diagnostics and Performance Monitoring: A Practical Approach. Ir. Vet. J. 2009, 62, S34. [Google Scholar] [CrossRef]
- Fragkou, I.A.; Boscos, C.M.; Fthenakis, G.C. Diagnosis of Clinical or Subclinical Mastitis in Ewes. Small Rumin. Res. 2014, 118, 86–92. [Google Scholar] [CrossRef]
- Viguier, C.; Arora, S.; Gilmartin, N.; Welbeck, K.; O’Kennedy, R. Mastitis Detection: Current Trends and Future Perspectives. Trends Biotechnol. 2009, 27, 486–493. [Google Scholar] [CrossRef]
- Rutten, C.J.; Velthuis, A.G.J.; Steeneveld, W.; Hogeveen, H. Invited Review: Sensors to Support Health Management on Dairy Farms. J. Dairy Sci. 2013, 96, 1928–1952. [Google Scholar] [CrossRef]
- Hogeveen, H.; Klaas, I.C.; Dalen, G.; Honig, H.; Zecconi, A.; Kelton, D.F.; Sánchez Mainar, M. Novel Ways to Use Sensor Data to Improve Mastitis Management. J. Dairy Sci. 2021, 104, 11317–11332. [Google Scholar] [CrossRef]
- Gulliksen, S.M.; Framstad, T.; Kielland, C.; Velazquez, M.A.; Terøy, M.M.; Helland, E.M.; Lyngstad, R.H.; Delgado, A.J.O.; Oropeza-Moe, M. Infrared Thermography as a Possible Technique for the Estimation of Parturition Onset in Sows. Porc. Health Manag. 2023, 9, 3. [Google Scholar] [CrossRef]
- Zhao, X.; Lacasse, P. Mammary Tissue Damage during Bovine Mastitis: Causes and Control. J. Anim. Sci. 2008, 86, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Alnakip, M.E.; Quintela-Baluja, M.; Böhme, K.; Fernández-No, I.; Caamaño-Antelo, S.; Calo-Mata, P.; Barros-Velázquez, J. The Immunology of Mammary Gland of Dairy Ruminants between Healthy and Inflammatory Conditions. J. Vet. Med. 2014, 2014, 659801. [Google Scholar] [CrossRef] [PubMed]
- Hogeveen, H.; Huijps, K.; Lam, T.J.G.M. Economic Aspects of Mastitis: New Developments. N. Z. Vet. J. 2011, 59, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Petrovski, K.R.; Trajcev, M.; Buneski, G. A Review of the Factors Affecting the Costs of Bovine Mastitis: Review Article. J. S. Afr. Vet. Assoc. 2006, 77, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Halasa, T.; Huijps, K.; Østerås, O.; Hogeveen, H. Economic Effects of Bovine Mastitis and Mastitis Management: A Review. Vet. Q. 2007, 29, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Akers, R.M.; Nickerson, S.C. Mastitis and Its Impact on Structure and Function in the Ruminant Mammary Gland. J. Mammary Gland. Biol. Neoplasia 2011, 16, 275–289. [Google Scholar] [CrossRef]
- Kibebew, K. Bovine Mastitis: A Review of Causes and Epidemiological Point of View. J. Biol. Agric. Healthc. 2017, 7, 1–14. [Google Scholar]
- Contreras, G.A.; Rodríguez, J.M. Mastitis: Comparative Etiology and Epidemiology. J. Mammary Gland. Biol. Neoplasia 2011, 16, 339–356. [Google Scholar] [CrossRef]
- Contreras, A.; Sierra, D.; Sánchez, A.; Corrales, J.C.; Marco, J.C.; Paape, M.J.; Gonzalo, C. Mastitis in Small Ruminants. Small Rumin. Res. 2007, 68, 145–153. [Google Scholar] [CrossRef]
- Gelasakis, A.I.; Mavrogianni, V.S.; Petridis, I.G.; Vasileiou, N.G.C.; Fthenakis, G.C. Mastitis in Sheep—The Last 10 Years and the Future of Research. Vet. Microbiol. 2015, 181, 136–146. [Google Scholar] [CrossRef]
- Sharma, N.; Jeong, D.K. Stem Cell Research: A Novel Boulevard towards Improved Bovine Mastitis Management. Int. J. Biol. Sci. 2013, 9, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P.L. A 100-Year Review: Mastitis Detection, Management, and Prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.; Kamel, M. Bovine Mastitis Prevention and Control in the Post-Antibiotic Era. Trop. Anim. Health Prod. 2021, 53, 236. [Google Scholar] [CrossRef] [PubMed]
- Duarte, C.M.; Freitas, P.P.; Bexiga, R. Technological Advances in Bovine Mastitis Diagnosis: An Overview. J. Vet. Diagn. Investig. 2015, 27, 665–672. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Grade “A” Pasteurized Milk Ordinance (PMO), 2023 Revision. Available online: https://www.fda.gov/ (accessed on 8 September 2024).
- European Parliament and Council of the European Union Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Hygiene Rules for Food of Animal Origin. Off. J. Eur. Union 2004, L 139, 55. Available online: https://www.legislation.gov.uk/eur/2004/853/contents (accessed on 8 September 2024).
- Pyörälä, S. Indicators of Inflammation in the Diagnosis of Mastitis. Vet. Res. 2003, 34, 565–578. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, R.; Wang, N.; Zhang, J.; Xiao, B.; Huang, F.; Chen, A. Milk Somatic Cell Count: From Conventional Microscope Method to New Biosensor-Based Method. Trends Food Sci. Technol. 2023, 135, 102–114. [Google Scholar] [CrossRef]
- Walsh, S.; Buckley, F.; Berry, D.P.; Rath, M.; Pierce, K.; Byrne, N.; Dillon, P. Effects of Breed, Feeding System, and Parity on Udder Health and Milking Characteristics. J. Dairy Sci. 2007, 90, 5767–5779. [Google Scholar] [CrossRef]
- Ashraf, A.; Imran, M. Diagnosis of Bovine Mastitis: From Laboratory to Farm. Trop. Anim. Health Prod. 2018, 50, 1193–1202. [Google Scholar] [CrossRef]
- Nyman, A.K.; Persson Waller, K.; Bennedsgaard, T.W.; Larsen, T.; Emanuelson, U. Associations of Udder-Health Indicators with Cow Factors and with Intramammary Infection in Dairy Cows. J. Dairy Sci. 2014, 97, 5459–5473. [Google Scholar] [CrossRef]
- Martins, S.A.M.; Martins, V.C.; Cardoso, F.A.; Germano, J.; Rodrigues, M.; Duarte, C.; Bexiga, R.; Cardoso, S.; Freitas, P.P. Biosensors for On-Farm Diagnosis of Mastitis. Front. Bioeng. Biotechnol. 2019, 7, 186. [Google Scholar] [CrossRef] [PubMed]
- Perreten, V.; Endimiani, A.; Thomann, A.; Wipf, J.R.K.; Rossano, A.; Bodmer, M.; Raemy, A.; Sannes-Lowery, K.A.; Ecker, D.J.; Sampath, R.; et al. Evaluation of PCR Electrospray-Ionization Mass Spectrometry for Rapid Molecular Diagnosis of Bovine Mastitis. J. Dairy Sci. 2013, 96, 3611–3620. [Google Scholar] [CrossRef] [PubMed]
- Diaz, J.R.; Romero, G.; Muelas, R.; Sendra, E.; Pantoja, J.C.F.; Paredes, C. Analysis of the Influence of Variation Factors on Electrical Conductivity of Milk in Murciano-Granadina Goats. J. Dairy Sci. 2011, 94, 3885–3894. [Google Scholar] [CrossRef] [PubMed]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F. Infrared Thermography for Temperature Measurement and Non-Destructive Testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef]
- Eddy, A.L.; Van Hoogmoed, L.M.; Snyder, J.R. The Role of Thermography in the Management of Equine Lameness. Vet. J. 2001, 162, 172–181. [Google Scholar] [CrossRef]
- Bagavathiappan, S.; Lahiri, B.B.; Saravanan, T.; Philip, J.; Jayakumar, T. Infrared Thermography for Condition Monitoring—A Review. Infrared Phys. Technol. 2013, 60, 35–55. [Google Scholar] [CrossRef]
- Lahiri, B.B.; Bagavathiappan, S.; Jayakumar, T.; Philip, J. Medical Applications of Infrared Thermography: A Review. Infrared Phys. Technol. 2012, 55, 221–235. [Google Scholar] [CrossRef]
- Gade, R.; Moeslund, T.B. Thermal Cameras and Applications: A Survey. Mach. Vis. Appl. 2014, 25, 245–262. [Google Scholar] [CrossRef]
- Soroko, M.; Howell, K. Infrared Thermography: Current Applications in Equine Medicine. J. Equine Vet. Sci. 2018, 60, 90–96.e2. [Google Scholar] [CrossRef]
- Rainwater-Lovett, K.; Pacheco, J.M.; Packer, C.; Rodriguez, L.L. Detection of Foot-and-Mouth Disease Virus Infected Cattle Using Infrared Thermography. Vet. J. 2009, 180, 317–324. [Google Scholar] [CrossRef]
- Schaefer, A.L.; Cook, N.J.; Bench, C.; Chabot, J.B.; Colyn, J.; Liu, T.; Okine, E.K.; Stewart, M.; Webster, J.R. The Non-Invasive and Automated Detection of Bovine Respiratory Disease Onset in Receiver Calves Using Infrared Thermography. Res. Vet. Sci. 2012, 93, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Alsaaod, M.; Syring, C.; Dietrich, J.; Doherr, M.G.; Gujan, T.; Steiner, A. A Field Trial of Infrared Thermography as a Non-Invasive Diagnostic Tool for Early Detection of Digital Dermatitis in Dairy Cows. Vet. J. 2014, 199, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Cortivo, P.D.; Dias, E.; Barcellos, J.O.J.; Peripolli, V.; Costa, J.B.G., Jr.; Dallago, B.S.L.; McManus, C.M. Use of Thermographic Images to Detect External Parasite Load in Cattle. Comput. Electron. Agric. 2016, 127, 413–417. [Google Scholar] [CrossRef]
- Gelasakis, A.I.; Kalogianni, A.I.; Moschovas, M.; Tsimpouri, E.; Pnevmatikos, T.; Bossis, I.; Arsenos, G.; Simitzis, P. Evaluation of Infrared Thermography for the Detection of Footrot and White Line Disease Lesions in Dairy Sheep. Vet. Sci. 2021, 8, 219. [Google Scholar] [CrossRef]
- Stewart, M.; Webster, J.R.; Verkerk, G.A.; Schaefer, A.L.; Colyn, J.J.; Stafford, K.J. Non-Invasive Measurement of Stress in Dairy Cows Using Infrared Thermography. Physiol. Behav. 2007, 92, 520–525. [Google Scholar] [CrossRef]
- Soerensen, D.D.; Clausen, S.; Mercer, J.B.; Pedersen, L.J. Determining the Emissivity of Pig Skin for Accurate Infrared Thermography. Comput. Electron. Agric. 2014, 109, 52–58. [Google Scholar] [CrossRef]
- Ricci, G.D.; Da Silva-Miranda, K.O.; Titto, C.G. Infrared Thermography as a Non-Invasive Method for the Evaluation of Heat Stress in Pigs Kept in Pens Free of Cages in the Maternity. Comput. Electron. Agric. 2019, 157, 403–409. [Google Scholar] [CrossRef]
- Joy, A.; Taheri, S.; Dunshea, F.R.; Leury, B.J.; DiGiacomo, K.; Osei-Amponsah, R.; Brodie, G.; Chauhan, S.S. Non-Invasive Measure of Heat Stress in Sheep Using Machine Learning Techniques and Infrared Thermography. Small Rumin. Res. 2022, 207, 106592. [Google Scholar] [CrossRef]
- Talukder, S.; Kerrisk, K.L.; Ingenhoff, L.; Thomson, P.C.; Garcia, S.C.; Celi, P. Infrared Technology for Estrus Detection and as a Predictor of Time of Ovulation in Dairy Cows in a Pasture-Based System. Theriogenology 2014, 81, 925–935. [Google Scholar] [CrossRef]
- Domino, M.; Borowska, M.; Kozłowska, N.; Zdrojkowski, Ł.; Jasiński, T.; Smyth, G.; Maśko, M. Advances in Thermal Image Analysis for the Detection of Pregnancy in Horses Using Infrared Thermography. Sensors 2021, 22, 191. [Google Scholar] [CrossRef]
- Perez Marquez, H.J.; Ambrose, D.J.; Schaefer, A.L.; Cook, N.J.; Bench, C.J. Evaluation of Infrared Thermography Combined with Behavioral Biometrics for Estrus Detection in Naturally Cycling Dairy Cows. Animal 2021, 15, 100205. [Google Scholar] [CrossRef] [PubMed]
- Riaz, U.; Idris, M.; Ahmed, M.; Ali, F.; Yang, L. Infrared Thermography as a Potential Non-Invasive Tool for Estrus Detection in Cattle and Buffaloes. Animals 2023, 13, 1425. [Google Scholar] [CrossRef] [PubMed]
- Montanholi, Y.R.; Swanson, K.C.; Schenkel, F.S.; McBride, B.W.; Caldwell, T.R.; Miller, S.P. On the Determination of Residual Feed Intake and Associations of Infrared Thermography with Efficiency and Ultrasound Traits in Beef Bulls. Livest. Sci. 2009, 125, 22–30. [Google Scholar] [CrossRef]
- Ferreira, V.M.O.S.; Francisco, N.S.; Belloni, M.; Aguirre, G.M.Z.; Caldara, F.R.; Nääs, I.A.; Garcia, R.G.; Almeida Paz, I.C.L.; Polycarpo, G.V. Infrared Thermography Applied to the Evaluation of Metabolic Heat Loss of Chicks Fed with Different Energy Densities. Rev. Bras. Cienc. Avic. 2011, 13, 113–118. [Google Scholar] [CrossRef]
- Martello, L.S.; da Luz e Silva, S.; da Costa Gomes, R.; da Silva Corte, R.R.P.; Leme, P.R. Infrared Thermography as a Tool to Evaluate Body Surface Temperature and Its Relationship with Feed Efficiency in Bos Indicus Cattle in Tropical Conditions. Int. J. Biometeorol. 2016, 60, 173–181. [Google Scholar] [CrossRef]
- Thompson, S.; Schaefer, A.L.; Crow, G.H.; Basarab, J.; Colyn, J.; Ominski, K. Relationship between Residual Feed Intake and Radiated Heat Loss Using Infrared Thermography in Young Beef Bulls. J. Therm. Biol. 2018, 78, 304–311. [Google Scholar] [CrossRef]
- Stewart, M.; Schaefer, A.L.; Haley, D.B.; Colyn, J.; Cook, N.J.; Stafford, K.J.; Webster, J.R. Infrared Thermography as a Non-Invasive Method for Detecting Fear-Related Responses of Cattle to Handling Procedures. Anim. Welf. 2008, 17, 387–393. [Google Scholar] [CrossRef]
- Heintz, M.R.; Fuller, G.; Allard, S. Exploratory Investigation of Infrared Thermography for Measuring Gorilla Emotional Responses to Interactions with Familiar Humans. Animals 2019, 9, 604. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Lecona-Butrón, H.; Martínez-Burnes, J.; Mora-Medina, P.; Gómez-Prado, J.; Orihuela, A. Infrared Thermal Imaging Associated with Pain in Laboratory Animals. Exp. Anim. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Weschenfelder, A.V.; Saucier, L.; Maldague, X.; Rocha, L.M.; Schaefer, A.L.; Faucitano, L. Use of Infrared Ocular Thermography to Assess Physiological Conditions of Pigs Prior to Slaughter and Predict Pork Quality Variation. Meat Sci. 2013, 95, 616–620. [Google Scholar] [CrossRef]
- McManus, R.; Boden, L.A.; Weir, W.; Viora, L.; Barker, R.; Kim, Y.; McBride, P.; Yang, S. Thermography for Disease Detection in Livestock: A Scoping Review. Front. Vet. Sci. 2022, 9, 965622. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Q.; Chu, M.; Kang, X.; Liu, G. Application of Infrared Thermography and Machine Learning Techniques in Cattle Health Assessments: A Review. Biosyst. Eng. 2023, 230, 361–387. [Google Scholar] [CrossRef]
- He, Y.; Deng, B.; Wang, H.; Cheng, L.; Zhou, K.; Cai, S.; Ciampa, F. Infrared Machine Vision and Infrared Thermography with Deep Learning: A Review. Infrared Phys. Technol. 2021, 116, 103754. [Google Scholar] [CrossRef]
- Hoffmann, G.; Schmidt, M.; Ammon, C.; Rose-Meierhöfer, S.; Burfeind, O.; Heuwieser, W.; Berg, W. Monitoring the Body Temperature of Cows and Calves Using Video Recordings from an Infrared Thermography Camera. Vet. Res. Commun. 2013, 37, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Cui, J.; Yuan, H.; Cheng, M. Application and Research Progress of Infrared Thermography in Temperature Measurement of Livestock and Poultry Animals: A Review. Comput. Electron. Agric. 2023, 205, 107586. [Google Scholar] [CrossRef]
- Kunc, P.; Knizkova, I.; Prikryl, M.; Maloun, J. Infrared Thermography as a Tool to Study the Milking Process: A Review. Agric. Trop. Subtrop. 2007, 40, 29–32. [Google Scholar]
- McManus, C.; Tanure, C.B.; Peripolli, V.; Seixas, L.; Fischer, V.; Gabbi, A.M.; Menegassi, S.R.O.; Stumpf, M.T.; Kolling, G.J.; Dias, E.; et al. Infrared Thermography in Animal Production: An Overview. Comput. Electron. Agric. 2016, 123, 10–16. [Google Scholar] [CrossRef]
- Knízková, I.; Kunc, P.; Gürdíl, G.A.K.; Pinar, Y.; Selví, K.Ç. Applications of Infrared Thermography in Animal Production. J. Fac. Agric. OMU 2007, 22, 329–336. [Google Scholar]
- Tattersall, G.J. Infrared Thermography: A Non-Invasive Window into Thermal Physiology. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2016, 202, 78–98. [Google Scholar] [CrossRef]
- Vollmer, M.; Möllmann, K.P. Fundamentals of Infrared Thermal Imaging. In Infrared Thermal Imaging; Vollmer, M., Möllmann, K.-P., Eds.; Wiley: Weinheim, Germany, 2010; pp. 1–72. [Google Scholar]
- Rekant, S.I.; Lyons, M.A.; Pacheco, J.M.; Arzt, J.; Rodriguez, L.L. Veterinary Applications of Infrared Thermography. Am. J. Vet. Res. 2016, 77, 98–107. [Google Scholar] [CrossRef]
- Colak, A.; Polat, B.; Okumus, Z.; Kaya, M.; Yanmaz, L.E.; Hayirli, A. Short Communication: Early Detection of Mastitis Using Infrared Thermography in Dairy Cows. J. Dairy Sci. 2008, 91, 4244–4248. [Google Scholar] [CrossRef] [PubMed]
- Hovinen, M.; Siivonen, J.; Taponen, S.; Hänninen, L.; Pastell, M.; Aisla, A.M.; Pyörälä, S. Detection of Clinical Mastitis with the Help of a Thermal Camera. J. Dairy Sci. 2008, 91, 4592–4598. [Google Scholar] [CrossRef] [PubMed]
- Porcionato, M.A.F.; Canata, T.F.; De Oliveira, C.E.L.; Dos Santos, M.V. Udder Thermography of Gyr Cows for Subclinical Mastitis Detection. Rev. Bras. Eng. Biossistemas 2009, 3, 251–257. [Google Scholar] [CrossRef]
- Polat, B.; Colak, A.; Cengiz, M.; Yanmaz, L.E.; Oral, H.; Bastan, A.; Kaya, S.; Hayirli, A. Sensitivity and Specificity of Infrared Thermography in Detection of Subclinical Mastitis in Dairy Cows. J. Dairy Sci. 2010, 93, 3525–3532. [Google Scholar] [CrossRef]
- Metzner, M.; Sauter-Louis, C.; Seemueller, A.; Petzl, W.; Klee, W. Infrared Thermography of the Udder Surface of Dairy Cattle: Characteristics, Methods, and Correlation with Rectal Temperature. Vet. J. 2014, 199, 57–62. [Google Scholar] [CrossRef]
- Bortolami, A.; Fiore, E.; Gianesella, M.; Corrò, M.; Catania, S.; Morgante, M. Evaluation of the Udder Health Status in Subclinical Mastitis Affected Dairy Cows through Bacteriological Culture, Somatic Cell Count and Thermographic Imaging. Pol. J. Vet. Sci. 2015, 18, 799–805. [Google Scholar] [CrossRef]
- Metzner, M.; Sauter-Louis, C.; Seemueller, A.; Petzl, W.; Zerbe, H. Infrared Thermography of the Udder after Experimentally Induced Escherichia Coli Mastitis in Cows. Vet. J. 2015, 204, 360–362. [Google Scholar] [CrossRef]
- Pampariene, I.; Veikutis, V.; Oberauskas, V.; Zymantiene, J.; Zelvyte, R.; Stankevicius, A.; Marciulionyte, D.; Palevicius, P. 1908. Thermography Based Inflammation Monitoring of Udder State in Dairy Cows: Sensitivity and Diagnostic Priorities Comparing with Routine California Mastitis Test. J. Vibroeng. 2016, 18, 511–521. [Google Scholar]
- Byrne, D.T.; Berry, D.P.; Esmonde, H.; McHugh, N. Investigation of the Relationship between Udder Quarter Somatic Cell Count and Udder Skin Surface Temperature of Dairy Cows Measured by Infrared Thermography. J. Anim. Sci. 2018, 96, 4458–4470. [Google Scholar] [CrossRef]
- Sathiyabarathi, M.; Jeyakumar, S.; Manimaran, A.; Pushpadass, H.A.; Sivaram, M.; Ramesha, K.P.; Das, D.N.; Kataktalware, M.A. Infrared Thermal Imaging of Udder Skin Surface Temperature Variations to Monitor Udder Health Status in Bos Indicus (Deoni) Cows. Infrared Phys. Technol. 2018, 88, 239–244. [Google Scholar] [CrossRef]
- Zaninelli, M.; Redaelli, V.; Luzi, F.; Bronzo, V.; Mitchell, M.; Dell’Orto, V.; Bontempo, V.; Cattaneo, D.; Savoini, G. First Evaluation of Infrared Thermography as a Tool for the Monitoring of Udder Health Status in Farms of Dairy Cows. Sensors 2018, 18, 862. [Google Scholar] [CrossRef] [PubMed]
- Machado, N.A.F.; Da Costa, L.B.S.; Barbosa-Filho, J.A.D.; De Oliveira, K.P.L.; De Sampaio, L.C.; Peixoto, M.S.M.; Damasceno, F.A. Using Infrared Thermography to Detect Subclinical Mastitis in Dairy Cows in Compost Barn Systems. J. Therm. Biol. 2021, 97, 102881. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Bolaños, J.; Ceballes-Serrano, C.C.; Velásquez-Mejía, D.; Riaño-Rojas, J.C.; Giraldo, C.E.; Carmona, J.U.; Ceballos-Márquez, A. Application of Udder Surface Temperature by Infrared Thermography for Diagnosis of Subclinical Mastitis in Holstein Cows Located in Tropical Highlands. J. Dairy Sci. 2021, 104, 10310–10323. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, S.L.; Bhakat, M.; Mohanty, T.K. Short-Milking-Tube Thermograms: An Alternative to Udder Thermograms for Mastitis Detection in Sahiwal Cows. Res. Vet. Sci. 2023, 165, 105056. [Google Scholar] [CrossRef]
- Satheesan, L.; Kittur, P.M.; Alhussien, M.N.; Lal, G.S.; Kamboj, A.; Dang, A.K. Reliability of Udder Infrared Thermography as a Non-Invasive Technology for Early Detection of Sub-Clinical Mastitis in Sahiwal (Bos Indicus) Cows under Semi-Intensive Production System. J. Therm. Biol. 2024, 121, 103838. [Google Scholar] [CrossRef]
- Scott, S.L.; Schaefer, A.L.; Tong, A.K.W.; Lacasse, P. Use of Infrared Thermography for Early Detection of Mastitis in Dairy Cows. Can. J. Anim. Sci. 2000, 80, 764–765. [Google Scholar]
- Barth, K. Basic Investigations to Evaluate a Highly Sensitive Infrared-Thermograph-Technique to Detect Udder Inflammation in Cows. Milchwissenschaft 2000, 55, 607–609. [Google Scholar]
- Gayathri, S.L.; Bhakat, M.; Mohanty, T.K. Seasonal Assessment of Mastitis Using Thermogram Analysis in Murrah Buffaloes. J. Therm. Biol. 2024, 121, 103842. [Google Scholar] [CrossRef]
- Martins, R.F.S.; do Prado Paim, T.; de Abreu Cardoso, C.; Stéfano Lima Dallago, B.; de Melo, C.B.; Louvandini, H.; McManus, C. Mastitis Detection in Sheep by Infrared Thermography. Res. Vet. Sci. 2013, 94, 722–724. [Google Scholar] [CrossRef]
- Castro-Costa, A.; Caja, G.; Salama, A.A.K.; Rovai, M.; Flores, C.; Aguiló, J. Thermographic Variation of the Udder of Dairy Ewes in Early Lactation and Following an Escherichia Coli Endotoxin Intramammary Challenge in Late Lactation. J. Dairy Sci. 2014, 97, 1377–1387. [Google Scholar] [CrossRef]
- D’Alterio, G.; Casella, S.; Gatto, M.; Gianesella, M.; Piccione, G.; Morgante, M. Circadian Rhythm of Foot Temperature Assessed Using Infrared Thermography in Sheep. Czech J. Anim. Sci. 2011, 56, 293–300. [Google Scholar] [CrossRef]
- Barnes, R.J.; Comline, R.S.; Dobson, A. Changes in the Blood Flow to the Digestive Organs of Sheep Induced by Feeding. Q. J. Exp. Physiol. 1983, 68, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Korelidou, V.; Kalogianni, A.I.; Maltampes, A.; Gelasakis, A.I. O-177 The Use of Infrared Thermography for the Clinical Assessment of Udder Health Status in Goats. Anim. Sci. Proc. 2023, 14, 188–189. [Google Scholar] [CrossRef]
- Paulrud, C.O.; Clausen, S.; Andersen, P.E.; Rasmussen, M.D. Infrared Thermography and Ultrasonography to Indirectly Monitor the Influence of Liner Type and Overmilking on Teat Tissue Recovery. Acta Vet. Scand. 2005, 46, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Tangorra, F.M.; Redaelli, V.; Luzi, F.; Zaninelli, M. The Use of Infrared Thermography for the Monitoring of Udder Teat Stress Caused by Milking Machines. Animals 2019, 9, 384. [Google Scholar] [CrossRef]
- Alejandro, M.; Romero, G.; Sabater, J.M.; Díaz, J.R. Infrared Thermography as a Tool to Determine Teat Tissue Changes Caused by Machine Milking in Murciano-Granadina Goats. Livest. Sci. 2014, 160, 178–185. [Google Scholar] [CrossRef]
- Marnet, P.G.; Velasquez, A.B.; Dzidic, A. Infrared Thermography of Teat in French Dairy Alpine Goats: A Promising Tool to Study Animal–Machine Interaction during Milking but Not to Detect Mastitis. Animals 2024, 14, 882. [Google Scholar] [CrossRef]
- Berry, R.J.; Kennedy, A.D.; Scott, S.L.; Kyle, B.L.; Schaefer, A.L. Daily Variation in the Udder Surface Temperature of Dairy Cows Measured by Infrared Thermography: Potential for Mastitis Detection. Can. J. Anim. Sci. 2003, 83, 687–693. [Google Scholar] [CrossRef]
- Sathiyabarathi, M.; Jeyakumar, S.; Manimaran, A.; Heartwin, A.P.; Sivaram, M.; Kerekoppa, R. Influence of Circadian Rhythm, Breed, Stage of Lactation, Milk Yield and Parity on Body and Udder Skin Surface Temperature of Lactating Cows Monitored by Infrared Thermography. J. Appl. Anim. Res. 2023, 51, 406–413. [Google Scholar] [CrossRef]
- Yang, C.; Li, G.; Zhang, X.; Gu, X. Udder Skin Surface Temperature Variation Pre- and Post- Milking in Dairy Cows as Determined by Infrared Thermography. J. Dairy. Res. 2018, 85, 201–203. [Google Scholar] [CrossRef]
- Stumpf, M.T.; McManus, C.M.; Daltro, D.S.; Alfonzo, E.P.M.; Dalcin, V.; Kolling, G.J.; Vieira, R.A.; Louvandini, H.; Fischer, V.; da Silva, M.V.G.B. Different Methods of Assessing Udder Temperature through Thermography and Their Relation with Rectal Temperature. Trop. Anim. Health Prod. 2021, 53, 44. [Google Scholar] [CrossRef]
- Korelidou, V.; Kalogianni, A.I.; Gelasakis, A.I. The Association between Body Condition Score and the Udder Skin Surface Temperature in Goats. In Proceedings of the 74th Annual Meeting of the European Federation of Animal Science, Lyon, France, 26 August–1 September 2023; Wageningen Academic Publishers: Lyon, France, 2023; p. 949. [Google Scholar]
- Watz, S.; Petzl, W.; Zerbe, H.; Rieger, A.; Glas, A.; Schröter, W.; Landgraf, T.; Metzner, M. Technical Note: Automatic Evaluation of Infrared Thermal Images by Computerized Active Shape Modeling of Bovine Udders Challenged with Escherichia coli. J. Dairy Sci. 2019, 102, 4541–4545. [Google Scholar] [CrossRef] [PubMed]
- Khakimov, A.R.; Pavkin, D.Y.; Yurochka, S.S.; Astashev, M.E.; Dovlatov, I.M. Development of an Algorithm for Rapid Herd Evaluation and Predicting Milk Yield of Mastitis Cows Based on Infrared Thermography. Appl. Sci. 2022, 12, 6621. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, X.; He, Z.; Feng, Y.; Liu, G. Accurate Detection of Dairy Cow Mastitis with Deep Learning Technology: A New and Comprehensive Detection Method Based on Infrared Thermal Images. Animal 2022, 16, 100646. [Google Scholar] [CrossRef] [PubMed]
- Xudong, Z.; Xi, K.; Ningning, F.; Gang, L. Automatic Recognition of Dairy Cow Mastitis from Thermal Images by a Deep Learning Detector. Comput. Electron. Agric. 2020, 178, 105754. [Google Scholar] [CrossRef]
- Chu, M.; Li, Q.; Wang, Y.; Zeng, X.; Si, Y.; Liu, G. Fusion of Udder Temperature and Size Features for the Automatic Detection of Dairy Cow Mastitis Using Deep Learning. Comput. Electron. Agric. 2023, 212, 108131. [Google Scholar] [CrossRef]
- Gayathri, S.L.; Bhakat, M.; Mohanty, T.K.; Chaturvedi, K.K.; Kumar, R.R.; Gupta, A.; Kumar, S. Udder Thermogram-Based Deep Learning Approach for Mastitis Detection in Murrah Buffaloes. Comput. Electron. Agric. 2024, 220, 108906. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Greenwood, P.L.; Halachmi, I. Advancements in Sensor Technology and Decision Support Intelligent Tools to Assist Smart Livestock Farming. J. Anim. Sci. 2021, 99, skab038. [Google Scholar] [CrossRef]
- Halachmi, I.; Guarino, M.; Bewley, J.; Pastell, M. Smart Animal Agriculture: Application of Real-Time Sensors to Improve Animal Well-Being and Production. Annu. Rev. Anim. Biosci. 2019, 7, 403–425. [Google Scholar] [CrossRef]
- Simitzis, P.; Tzanidakis, C.; Tzamaloukas, O.; Sossidou, E. Contribution of Precision Livestock Farming Systems to the Improvement of Welfare Status and Productivity of Dairy Animals. Dairy. 2021, 3, 12–28. [Google Scholar] [CrossRef]
- Berckmans, D. Precision Livestock Farming Technologies for Welfare Management in Intensive Livestock Systems. Rev. Sci. Tech. 2014, 33, 189–196. [Google Scholar] [CrossRef]
- Berckmans, D. General Introduction to Precision Livestock Farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef]
- Pacheco, V.M.; de Sousa, R.V.; da Silva Rodrigues, A.V.; de Souza Sardinha, E.J.; Martello, L.S. Thermal Imaging Combined with Predictive Machine Learning Based Model for the Development of Thermal Stress Level Classifiers. Livest. Sci. 2020, 241, 104244. [Google Scholar] [CrossRef]
- Tommasoni, C.; Fiore, E.; Lisuzzo, A.; Gianesella, M. Mastitis in Dairy Cattle: On-Farm Diagnostics and Future Perspectives. Animals 2023, 13, 2538. [Google Scholar] [CrossRef]
- Maatje, K.; Huijsmans, P.J.M.; Rossing, W.; Hogewerf, P.H. The Efficacy of In-Line Measurement of Quarter Milk Electrical Conductivity, Milk Yield and Milk Temperature for the Detection of Clinical and Subclinical Mastitis. Livest. Prod. Sci. 1992, 30, 239–249. [Google Scholar] [CrossRef]
- Naqvi, S.A.; King, M.T.M.; Matson, R.D.; DeVries, T.J.; Deardon, R.; Barkema, H.W. Mastitis Detection with Recurrent Neural Networks in Farms Using Automated Milking Systems. Comput. Electron. Agric. 2022, 192, 106618. [Google Scholar] [CrossRef]
- Gayathri, S.L.; Bhakat, M.; Mohanty, T.K. Short Milking Tube Thermogram Analysis: An Indicator of Mastitis in Murrah Buffaloes. Trop. Anim. Health Prod. 2024, 56, 5. [Google Scholar] [CrossRef]
- Montanholi, Y.R.; Lim, M.; Macdonald, A.; Smith, B.A.; Goldhawk, C.; Schwartzkopf-Genswein, K.; Miller, S.P. Technological, Environmental and Biological Factors: Referent Variance Values for Infrared Imaging of the Bovine. J. Anim. Sci. Biotechnol. 2015, 6, 27. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Pereira, A.M.F.; Wang, D.; Martínez-Burnes, J.; Ghezzi, M.; Hernández-Avalos, I.; Lendez, P.; Mora-Medina, P.; Casas, A.; Olmos-Hernández, A.; et al. Clinical Applications and Factors Involved in Validating Thermal Windows Used in Infrared Thermography in Cattle and River Buffalo to Assess Health and Productivity. Animals 2021, 11, 2247. [Google Scholar] [CrossRef]
- Duarte, A.; Carrão, L.; Espanha, M.; Viana, T.; Freitas, D.; Bártolo, P.; Faria, P.; Almeida, H.A. Segmentation Algorithms for Thermal Images. Procedia Technol. 2014, 16, 1560–1569. [Google Scholar] [CrossRef]
- Perić, D.; Livada, B.; Perić, M.; Vujić, S. Thermal Imager Range: Predictions, Expectations, and Reality. Sensors 2019, 19, 3313. [Google Scholar] [CrossRef]
- Constable, P.D.; Hinchcliff, K.W.; Done, S.H.; Grünberg, W. (Eds.) Diseases of the Mammary Gland. In Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs, and Goats; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 1904–2001. [Google Scholar]
- Cobirka, M.; Tancin, V.; Slama, P. Epidemiology and Classification of Mastitis. Animals 2020, 10, 2212. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Barkema, H.W.; Brito, L.F.; Narayana, S.G.; Miglior, F. Symposium Review: Novel Strategies to Genetically Improve Mastitis Resistance in Dairy Cattle. J. Dairy Sci. 2018, 101, 2724–2736. [Google Scholar] [CrossRef] [PubMed]
- Oget, C.; Tosser-Klopp, G.; Rupp, R. Genetic and Genomic Studies in Ovine Mastitis. Small Rumin. Res. 2019, 176, 55–64. [Google Scholar] [CrossRef]
- Fernandes, J.B.C.; Zanardo, L.G.; Galvão, N.N.; Carvalho, I.A.; Nero, L.A.; Moreira, M.A.S. Escherichia Coli from Clinical Mastitis: Serotypes and Virulence Factors. J. Vet. Diagn. Investig. 2011, 23, 1146–1152. [Google Scholar] [CrossRef] [PubMed]
- Haveri, M.; Taponen, S.; Vuopio-Varkila, J.; Salmenlinna, S.; Pyorala, S. Bacterial Genotype Affects the Manifestation and Persistence of Bovine Staphylococcus Aureus Intramammary Infection. J. Clin. Microbiol. 2005, 43, 959–961. [Google Scholar] [CrossRef]
- Thompson-Crispi, K.; Atalla, H.; Miglior, F.; Mallard, B.A. Bovine Mastitis: Frontiers in Immunogenetics. Front. Immunol. 2014, 5, 493. [Google Scholar] [CrossRef]
- Benites, N.R.; Guerra, J.L.; Melville, P.A.; da Costa, E.O. Aetiology and Histopathology of Bovine Mastitis of Espontaneous Occurrence. J. Vet. Med. Ser. B 2002, 49, 366–370. [Google Scholar] [CrossRef]
Animals | Temperature (°C) (Mean ± SD/Mean ± SE) | Reference | |
---|---|---|---|
Before Milking | After Milking | ||
8 Danish Holstein cows | A. Extended liner: (i) Not overmilked: 34.4 (ii) Overmilked: 33.8 B. Soft liner: (i) Not overmilked: 33.8 (ii) Overmilked: 33.8 | A. Extended liner: (i) Not Overmilked: 35.3 (ii) Overmilked: 35.6 B. Soft liner: (i) Not overmilked: 34.6 (ii) Overmilked: 34.9 | [96] |
30 Murciano- Granadina goats | Area (distance from teat end) (i) 1 cm: 28.4 ± 0.26 (ii) 2 cm: 31.5 ± 0.26 (iii) 3 cm: 33.2 ± 0.26 (iv) udder: 34.3 ± 0.26 | Area (distance from teat end) (i) 1 cm: 33.3 ± 0.26 (ii) 2 cm: 34.1 ± 0.26 (iii) 3 cm: 34.6 ± 0.26 (iv) udder: 35.9 ± 0.26 | [98] |
137 Holstein Friesien cows | - | Purple teat color (i) Teat base Tavg: 34.5 ± 0.09 SE, Tmax: 35.1 ± 0.10 SE (ii) Teat centre Tavg: 35.1 ± 0.08 SE, Tmax: 36.1 ± 0.08 SE (iii) Teat tip Tavg: 35.2 ± 0.14 SE, Tmax: 37.0 ± 0.10 SE | [97] |
Animals | Stage of Milking Period (DIM) (Mean ± SD) | Milk Yield (Mean ± SD) | Anatomical Region of the Udder | Time | Temperature (°C) (Mean ± SD) | Reference |
---|---|---|---|---|---|---|
10 Holstein Friesian cows | 104 | - | CV | (i) Study 1: 30 min before exercise and immediately after returning (ii) Study 2: /2h | (i) Before exercise: 33.4 (ii) After exercise: 34.5 | [100] |
102 Holstein Friesian cows | 76 ± 67 SD | 13.5 ± 4.7 SD kg | CV | BM, AM | A. Milking/quarter (i) Left: BM: 35.9 ± 0.87 SD, AM: 37.2 ± 0.83 SD (ii) Right: BM: 35.8 ± 0.93 SD, AM: 37.1 ± 0.85 SD B. Milk yield (i) <10 kg: BM: 35.4 ± 0.21 SD, AM: 36.3 ± 0.20 SD (ii) 10–15 kg: BM: 35.8 ± 0.11 SD, AM: 37.2 ± 0.12 SD (iii) > 15 kg: BM: 36.1 ± 0.12 SD, AM: 37.3 ± 0.10 SD | [102] |
19 Holstein and 19 Girolando cows | (i) Holstein: 249 ± 68 SD (ii) Girolando: 136 ± 97 SD | (i) Holstein: 14.8 ± 2.6 SD L (ii) Girolando: 13.6 ± 4.89 SD L | LV | Between morning and afternoon milking | - | [103] |
19 crossbred Holstein Friesian x Bos indicus and 14 Deoni cows | - | (i) Crossbred: 14.4 ± 0.2 SD kg (ii) Deoni: 3.5 ± 0.1 SD kg | LV, CV | BMM, BAM | A. Milking time (i) Morning Crossbred: 37.2 ± 0.03 SD, Deoni: 36.2 ± 0.07 SD (ii) Evening Crossbred: 38.2 ± 0.06 SD, Deoni: 37.2 ± 0.08 SD B. Stage of lactation and milk yield Early, mid, late, low, and high milk yield: Crossbred: 37.2 ± 0.01 SD, Deoni: 36.2 ± 0.01 SD C. Season—Crossbred (i) Spring: 37.2 ± 0.01 SD (ii) Winter: 36.4 ± 0.01 SD (iii) Summer: 37.8 ± 0.01 SD | [101] |
Study 1: 104 Skopelos goats Study 2: 236 Skopelos goats | Study 1: whole lactation period Study 2: mid-lactation | - | CV (udder, teats, udder cleft) | AM | Study 1: (i) TSST: max: 32.9–37.3, mean: 31.9–36.9 (ii) UCST: max: 36.3–38.0, mean: 35.1–37.4 (iii) USST: max: 37.1–38.4, mean: 35.2–37.5 Study 2: (i) TSST: max: 34.2 ± 0.99 SD, mean: 33.0 ± 0.95 SD (ii) UCST: max: 36.8 ± 0.88 SD, mean: 35.2 ± 1.28 SD (iii) USST max: 37.6 ± 0.68 SD, mean: 35.6 ± 0.87 SD | [104] |
Animals | Stage of Milking Period | Anatomical Region of the Udder | Time | Temperature (°C) (Mean ± SD/Mean ± SE) | Sensitivity/Specificity/ Accuracy (%) | Reference |
---|---|---|---|---|---|---|
5 Holstein Friesien cows | - | CV | /2h before and after E. coli infusion | (i) Before E. coli challenge Automatic: 36.3, Manual: 37.3 (ii) After E. coli challenge Automatic: 38.7, Manual: 39.6 | (i) Automatic Se: 93.8, Sp: 95.0 (ii) Manual Se: 93.8, Sp: 96.4 | [105] |
30 Holstein Friesian cows | Middle of the lactation period | - | BM | SCM: USST by 0.8 °C higher than OST | Se: 92.3, Sp: 76.5, Ac: 83.3 | [108] |
250 Yaroslav cows | 5th/6th month of lactation | CV, LV | BM, AM | (i) Healthy: 32.0–35.9 (ii) SCM: 36.0–38.3 (iii) CM: 38.4–39.0 | - | [106] |
105 Holstein Friesian cows | - | LV | BM | 0.72 °C difference in USST between mastitic and healthy USST > OST (by 0.8 °C) | Se: 96.3, Sp: 84.6, Ac: 87.6 | [107] |
196 Holstein Friesian cows | Middle of lactation | LV | BM | - | (i) SCM: Se: 81.3, Sp: 91.9, Ac: 88.6 (ii) CM: Se: 87.5, Sp: 94.0, Ac: 88.6 | [109] |
40 Murrah buffaloes | Various | LV | BM | (i) Healthy: 34.5 ± 0.04 SE (ii) SCM: 35.8 ± 0.03 SE (iii) CM: 37.1 ± 0.07 SE | (i) SCM: Se: 95.2, Sp: 91.2 (ii) CM: Se: 96.0, Sp: 93.5 | [110] |
Animal | Environment | Technology Aspect |
---|---|---|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korelidou, V.; Simitzis, P.; Massouras, T.; Gelasakis, A.I. Infrared Thermography as a Diagnostic Tool for the Assessment of Mastitis in Dairy Ruminants. Animals 2024, 14, 2691. https://doi.org/10.3390/ani14182691
Korelidou V, Simitzis P, Massouras T, Gelasakis AI. Infrared Thermography as a Diagnostic Tool for the Assessment of Mastitis in Dairy Ruminants. Animals. 2024; 14(18):2691. https://doi.org/10.3390/ani14182691
Chicago/Turabian StyleKorelidou, Vera, Panagiotis Simitzis, Theofilos Massouras, and Athanasios I. Gelasakis. 2024. "Infrared Thermography as a Diagnostic Tool for the Assessment of Mastitis in Dairy Ruminants" Animals 14, no. 18: 2691. https://doi.org/10.3390/ani14182691
APA StyleKorelidou, V., Simitzis, P., Massouras, T., & Gelasakis, A. I. (2024). Infrared Thermography as a Diagnostic Tool for the Assessment of Mastitis in Dairy Ruminants. Animals, 14(18), 2691. https://doi.org/10.3390/ani14182691