Effects of Resveratrol-Loaded Cyclodextrin on the Quality Characteristics of Ram Spermatozoa Following Cryopreservation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Preparation of Semen Extenders
2.2.1. Resveratrol-Loaded Cyclodextrin (RLC) Preparation
2.2.2. Preparation of Tris-Citric Acid-Glucose (TCG) Medium
2.2.3. Preparation of Tris-Based Egg Yolk (TEY) Extender
2.3. Experimental Design and Cryopreservation Protocol
2.4. Sperm Quality Assessments
2.4.1. Computer-Assisted Semen Analysis (CASA)
2.4.2. Hypo-Osmotic Swelling Test (HOST)
2.4.3. Assessment of Capacitation Status
2.4.4. Flow Cytometric Analyses of Sperm Acrosome Integrity, Sperm Membrane Integrity, Mitochondrial Functions, and Oxidative Stress Status
2.5. Statistical Analysis
3. Results
3.1. CASA Results
3.2. Capacitation Status, HOST, and Flow Cytometry Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ak, K.; Cirit, Ü.; Nur, Z.; Bacınoğlu, S.; Pabuccuoğlu, S.; Özdaş, Ö.B.; Birler, S. Effects of Extender Osmolarity, Cooling Rate, Dilution Rate and Glycerol Addition Time on Post-Thaw Ram Semen Characteristics and Fertilization. Istanb. Univ. Vet. Fak. Derg. 2010, 36, 33–46. [Google Scholar] [CrossRef]
- Dowling, D.K.; Simmons, L.W. Reactive Oxygen Species as Universal Constraints in Life-History Evolution. Proc. Biol. Sci. 2009, 276, 1737–1745. [Google Scholar] [CrossRef] [PubMed]
- Salamon, S.; Maxwell, W.M.C. Storage of Ram Semen. Anim. Reprod. Sci. 2000, 62, 77–111. [Google Scholar] [CrossRef] [PubMed]
- Allai, L.; Benmoula, A.; da Silva, M.M.; Nasser, B.; El Amiri, B. Supplementation of Ram Semen Extender to Improve Seminal Quality and Fertility Rate. Anim. Reprod. Sci. 2018, 192, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Jahan, S.; Ullah, H.; Ullah, F.; Salman, M.M. The Addition of Resveratrol in Tris Citric Acid Extender Ameliorates Post-Thaw Quality Parameters, Antioxidant Enzymes Levels, and Fertilizing Capability of Buffalo (Bubalus bubalis) Bull Spermatozoa. Theriogenology 2020, 152, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Alhelal, A.M.; Abdulkareem, T.A. Effect of Adding Resveratrol to Soybean-Lecithin Extender on Some Semen Attributes of Buffalo Bulls. Iraqi J. Agric. Sci. 2023, 54, 1074–1083. [Google Scholar] [CrossRef]
- Al-Mutary, M.G.; Al-Ghadi, M.Q.; Ammari, A.A.; Al-Himadi, A.R.; Al-Jolimeed, A.H.; Arafah, M.W.; Amran, R.A.; Aleissa, M.S.; Swelum, A.A.A. Effect of Different Concentrations of Resveratrol on The Quality and in Vitro Fertilizing Ability of Ram Semen Stored at 5 °C for Up to 168 h. Theriogenology 2020, 152, 139–146. [Google Scholar] [CrossRef]
- Assunção, C.M.; Mendes, V.R.A.; Brandão, F.Z.; Batista, R.I.T.P.; Souza, E.D.; de Carvalho, B.C.; Quintão, C.C.R.; Raposo, N.R.B.; Camargo, L.S.A. Effects of Resveratrol in Bull Semen Extender on Post-Thaw Sperm Quality and Capacity for Fertilization and Embryo Development. Anim. Reprod. Sci. 2021, 226, 106697. [Google Scholar] [CrossRef]
- Bang, S.; Qamar, A.Y.; Tanga, B.M.; Fang, X.; Cho, J. Effects of Resveratrol Supplementation on the Motility, Structural Integrity, and Mitochondrial Function of Freeze-Thawed Dog Sperm. Preprints 2020, 2020120821. [Google Scholar] [CrossRef]
- Brair, V.L.; Correia, L.F.L.; Barbosa, N.O.; Braga, R.F.; Taira, A.R.; Silva, A.A.; Brandão, F.Z.; Ungerfeld, R.; Souza-Fabjan, J.M.G. The Association of Resveratrol and AFPI Did Not Enhance the Cryoresistance of Ram Sperm. Anim. Reprod. 2024, 21, e20230159. [Google Scholar] [CrossRef]
- Branco, C.S.; Garcez, M.E.; Pasqualotto, F.F.; Erdtman, B.; Salvador, M. Resveratrol and Ascorbic Acid Prevent DNA Damage Induced by Cryopreservation in Human Semen. Cryobiology 2010, 60, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Bucak, M.N.; Ataman, M.B.; Başpınar, N.; Uysal, O.; Taşpınar, M.; Bilgili, A.; Öztürk, C.; Güngör, Ş.; İnanç, M.E.; Akal, E. Lycopene and Resveratrol Improve Post-Thaw Bull Sperm Parameters: Sperm Motility, Mitochondrial Activity and DNA Integrity. Andrologia 2015, 47, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Meng, F.; Liu, Y.; Zhu, C.; Ling, Y.; Liu, C.; Li, L.; Liu, Y.; He, X.; Cao, J.; et al. Effects of Resveratrol On DLD and NDUFB9 Decrease in Frozen Semen of Mongolian Sheep. Cryobiology 2024, 114, 104791. [Google Scholar] [CrossRef] [PubMed]
- Correa, F.; Ceballos, E.; Rojano, B.; Restrepo, G.; Usuga, A. Quality and Redox State of Bovine Sperm Cryopreserved with Resveratrol Use of Resveratrol in Bovine Semen. Reprod. Domest. Anim. 2024, 59, e14517. [Google Scholar] [CrossRef] [PubMed]
- Falchi, L.; Pau, S.; Pivato, I.; Bogliolo, L.; Zedda, M.T. Resveratrol Supplementation and Cryopreservation of Buck Semen. Cryobiology 2020, 95, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Gadani, B.; Bucci, D.; Spinaci, M.; Tamanini, C.; Galeati, G. Resveratrol and Epigallocatechin-3-Gallate Addition to Thawed Boar Sperm Improves in Vitro Fertilization. Theriogenology 2017, 90, 88–93. [Google Scholar] [CrossRef]
- Garcez, M.E.; dos Santos Branco, C.; Lara, L.V.; Pasqualotto, F.F.; Salvador, M. Effects of Resveratrol Supplementation on Cryopreservation Medium of Human Semen. Fertil. Steril. 2010, 94, 2118–2121. [Google Scholar] [CrossRef]
- Giaretta, E.; Bucci, D.; Mari, G.; Galeati, G.; Love, C.C.; Tamanini, C.; Spinaci, M. Is Resveratrol Effective in Protecting Stallion Cooled Semen? J. Equine Vet. Sci. 2014, 34, 1307–1312. [Google Scholar] [CrossRef]
- Kaeoket, K.; Chanapiwat, P. The Beneficial Effect of Resveratrol on the Quality of Frozen-Thawed Boar Sperm. Animals 2023, 13, 2829. [Google Scholar] [CrossRef]
- Li, C.Y.; Zhao, Y.H.; Hao, H.S.; Wang, H.Y.; Huang, J.M.; Yan, C.L.; Du, W.H.; Pang, Y.W.; Zhang, P.P.; Liu, Y.; et al. Resveratrol Significantly Improves the Fertilisation Capacity of Bovine Sex-Sorted Semen by Inhibiting Apoptosis and Lipid Peroxidation. Sci. Rep. 2018, 8, 760. [Google Scholar] [CrossRef]
- Longobardi, V.; Zullo, G.; Salzano, A.; De Canditiis, C.; Cammarano, A.; De Luise, L.; Puzio, M.V.; Neglia, G.; Gasparrini, B. Resveratrol Prevents Capacitation-Like Changes and Improves in Vitro Fertilizing Capability of Buffalo Frozen-Thawed Sperm. Theriogenology 2017, 88, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Larbi, A.; Wu, G.; Hong, Q.; Quan, G. Improving The Quality of Cryopreserved Goat Semen with A Commercial Bull Extender Supplemented with Resveratrol. Anim. Reprod. Sci. 2019, 208, 106127. [Google Scholar] [CrossRef] [PubMed]
- Sarlos, P.; Molnar, A.; Kokai, M.; Gábor, G.; Rátky, J. Comparative Evaluation of the Effect of Antioxidants in The Conservation of Ram Semen. Acta Vet. Hung. 2002, 50, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Shabani, N.M.; Amidi, F.; Sedighi, G.M.A.; Aleyasin, A.; Bakhshalizadeh, S.; Naji, M.; Nekoonam, S. Protective Features of Resveratrol on Human Spermatozoa Cryopreservation May Be Mediated Through 5′AMP-Activated Protein Kinase Activation. Andrology 2017, 5, 313–326. [Google Scholar] [CrossRef]
- Sharafi, M.; Blondin, P.; Vincent, P.; Anzar, M.; Benson, J.D. Hydroxytyrosol and Resveratrol Improves Kinetic and Flow Cytometric Parameters of Cryopreserved Bull Semen with Low Cryotolerance. Anim. Reprod. Sci. 2022, 245, 107065. [Google Scholar] [CrossRef]
- Silva, E.C.B.; Cajueiro, J.F.P.; Silva, S.V.; Soares, P.C.; Guerra, M.M.P. Effect of Antioxidants Resveratrol and Quercetin On in Vitro Evaluation of Frozen Ram Sperm. Theriogenology 2012, 77, 1722–1726. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, R.; Fan, X.; Lv, Y.; Zheng, Y.; Masudul Hoque, S.A.; Wu, D.; Zeng, W. Resveratrol Improves Boar Sperm Quality Via 5AMP-Activated Protein Kinase Activation During Cryopreservation. Oxidative Med. Cell. Longev. 2019, 2019, 5921503. [Google Scholar] [CrossRef]
- Al-Mutary, M.G. Use of Antioxidants to Augment Semen Efficiency During Liquid Storage and Cryopreservation in Livestock Animals: A Review. J. King Saud Univ. Sci. 2021, 33, 101226. [Google Scholar] [CrossRef]
- Uguralp, S.; Usta, U.; Mizrak, B. Resveratrol May Reduce Apoptosis of Rat Testicular Germ Cells After Experimental Testicular Torsion. Eur. J. Pediatr. Surg. 2005, 15, 333–336. [Google Scholar] [CrossRef]
- De La Lastra, C.A.; Villegas, I. Resveratrol as an Antioxidant and Pro-Oxidant Agent: Mechanisms and Clinical Implications. Biochem. Soc. Trans. 2007, 35, 1156–1160. [Google Scholar] [CrossRef]
- Baur, J.A.; Sinclair, D.A. Therapeutic Potential of Resveratrol: The in Vivo Evidence. Nat. Rev. Drug Discov. 2006, 5, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Ghazwani, M.; Alam, P.; Alqarni, M.H.; Yusufoglu, H.S.; Shakeel, F. Solubilization of Trans-Resveratrol in Some Mono-Solvents and Various Propylene Glycol+Water Mixtures. Molecules 2021, 26, 3091. [Google Scholar] [CrossRef]
- Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gandara, J. A Review on the Use of Cyclodextrins in Foods. Food Hydrocoll. 2009, 23, 1631–1640. [Google Scholar] [CrossRef]
- Grigorakis, S.; Benchennouf, A.; Halahlah, A.; Makris, D.P. High-Performance Green Extraction of Polyphenolic Antioxidants from Salvia fruticosa Using Cyclodextrins: Optimization, Kinetics, and Composition. Appl. Sci. 2020, 10, 3447. [Google Scholar] [CrossRef]
- Torres, V.; Hamdi, M.; Millán de la Blanca, M.G.; Urrego, R.; Echeverri, J.; López-Herrera, A.; Rizos, D.; Gutiérrez-Adán, A.; Sánchez-Calabuig, M.J. Resveratrol–Cyclodextrin Complex Affects the Expression of Genes Associated with Lipid Metabolism in Bovine in Vitro Produced Embryos. Reprod. Domest. Anim. 2018, 53, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Benhenia, K.; Lamara, A.; Fatmi, S.; Iguer-Ouada, M. Effect of Cyclodextrins, Cholesterol and Vitamin E and Their Complexation On Cryopreserved Epididymal Ram Semen. Small Rumin. Res. 2016, 141, 29–35. [Google Scholar] [CrossRef]
- Silva, F.; Figueiras, A.; Gallardo, E.; Nerín, C.; Domingues, F.C. Strategies to Improve the Solubility and Stability of Stilbene Antioxidants: A Comparative Study Between Cyclodextrins and Bile Acids. Food Chem. 2014, 145, 115–125. [Google Scholar] [CrossRef]
- Duarte, A.; Martinho, A.; Luís, Â.; Figueiras, A.; Oleastro, M.; Domingues, F.C.; Silva, F. Resveratrol Encapsulation with Methyl-β-cyclodextrin for Antibacterial and Antioxidant Delivery Applications. LWT-Food Sci. Technol. 2015, 63, 1254–1260. [Google Scholar] [CrossRef]
- Cirit, Ü.; Bağış, H.; Demir, K.; Agca, C.; Pabuccuoğlu, S.; Varışlı, Ö.; Agca, Y. Comparison of Cryoprotective Effects of Iodixanol, Trehalose and Cysteamine on Ram Semen. Anim. Reprod. Sci. 2013, 139, 38–44. [Google Scholar] [CrossRef]
- Demir, K.; Öztürk, G.B.; Cirit, Ü.; Bozkurt, H.H. Effects of Cooling Rate on Membrane Integrity and Motility Parameters of Cryopreserved Ram Spermatozoa. Kafkas Univ. Vet. Fak. Derg. 2015, 21, 61–67. [Google Scholar] [CrossRef]
- Bacinoglu, S.; Taş, M.; Cirit, Ü.; Özdaş, Ö.B.; Ak, K. The Potential Fertility Estimation Capacity of the Hypoosmotic Swelling Test, the Thermal Stress Test and A Modified Cervical Mucus Penetration Test in The Bovine. Anim. Reprod. Sci. 2008, 104, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Perez, L.J.; Valcarcel, A.; de Las Heras, M.A.; Moses, D.F.; Baldassarre, H. In Vitro Capacitation and Induction of Acrosomal Exocytosis in Ram Spermatozoa as Assessed by The Chlortetracycline Assay. Theriogenology 1996, 45, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Marco-Jiménez, F.; Puchades, S.; Gadea, J.; Vicente, J.S.; Viudes-de-Castro, M.P. Effect of Semen Collection Method on Pre- and Post-Thaw Guirra Ram Spermatozoa. Theriogenology 2005, 64, 1756–1765. [Google Scholar] [CrossRef] [PubMed]
- Camara, D.R.; Silva, S.V.; Almeida, F.C.; Nunes, J.F.; Guerra, M.M.P. Effects of Antioxidants and Duration of Pre-Freezing Equilibration on Frozen-Thawed Ram Semen. Theriogenology 2011, 76, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Gillan, L.; Evans, G.; Maxwell, W.M.C. Flow Cytometric Evaluation of Sperm Parameters in Relation to Fertility Potential. Theriogenology 2005, 63, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Collodel, G.; Federico, M.G.; Geminiani, M.; Martini, S.; Bonechi, C.; Rossi, C.; Figura, N.; Moretti, E. Effect of Trans-Resveratrol on Induced Oxidative Stress in Human Sperm and in Rat Germinal Cells. Reprod. Toxicol. 2011, 31, 239–246. [Google Scholar] [CrossRef]
- Santiago-Moreno, J.; Esteso, M.C.; Castaño, C.; Toledano-Díaz, A.; Delgadillo, J.A.; López-Sebastián, A. Seminal Plasma Removal by Density-Gradient Centrifugation Is Superior for Goat Sperm Preservation Compared with Classical Sperm Washing. Anim. Reprod. Sci. 2017, 181, 141–150. [Google Scholar] [CrossRef]
- Chenoweth, P.J. Semen quality assessment. In Proceedings of the Applied Reproductive Strategies in Beef Cattle Workshop, Manhattan, KS, USA, 5–6 September 2002; Kansas State University: Manhattan, KS, USA, 2002; pp. 247–254. [Google Scholar]
- Mocé, E.; Purdy, P.H.; Graham, J.K. Treating Ram Sperm with Cholesterol-Loaded Cyclodextrins Improves Cryosurvival. Anim. Reprod. Sci. 2010, 118, 236–247. [Google Scholar] [CrossRef]
- Zeng, W.X.; Terada, T. Freezability of Boar Spermatozoa Is Improved by Exposure to 2-Hydroxypropyl-Beta-Cyclodextrin. Reprod. Fertil. Dev. 2000, 12, 223–228. [Google Scholar] [CrossRef]
- Zeng, W.X.; Terada, T. Effects of Methyl-Beta-Cyclodextrin on Cryosurvival of Boar Spermatozoa. J. Androl. 2001, 22, 111–118. [Google Scholar] [CrossRef]
- Ilangumaran, S.; Hoessli, D.C. Effects of Cholesterol Depletion by Cyclodextrin on the Sphingolipid Microdomains of the Plasma Membrane. Biochem. J. 1998, 335, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, C.M.O.; Forell, F.; Oliveira, A.T.D.; Rodrigues, J.L. Current Status of Sperm Cryopreservation: Why Isn’t It Better? Theriogenology 2002, 57, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Iborra, A.; Companyó, M.; Martínez, P.; Morros, A. Cholesterol Efflux Promotes Acrosome Reaction in Goat Spermatozoa. Biol. Reprod. 2000, 62, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Nagao, Y.; Ohta, Y.; Murakami, H.; Kato, Y. The Effects of Methyl-Β-Cyclodextrin on in Vitro Fertilization and The Subsequent Development of Bovine Oocytes. Zygote 2010, 18, 323. [Google Scholar] [CrossRef] [PubMed]
- Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Cyclodextrin-Based Nanosponges for Delivery of Resveratrol: In Vitro Characterisation, Stability, Cytotoxicity and Permeation Study. AAPS PharmSciTech 2011, 12, 279–286. [Google Scholar] [CrossRef]
- López, C.A.; de Vries, A.H.; Marrink, S.J. Molecular Mechanism of Cyclodextrin Mediated Cholesterol Extraction. PLoS Comput. Biol. 2011, 7, e1002020. [Google Scholar] [CrossRef] [PubMed]
- López-Nicolás, J.M.; Núñez-Delicado, E.; Pérez-López, A.J.; Barrachina, A.C.; Cuadra-Crespo, P. Determination of Stoichiometric Coefficients and Apparent Formation Constants for Β-Cyclodextrin Complexes of Trans-Resveratrol Using Reversed-Phase Liquid Chromatography. J. Chromatogr. A 2006, 1135, 158–165. [Google Scholar] [CrossRef]
- Gillan, L.; Evans, G.; Maxwell, W.M.C. Capacitation Status and Fertility of Fresh and Frozen–Thawed Ram Spermatozoa. Reprod. Fertil. Dev. 1997, 9, 481–488. [Google Scholar] [CrossRef]
- Watson, P.F. Recent Developments and Concepts in The Cryopreservation of Spermatozoa and The Assessment of Their Post-Thawing Function. Reprod. Fertil. Dev. 1995, 7, 871–891. [Google Scholar] [CrossRef]
- Leclerc, P.; de Lamirande, E.V.E.; Gagnon, C. Interaction Between Ca2+, Cyclic 3‘, 5′Adenosine Monophosphate, The Superoxide Anion, And Tyrosine Phosphorylation Pathways in The Regulation of Human Sperm Capacitation. J. Androl. 1998, 19, 434–443. [Google Scholar] [CrossRef]
- Naz, R.K.; Rajesh, P.B. Role of Tyrosine Phosphorylation in Sperm Capacitation/Acrosome Reaction. Reprod. Biol. Endocrinol. 2004, 2, 75. [Google Scholar] [CrossRef] [PubMed]
- Visconti, P.E.; Bailey, J.L.; Moore, G.D.; Pan, D.; Olds-Clarke, P.; Kopf, G.S. Capacitation of Mouse Spermatozoa. I. Correlation Between the Capacitation State and Protein Tyrosine Phosphorylation. Development 1995, 121, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, L.; Ma, H.; Wang, C.; Li, M.; Wang, Q. Resveratrol Reduces Intracellular Free Calcium Concentration in Rat Ventricular Myocytes. Acta Physiol. Sin. 2005, 57, 599–6004. [Google Scholar]
- Desroches, N.R.; McNiven, M.A.; Foote, K.D.; Richardson, G.F. The Effect of Blueberry Extracts and Quercetin on Capacitation Status of Stored Boar Sperm. Cell Preserv. Technol. 2005, 3, 165–168. [Google Scholar] [CrossRef]
- Turrens, J.F. Mitochondrial Formation of Reactive Oxygen Species. J. Physiol. 2003, 552, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Quan, F.; Chen, D.; Zheng, Y.; Zhang, B.; Wang, Y.; Zhang, Y. Protective Function of Alpha-Lipoic Acid on Sperm Motility and Mitochondrial Function During Goat Sperm-Mediated Gene Transfer. Small Rumin. Res. 2011, 99, 191–198. [Google Scholar] [CrossRef]
- Najafi, A.; Kia, H.D.; Hamishehkar, H.; Moghaddam, G.; Alijani, S. Effect of Resveratrol-Loaded Nanostructured Lipid Carriers Supplementation in Cryopreservation Medium on Post-Thawed Sperm Quality and Fertility of Roosters. Anim. Reprod. Sci. 2019, 201, 32–40. [Google Scholar] [CrossRef]
- McCormack, J.G.; Halestrap, A.P.; Denton, R.M. Role of Calcium Ions in Regulation of Mammalian Intramitochondrial Metabolism. Physiol. Rev. 1990, 70, 391–425. [Google Scholar] [CrossRef]
- Guthrie, H.D.; Welch, G.R. Determination of Intracellular Reactive Oxygen Species and High Mitochondrial Membrane Potential in Percoll-Treated Viable Boar Sperm Using Fluorescence-Activated Flow Cytometry. J. Anim. Sci. 2006, 84, 2089–2100. [Google Scholar] [CrossRef]
- Longobardi, V.; Salzano, A.; Campanile, G.; Marrone, R.; Palumbo, F.; Vitiello, M.; Zullo, G.; Gasparrini, B. Carnitine Supplementation Decreases Capacitation-Like Changes of Frozen-Thawed Buffalo Spermatozoa. Theriogenology 2017, 88, 236–243. [Google Scholar] [CrossRef]
- Merati, Z.; Farshad, A.; Farzinpour, A.; Rostamzadeh, J.; Sharafi, M. Anti-Apoptotic Effects of Minocycline on Ram Epididymal Spermatozoa Exposed to Oxidative Stress. Theriogenology 2018, 114, 266–272. [Google Scholar] [CrossRef] [PubMed]
Groups | Treatment |
---|---|
Control | TCG + TEY |
RES10 | TCG containing 10 µg/mL RES (in total volume) + TEY |
RES20 | TCG containing 20 µg/mL RES (in total volume) + TEY |
RES40 | TCG containing 40 µg/mL RES (in total volume) + TEY |
CD10 | TCG containing 178.65 µg/mL CD (in total volume) + TEY |
CD20 | TCG containing 357.30 µg/mL CD (in total volume) + TEY |
CD40 | TCG containing 714.60 µg/mL CD (in total volume) + TEY |
RLC10 | TCG containing 10 µg/mL RES loaded CD (10 µg/mL RES + 178.65 µg/mL CD in total volume) + TEY |
RLC20 | TCG containing 20 µg/mL RES loaded CD (20 µg/mL RES + 357.30 µg/mL CD in total volume) + TEY |
RLC40 | TCG containing 40 µg/mL RES loaded CD (40 µg/mL RES 714.60 µg/mL CD in total volume) + TEY |
Group | CASA | ||||||||
---|---|---|---|---|---|---|---|---|---|
Total Motility (%) | Progressive Motility (%) | Kinetic Velocity Parameters | |||||||
VAP (μm/s) | VSL (μm/s) | VCL (μm/s) | ALH (μm/s) | BCF (Hz) | STR (%) | LIN (%) | |||
Control | 91.90 ± 1.27 b | 51.20 ± 2.99 | 122.58 ± 5.27 | 102.25 ± 4.92 | 191.85 ± 9.09 | 6.56 ± 0.28 | 35.93 ± 1.14 | 82.10 ± 1.33 | 56.10 ± 1.98 |
RES10 | 96.20 ± 0.64 a | 54.20 ± 3.00 | 124.87 ± 4.00 | 104.03 ± 3.63 | 191.78 ± 8.26 | 6.54 ± 0.33 | 34.54 ± 1.39 | 82.40 ± 1.60 | 57.00 ± 2.48 |
RES20 | 96.00 ± 0.51 a | 52.00 ± 3.23 | 123.91 ± 4.17 | 102.02 ± 3.84 | 192.49 ± 8.25 | 6.64 ± 0.40 | 34.78 ± 1.17 | 81.60 ± 1.51 | 55.90 ± 2.28 |
RES40 | 94.10 ± 1.40 ab | 51.90 ± 2.96 | 123.37 ± 3.70 | 101.60 ± 3.56 | 192.09 ± 8.06 | 6.54 ± 0.35 | 33.84 ± 1.28 | 81.40 ± 1.58 | 55.50 ± 2.68 |
CD10 | 93.30 ± 0.96 ab | 50.60 ± 2.54 | 122.38 ± 3.53 | 102.01 ± 3.15 | 189.46 ± 6.44 | 6.40 ± 0.28 | 35.38 ± 1.27 | 82.40 ± 1.38 | 56.40 ± 2.14 |
CD20 | 93.30 ± 1.35 ab | 51.80 ± 3.15 | 123.26 ± 3.89 | 103.25 ± 3.94 | 189.74 ± 6.77 | 6.42 ± 0.35 | 35.54 ± 1.42 | 82.50 ± 1.68 | 56.60 ± 2.67 |
CD40 | 93.40 ± 0.74 ab | 53.50 ± 2.67 | 126.23 ± 3.86 | 105.98 ± 4.12 | 192.93 ± 5.24 | 6.44 ± 0.29 | 34.85 ± 1.31 | 82.70 ± 1.31 | 57.10 ± 2.30 |
RLC10 | 95.30 ± 0.47 a | 50.90 ± 3.50 | 124.97 ± 4.63 | 102.46 ± 5.09 | 191.99 ± 6.23 | 6.52 ± 0.31 | 33.05 ± 1.37 | 80.90 ± 1.68 | 55.50 ± 2.65 |
RLC20 | 95.40 ± 0.68 a | 53.50 ± 3.00 | 126.63 ± 4.27 | 105.05 ± 4.25 | 190.88 ± 8.14 | 6.18 ± 0.37 | 33.64 ± 1.05 | 82.60 ± 1.60 | 58.30 ± 2.81 |
RLC40 | 95.20 ± 0.69 a | 52.10 ± 2.97 | 126.96 ± 5.16 | 104.56 ± 4.57 | 192.44 ± 9.53 | 6.36 ± 0.34 | 34.20 ± 0.81 | 82.00 ± 1.57 | 57.70 ± 2.75 |
Group | CASA | ||||||||
---|---|---|---|---|---|---|---|---|---|
Total Motility (%) | Progressive Motility (%) | Kinetic Velocity Parameters | |||||||
VAP (μm/s) | VSL (μm/s) | VCL (μm/s) | ALH (μm/s) | BCF (Hz) | STR (%) | LIN (%) | |||
Control | 59.65 ± 3.66 ab | 29.15 ± 1.59 ab | 95.35 ± 2.84 ab | 84.84 ± 3.14 | 146.84 ± 3.39 | 5.79 ± 0.13 | 37.15 ± 0.71 | 85.85 ± 0.85 | 57.75 ± 1.16 |
RES10 | 57.25 ± 3.07 ab | 26.30 ± 1.90 b | 90.52 ± 2.27 b | 79.78 ± 2.34 | 140.77 ± 3.38 | 5.99 ± 0.16 | 34.97 ± 0.64 | 84.95 ± 0.78 | 56.70 ± 1.08 |
RES20 | 62.65 ± 3.26 a | 30.45 ± 1.23 ab | 92.74 ± 1.92 ab | 82.14 ± 2.30 | 142.27 ± 2.66 | 5.81 ± 0.20 | 35.69 ± 0.72 | 85.90 ± 0.94 | 58.05 ± 1.46 |
RES40 | 60.90 ± 2.56 ab | 28.90 ± 1.60 ab | 93.10 ± 2.16 ab | 82.08 ± 2.51 | 143.65 ± 2.90 | 5.90 ± 0.21 | 35.36 ± 0.75 | 85.10 ± 1.06 | 57.15 ± 1.59 |
CD10 | 57.85 ± 3.60 ab | 26.75 ± 1.63 b | 92.37 ± 1.99 ab | 81.45 ± 2.56 | 142.25 ± 2.24 | 5.85 ± 0.19 | 36.27 ± 0.89 | 85.25 ± 1.12 | 57.40 ± 1.67 |
CD20 | 59.80 ± 3.42 ab | 28.90 ± 1.55 ab | 95.43 ± 2.54 ab | 85.02 ± 2.73 | 149.05 ± 3.90 | 5.90 ± 0.16 | 37.39 ± 0.60 | 85.60 ± 0.89 | 56.80 ± 1.23 |
CD40 | 51.50 ± 3.70 b | 26.20 ± 2.24 b | 95.50 ± 1.94 ab | 85.21 ± 2.28 | 147.14 ± 2.77 | 5.75 ± 0.18 | 36.89 ± 0.70 | 86.10 ± 0.92 | 58.00 ± 1.37 |
RLC10 | 64.35 ± 2.64 a | 32.65 ± 1.44 a | 98.15 ± 1.72 a | 87.61 ± 2.00 | 148.10 ± 2.84 | 5.70 ± 0.18 | 37.25 ± 0.52 | 85.95 ± 0.87 | 59.25 ± 1.62 |
RLC20 | 56.85 ± 2.96 ab | 26.70 ± 1.08 b | 94.61 ± 2.59 ab | 83.52 ± 2.98 | 146.18 ± 3.01 | 5.96 ± 0.17 | 35.42 ± 0.84 | 85.25 ± 1.09 | 57.30 ± 1.55 |
RLC40 | 57.00 ± 3.20 ab | 26.55 ± 1.64 b | 92.78 ± 2.35 ab | 81.12 ± 2.92 | 143.71 ± 2.64 | 5.94 ± 0.20 | 35.42 ± 1.02 | 84.05 ± 1.21 | 56.20 ± 1.53 |
Group | F Pattern (%) | HOST+ (%) | Plasma Membrane Integrity (%) | Acrosome Integrity (%) | High Mitochondrial Activity (%) | Oxidative Stress (%) |
---|---|---|---|---|---|---|
Control | 44.00 ± 1.94 b | 35.15 ± 1.03 b | 30.03 ± 1.87 abc | 30.95 ± 1.68 ab | 55.92 ± 2.73 b | 38.88 ± 1.63 |
RES10 | 48.40 ± 2.64 b | 43.80 ± 1.40 a | 34.81 ± 2.61 ab | 32.43 ± 2.01 a | 55.22 ± 2.63 b | 37.63 ± 1.58 |
RES20 | 59.10 ± 2.08 a | 44.65 ± 1.11 a | 30.83 ± 2.37 abc | 33.70 ± 1.60 a | 53.10 ± 2.89 b | 37.66 ± 1.95 |
RES40 | 46.80 ± 2.57 b | 37.45 ± 1.39 b | 28.82 ± 2.05 bcd | 33.55 ± 1.68 a | 52.89 ± 2.23 b | 39.49 ± 1.98 |
CD10 | 31.00 ± 2.45 c | 36.00 ± 1.40 b | 31.88 ± 2.00 abc | 29.58 ± 1.87 ab | 55.44 ± 3.10 b | 39.17 ± 1.47 |
CD20 | 29.70 ± 2.99 c | 33.60 ± 1.38 b | 25.63 ± 1.65 cd | 28.78 ± 1.44 ab | 64.76 ± 1.51 a | 38.91 ± 1.35 |
CD40 | 25.30 ± 2.74 c | 33.60 ± 1.75 b | 23.45 ± 1.86 d | 25.94 ± 1.47 b | 65.77 ± 2.89 a | 38.79 ± 1.27 |
RLC10 | 52.40 ± 4.05 ab | 41.40 ± 1.53 a | 36.43 ± 1.39 a | 29.30 ± 2.80 ab | 54.52 ± 2.97 b | 36.96 ± 2.30 |
RLC20 | 51.20 ± 2.59 ab | 43.25 ± 1.23 a | 34.67 ± 1.79 ab | 34.01 ± 1.79 a | 49.57 ± 2.60 b | 37.18 ± 1.71 |
RLC40 | 46.10 ± 2.72 b | 42.95 ± 1.25 a | 33.48 ± 2.67 ab | 32.86 ± 2.76 a | 48.33 ± 1.99 b | 37.70 ± 1.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eser, A.; Yağcıoğlu, S.; Arıcı, R.; Demir, K.; Ak, K. Effects of Resveratrol-Loaded Cyclodextrin on the Quality Characteristics of Ram Spermatozoa Following Cryopreservation. Animals 2024, 14, 2745. https://doi.org/10.3390/ani14182745
Eser A, Yağcıoğlu S, Arıcı R, Demir K, Ak K. Effects of Resveratrol-Loaded Cyclodextrin on the Quality Characteristics of Ram Spermatozoa Following Cryopreservation. Animals. 2024; 14(18):2745. https://doi.org/10.3390/ani14182745
Chicago/Turabian StyleEser, Ahmet, Selin Yağcıoğlu, Ramazan Arıcı, Kamber Demir, and Kemal Ak. 2024. "Effects of Resveratrol-Loaded Cyclodextrin on the Quality Characteristics of Ram Spermatozoa Following Cryopreservation" Animals 14, no. 18: 2745. https://doi.org/10.3390/ani14182745
APA StyleEser, A., Yağcıoğlu, S., Arıcı, R., Demir, K., & Ak, K. (2024). Effects of Resveratrol-Loaded Cyclodextrin on the Quality Characteristics of Ram Spermatozoa Following Cryopreservation. Animals, 14(18), 2745. https://doi.org/10.3390/ani14182745