Fatty Acids Composition of Pasture Grass, Yak Milk and Yak Ghee from the Four Altitudes of Qinghai–Tibet Plateau: A Predictive Modelling Approach to Evaluate the Correlation among Altitude, Pasture Grass, Yak Milk and Yak Ghee
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Analysis
2.3. Data Analysis
3. Results and Discussion
3.1. Fatty Acid Profiles in Pasture Grass–Yak Milk–Yak Ghee System
3.2. Correlation Analysis of Fatty Acids in Pasture Grass–Yak Milk–Yak Ghee System across Different Altitudes
3.3. Correlation Analysis of Fatty Acid Indicators in Pasture Grass–Yak Milk–Yak Ghee System at the Same Altitude
3.4. Functional Fatty Acids in Pasture Grass–Yak Milk–Yak Ghee System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, A.M.; Bano, I.; Qazi, I.H.; Matra, M.; Wanapat, M. “The Yak”-A remarkable animal living in a harsh environment: An overview of its feeding, growth, production performance, and contribution to food security. Front. Vet. Sci. 2023, 10, 1086985. [Google Scholar] [CrossRef]
- Jing, X.; Ding, L.; Zhou, J.; Huang, X.; Degen, A.; Long, R. The adaptive strategies of yaks to live in the Asian highlands. Anim. Nutr. 2022, 9, 249–258. [Google Scholar] [CrossRef]
- Joshi, S.; Shrestha, L.; Bisht, N.; Wu, N.; Ismail, M.; Dorji, T.; Dangol, G.; Long, R. Ethnic and cultural diversity amongst yak herding communities in the Asian highlands. Sustainability 2020, 12, 957. [Google Scholar] [CrossRef]
- Singh, T.P.; Arora, S.; Sarkar, M. Yak milk and milk products: Functional, bioactive constituents and therapeutic potential. Int. Dairy J. 2023, 142, 105637. [Google Scholar] [CrossRef]
- Neupaney, D.; Sasaki, S.; Kim, J.; Ishioroshi, M.; Samejima, K. Yak butter lipid composition and vitamins in comparison with cow butter lipids. Milk Sci. 2003, 52, 33–39. [Google Scholar]
- Cui, G.X.; Yuan, F.; Degen, A.A.; Liu, S.M.; Zhou, J.W.; Shang, Z.H.; Ding, L.M.; Mi, J.D.; Wei, X.H.; Long, R.J. Composition of the milk of yaks raised at different altitudes on the Qinghai–Tibetan Plateau. Int. Dairy J. 2016, 59, 29–35. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Li, Q.; Wang, J.; Cheng, J.; Xue, J.; Shi, J. The chemical composition and nitrogen distribution of Chinese yak (Maiwa) milk. Int. J. Mol. Sci. 2011, 12, 4885–4895. [Google Scholar] [CrossRef]
- Dong, S.; Long, R.; Kang, M. Milking performance of China yak (Bos grunniens): A preliminary report. Afr. J. Agric. Res. 2007, 2, 52–57. [Google Scholar]
- Wangchuk, D.; Dhammasaccakarn, W.; Tepsing, P.; Sakolnakarn, T.P.N. The yaks: Heart and soul of the Himalayan tribes of Bhutan. J. Environ. Res. Manag. 2013, 4, 0189–0196. [Google Scholar]
- Murphy, S.C.; Martin, N.H.; Barbano, D.M.; Wiedmann, M. Influence of raw milk quality on processed dairy products: How do raw milk quality test results relate to product quality and yield? J. Dairy Sci. 2016, 99, 10128–10149. [Google Scholar] [CrossRef]
- Jing, B.; Chen, W.; Wang, M.; Mao, X.; Chen, J.; Yu, X. Traditional Tibetan Ghee: Physicochemical Characteristics and Fatty Acid Composition. J. Oleo Sci. 2019, 68, 827–835. [Google Scholar] [CrossRef]
- Liu, H.N.; Ren, F.Z.; Jiang, L.; Ma, Z.L.; Qiao, H.J.; Zeng, S.S.; Gan, B.Z.; Guo, H.Y. Fatty acid profile of yak milk from the Qinghai-Tibetan Plateau in different seasons and for different parities. J. Dairy Sci. 2011, 94, 1724–1731. [Google Scholar] [CrossRef]
- Agyare, A.N.; Liang, Q. Nutrition of yak milk fat—Focusing on milk fat globule membrane and fatty acids. J. Funct. Foods 2021, 83, 104404. [Google Scholar] [CrossRef]
- Tian, Y.; Ding, B.; Ma, Z.; Yang, J.; Ding, G.; Liu, H. Study on physicochemical properties, fatty acids, texture, antioxidant and antibacterial activities of ghee from different regions. J. Dairy Sci. 2023, 106, 7419–7431. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.L.; Zhang, Z.C.; Ding, B.; Ma, Z.R.; Yang, J.T.; Ding, G.T.; Liu, H.N. Analysis of mixed ghee by using Raman spectroscopy. Lwt 2023, 187, 115279. [Google Scholar] [CrossRef]
- Marquardt, S.; Barsila, S.R.; Amelchanka, S.L.; Devkota, N.R.; Kreuzer, M.; Leiber, F. Fatty acid profile of ghee derived from two genotypes (cattle–yak vs yak) grazing different alpine Himalayan pasture sites. Anim. Prod. Sci. 2016, 58, 358–368. [Google Scholar] [CrossRef]
- Peng, Y.; Brown, M.; Wu, J.; Wei, L.; Wu, J.; Sanbei, D. Fatty acid profile in milk fat from Qinghai plateau yak at different altitudes and parities. Prof. Anim. Sci. 2008, 24, 479–487. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 12th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1999. [Google Scholar]
- Mohammed, R.; Stanton, C.; Kennelly, J.; Kramer, J.; Mee, J.; Glimm, D.; O’Donovan, M.; Murphy, J. Grazing cows are more efficient than zero-grazed and grass silage-fed cows in milk rumenic acid production. J. Dairy Sci. 2009, 92, 3874–3893. [Google Scholar] [CrossRef]
- Or-Rashid, M.M.; Odongo, N.E.; Subedi, B.; Karki, P.; McBride, B.W. Fatty acid composition of yak (Bos grunniens) cheese including conjugated linoleic acid and trans-18: 1 fatty acids. J. Agric. Food Chem. 2008, 56, 1654–1660. [Google Scholar] [CrossRef]
- Boufaïed, H.; Chouinard, P.; Tremblay, G.; Petit, H.; Michaud, R.; Bélanger, G. Fatty acids in forages. I. Factors affecting concentrations. Can. J. Anim. Sci. 2003, 83, 501–511. [Google Scholar] [CrossRef]
- Meľuchová, B.; Blaško, J.; Kubinec, R.; Górová, R.; Dubravská, J.; Margetín, M.; Soják, L. Seasonal variations in fatty acid composition of pasture forage plants and CLA content in ewe milk fat. Small Rumin. Res. 2008, 78, 56–65. [Google Scholar] [CrossRef]
- Voronkov, A.S.; Ivanova, T.V.; Kumachova, T.K.; Kozhevnikova, A.D.; Tsydendambaev, V.D. Polyunsaturated and Very-Long-Chain Fatty Acids Are Involved in the Adaptation of Maloideae (Rosaceae) to Combined Stress in the Mountains. Chem. Biodivers. 2020, 17, e1900588. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Sun, W.; Luo, Y. Identification of fatty acids and their application in quality analysis of yak milk and yak beef. Chin. Grease 2021, 46, 134–141. [Google Scholar] [CrossRef]
- Bartl, K.; Gomez, C.A.; García, M.; Aufdermauer, T.; Kreuzer, M.; Hess, H.D.; Wettstein, H.-R. Milk fatty acid profile of Peruvian Criollo and Brown Swiss cows in response to different diet qualities fed at low and high altitude. Arch. Anim. Nutr. 2008, 62, 468–484. [Google Scholar] [CrossRef]
- Kumar, A.; Tripathi, S.; Hans, N.; Pattnaik, H.; Naik, S.N. Ghee: Its properties, importance and health benefits. Lipid Universe 2018, 6, 6–14. [Google Scholar]
- Moatsou, G.; Sakkas, L. Sheep milk components: Focus on nutritional advantages and biofunctional potential. Small Rumin. Res. 2019, 180, 86–99. [Google Scholar] [CrossRef]
- Singh, T.P.; Deshwal, G.K.; Bam, J.; Paul, V. A Comparative Appraisal of Traditional “Ghee” Derived From the Three Genotypes (Arunachali Yak, Yak–Cow Hybrid, and Cow) Reared Under Semi-Intensive Conditions. Eur. J. Lipid Sci. Technol. 2022, 124, 2100101. [Google Scholar] [CrossRef]
- Yang, J.; Liang, Q.; Song, X.; Zhang, Y. Study on the characteristics and correlation between fatty acids of plateau forage and yak milk fat in summer. Northwest Agric. J. 2022, 31, 506–516. [Google Scholar]
- Perdones, Á.; Vargas, M.; Atarés, L.; Chiralt, A. Physical, antioxidant and antimicrobial properties of chitosan–cinnamon leaf oil films as affected by oleic acid. Food Hydrocoll. 2014, 36, 256–264. [Google Scholar] [CrossRef]
- Ding, J.; Takamoto, D.Y.; Von Nahmen, A.; Lipp, M.M.; Lee, K.Y.C.; Waring, A.J.; Zasadzinski, J.A. Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability. Biophys. J. 2001, 80, 2262–2272. [Google Scholar] [CrossRef]
- Bernard, L.; Bonnet, M.; Delavaud, C.; Delosiere, M.; Ferlay, A.; Fougere, H.; Graulet, B. Milk fat globule in ruminant: Major and minor compounds, nutritional regulation and differences among species. Eur. J. Lipid Sci. Technol. 2018, 120, 1700039. [Google Scholar] [CrossRef]
- Butler, G.W.; Bailey, R.W. Chemistry and Biochemistry of Herbage; Academic Press Inc. Ltd.: London, UK, 1973. [Google Scholar]
- Mao, Z.; Fu, H.; Wan, C. Effect of temperature on fatty acid content in Vicia sativa. J. Verbrauchersch. Lebensm.-Sicherh. 2012, 7, 133–135. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, B. Role of cell membrane homeostasis in the pathogenicity of pathogenic filamentous fungi. Virulence 2024, 15, 2299183. [Google Scholar] [CrossRef] [PubMed]
- Jia, H. Comparative study on nutrient composition of Qinghai Plateau yak milk in different seasons. J. Dairy Sci. Technol. 2023, 46, 7–11. [Google Scholar]
- Harfoot, C. Lipid metabolism in the rumen. Lipid Metab. Rumin. Anim. 1981, 21–55. [Google Scholar] [CrossRef]
- Palladino, R.; O’donovan, M.; Kennedy, E.; Murphy, J.; Boland, T.; Kenny, D. Fatty acid composition and nutritive value of twelve cultivars of perennial ryegrass. Grass Forage Sci. 2009, 64, 219–226. [Google Scholar] [CrossRef]
- Bobe, G.; Hammond, E.; Freeman, A.; Lindberg, G.; Beitz, D. Texture of butter from cows with different milk fatty acid compositions. J. Dairy Sci. 2003, 86, 3122–3127. [Google Scholar] [CrossRef]
- Estermann, B.L.; Wettstein, H.-R.; Sutter, F.; Kreuzer, M. Nutrient and energy conversion of grass-fed dairy and suckler beef cattle kept indoors and on high altitude pasture. Anim. Res. 2001, 50, 477–493. [Google Scholar] [CrossRef]
- Yao, X.; Li, Y.; Yan, Y.; Li, Q.; Wang, Y.; Ma, B.; Lei, Y.; Zhou, R.; Xie, J. Characteristics of nutrient quality and digestibility of forage in typical grassland of Qinghai-Tibet Plateau and their correlation. J. Grassl. Sci. 2021, 29, 113–120. [Google Scholar]
- Mihai, A.L.; Multescu, M.; Negoiță, M.; Horneț, G.-A.; Surdu, I.; Nicula, A.-S. Nutritional characterization of some Romanian mountain products. The Annals of the University Dunarea de Jos of Galati. Fascicle VI-Food Technol. 2022, 46, 104–124. [Google Scholar]
- Qiang, Z. Physiological Adaptability of Yak in Extreme High-Altitude Habitat Using Serum Metabolite Analysis. Pak. J. Zool. 2023, 1–11. [Google Scholar] [CrossRef]
- Glasser, F.; Doreau, M.; Maxin, G.; Baumont, R. Fat and fatty acid content and composition of forages: A meta-analysis. Anim. Feed. Sci. Technol. 2013, 185, 19–34. [Google Scholar] [CrossRef]
- Nafikov, R.A.; Beitz, D.C. Carbohydrate and lipid metabolism in farm animals1. J. Nutr. 2007, 137, 702–705. [Google Scholar] [CrossRef] [PubMed]
- Ruska, D.; Radenkovs, V.; Juhnevica-Radenkova, K.; Rubene, D.; Ciprovica, I.; Zagorska, J. The Impact of Biotechnologically Produced Lactobionic Acid in the Diet of Lactating Dairy Cows on Their Performance and Quality Traits of Milk. Animals 2023, 13, 815. [Google Scholar] [CrossRef]
Altitude Gradient 1 | |||||||
---|---|---|---|---|---|---|---|
Fatty Acids | A1 | A2 | A3 | A4 | Mean | SEM | p-Value |
C4:0 | 0.20 | 0.21 | 0.21 | ND | 0.207 | 0.016 | 0.975 |
C6:0 | 0.44 | 0.49 | 0.55 | 0.50 | 0.495 | 0.038 | 0.878 |
C8:0 | 0.26 | 0.30 | 0.31 | 0.30 | 0.293 | 0.021 | 0.095 |
C10:0 | 0.19 | 0.09 | ND 2 | ND | 0.140 | 0.050 | 0.051 |
C11:0 | 0.90 | 0.72 | 0.67 | 0.79 | 0.770 | 0.077 | 0.798 |
C12:0 | 0.77 b | 1.44 a | 0.59 b | 0.39 b | 0.798 | 0.091 | <0.001 |
C13:0 | 0.50 | 0.46 | 0.84 | 0.57 | 0.593 | 0.067 | 0.448 |
C14:0 | 1.15 b | 1.86 a | 1.02 b | 1.11 b | 1.285 | 0.075 | <0.001 |
C15:0 | 0.90 | 1.06 | 0.96 | 0.97 | 0.973 | 0.120 | 0.975 |
C16:0 | 20.60 | 21.31 | 19.93 | 20.69 | 20.63 | 0.443 | 0.731 |
C16:1 | 0.43 | 0.40 | 0.38 | 0.43 | 0.410 | 0.018 | 0.746 |
C17:0 | 0.37 | 0.59 | 0.36 | 0.30 | 0.405 | 0.052 | 0.231 |
C17:1 | 0.27 | 1.23 | 0.22 | 0.32 | 0.510 | 0.169 | 0.108 |
C18:0 | 4.83 a | 5.40 a | 5.13 a | 3.36 b | 4.680 | 0.166 | <0.001 |
C18:1n9t | 0.22 | 0.30 | 0.27 | 0.37 | 0.290 | 0.022 | 0.096 |
C18:1n9c | 4.03 | 4.03 | 2.94 | 2.84 | 3.460 | 0.296 | 0.301 |
C18:2n6c | 13.34 a | 10.26 b | 11.02 b | 13.86 a | 12.12 | 0.333 | <0.001 |
C20:0 | 1.52 ab | 1.25 b | 1.90 a | 2.01 a | 1.670 | 0.098 | 0.016 |
C18:3n6 | 5.25 bc | 5.92 ab | 6.28 a | 4.56 c | 5.503 | 0.157 | <0.001 |
C18:3n3 | 33.89 | 35.99 | 40.00 | 37.66 | 36.88 | 1.140 | 0.280 |
C21:0 | 0.22 b | 0.37 a | 0.29 ab | 0.25 ab | 0.283 | 0.024 | 0.050 |
C20:2 | 2.39 ab | 2.64 ab | 2.28 b | 3.40 a | 2.678 | 0.118 | <0.001 |
C22:0 | 1.75 ab | 1.36 b | 1.99 ab | 2.24 a | 1.835 | 0.022 | 0.024 |
C24:0 | 4.69 | 4.82 | 3.58 | 4.01 | 4.275 | 0.362 | 0.071 |
C20:5n3 | 1.37 ab | 1.11 b | 1.11 b | 1.50 a | 1.273 | 0.602 | 0.032 |
C22:6n3 | 0.64 b | 0.79 b | 2.04 a | 0.25 b | 0.930 | 0.196 | 0.002 |
Altitude Gradient 1 | |||||||
---|---|---|---|---|---|---|---|
Fatty Acids | A1 | A2 | A3 | A4 | Mean | SEM | p-Value |
C4:0 | 1.12 | 1.11 | 1.03 | 1.14 | 1.100 | 0.179 | 0.131 |
C6:0 | 1.84 | 1.82 | 1.71 | 1.86 | 1.808 | 0.026 | 0.167 |
C8:0 | 1.16 | 1.93 | 1.10 | 1.21 | 1.350 | 0.023 | 0.303 |
C10:0 | 2.36 | 2.43 | 2.18 | 2.39 | 2.340 | 0.048 | 0.258 |
C12:0 | 1.80 ab | 1.96 a | 1.74 b | 1.89 ab | 1.848 | 0.035 | 0.050 |
C13:0 | 0.08 b | 0.08 b | 0.08 b | 0.09 a | 0.083 | 0.001 | 0.004 |
C14:0 | 9.02 ab | 9.60 a | 8.78 b | 9.28 ab | 9.170 | 0.111 | 0.038 |
C14:1 | 0.36 b | 0.42 a | 0.37 b | 0.39 ab | 0.385 | 0.008 | 0.020 |
C15:1 | 1.57 a | 1.57 a | 1.52 ab | 1.45 b | 1.528 | 0.019 | 0.050 |
C16:0 | 34.51 ab | 34.78 a | 32.71 b | 33.67 ab | 33.918 | 0.330 | 0.978 |
C16:1 | 2.24 b | 2.47 a | 2.23 b | 2.22 b | 2.290 | 0.024 | 0.009 |
C17:0 | 1.02 | 1.08 | 0.99 | 1.10 | 1.048 | 0.027 | <0.001 |
C17:1 | 0.37 ab | 0.46 a | 0.36 b | 0.38 ab | 0.393 | 0.016 | 0.037 |
C18:0 | 17.65 ab | 16.40 b | 18.71 a | 17.48 ab | 17.560 | 0.296 | 0.035 |
C18:1n9t | 0.28 ab | 0.25 b | 0.30 a | 0.27 ab | 0.275 | 0.007 | 0.049 |
C18:1n9c | 21.00 | 21.2 | 22.17 | 21.34 | 21.428 | 0.250 | 0.480 |
C18:2n6t | 0.29 c | 0.24 b | 0.29 b | 0.35 a | 0.293 | 0.008 | 0.010 |
C18:2n6c | 1.41 a | 1.19 b | 1.58 a | 1.48 ab | 1.415 | 0.033 | 0.011 |
C20:0 | 0.37 | 0.40 | 0.39 | 0.36 | 0.380 | 0.007 | 0.272 |
C20:1 | 0.19 ab | 0.23 a | 0.23 a | 0.14 b | 0.198 | 0.026 | 0.030 |
C18:3n3 | 1.31 a | 0.98 b | 1.52 a | 1.38 a | 1.298 | 0.097 | <0.001 |
C21:0 | 0.16 | 0.11 | 0.13 | 0.17 | 0.143 | 0.010 | 0.101 |
C22:0 | 0.15 | 0.18 | 0.15 | 0.16 | 0.160 | 0.006 | 0.325 |
C20:4n6 | 0.17 | 0.17 | 0.16 | 0.13 | 0.158 | 0.009 | 0.669 |
C24:0 | ND 2 | 0.12 | 0.10 | ND | 0.110 | 0.010 | 0.192 |
Altitude Gradient 1 | |||||||
---|---|---|---|---|---|---|---|
Fatty Acids | A1 | A2 | A3 | A4 | Mean | SEM | p-Value |
C4:0 | 3.67 ab | 3.46 b | 4.04 ab | 4.63 a | 3.950 | 0.183 | <0.032 |
C6:0 | 4.99 | 3.36 | 3.64 | 4.41 | 4.100 | 0.335 | 0.852 |
C8:0 | 1.68 | 1.55 | 1.65 | 1.95 | 1.708 | 0.073 | 0.551 |
C10:0 | 3.01 | 2.71 | 2.87 | 3.36 | 2.988 | 0.118 | 0.596 |
C11:0 | 0.025 a | 0.020 b | 0.022 ab | 0.025 a | 0.023 | 0.001 | 0.005 |
C12:0 | 2.22 | 1.95 | 2.11 | 2.24 | 2.130 | 0.069 | 0.816 |
C14:1 | 0.932 | 0.942 | 1.106 | 0.900 | 0.970 | 0.054 | 0.615 |
C14:0 | 9.46 | 9.05 | 9.10 | 9.32 | 9.233 | 0.138 | 0.944 |
C15:0 | 1.37 ab | 1.43 a | 1.41 ab | 1.32 b | 1.383 | 0.017 | 0.050 |
C16:1 | 1.38 | 1.35 | 1.35 | 1.41 | 1.373 | 0.021 | 0.499 |
C16:0 | 30.44 | 30.37 | 29.42 | 29.59 | 29.95 | 0.388 | 0.070 |
C18:0 | 14.06 | 14.40 | 14.03 | 12.83 | 13.83 | 0.265 | 0.199 |
T9C18:1 | 0.39 | 0.41 | 0.40 | 0.37 | 0.393 | 0.016 | 0.348 |
C9C18:1 | 18.77 ab | 19.07 a | 18.79 ab | 17.67 b | 18.57 | 0.229 | 0.021 |
T6C18:2 | 0.30 ab | 0.33 a | 0.27 b | 0.29 ab | 0.298 | 0.009 | 0.035 |
C6C18:2 | 1.02 b | 0.88 b | 1.20 a | 1.00 b | 1.025 | 0.034 | <0.001 |
C20:0 | 0.30 | 0.36 | 0.33 | 0.29 | 0.320 | 0.011 | 0.106 |
N3C18:3 | 1.28 b | 1.20 b | 1.55 a | 1.27 b | 1.325 | 0.039 | 0.022 |
C21:0 | 1.11 a | 0.10 ab | 0.09 ab | 0.08 b | 0.345 | 0.004 | 0.049 |
C20:2 | 0.07 ab | 0.08 a | 0.07 ab | 0.06 b | 0.070 | 0.018 | 0.005 |
C8C20:3 | 0.17 | 0.10 | 0.10 | 0.08 | 0.113 | 0.005 | 0.066 |
C22:0 | 0.005 b | 0.016 b | 0.047 a | 0.003 b | 0.018 | 0.001 | 0.042 |
C22:1 | 0.006 b | 0.016 a | 0.017 a | 0.011 ab | 0.013 | 0.021 | 0.028 |
C20:4 | 0.10 | 0.16 | 0.09 | 0.07 | 0.105 | 0.003 | 0.138 |
C23:0 | 0.08 | 0.10 | 0.09 | 0.08 | 0.088 | 0.002 | 0.148 |
C20:5 | 0.070 b | 0.067 a | 0.068 ab | 0.059 ab | 0.066 | 0.025 | 0.033 |
C24:0 | 0.095 ab | 0.189 a | 0.106 ab | 0.103 ab | 0.123 | 0.002 | 0.022 |
C24:1 | 0.018 a | 0.020 a | 0.013 ab | 0.008 ab | 0.015 | 0.002 | 0.006 |
C22:6 | 0.030 a | 0.025 a | 0.025 a | 0.015 b | 0.024 | 0.002 | 0.041 |
anteisoC13:0 | 0.063 | 0.061 | 0.069 | 0.069 | 0.066 | 0.001 | 0.148 |
isoC13:0 | 0.022 | 0.026 | 0.023 | 0.023 | 0.024 | 0.021 | 0.730 |
C13:0 | 0.080 | 0.077 | 0.168 | 0.080 | 0.101 | 0.021 | 0.085 |
isoC14:0 | 0.22 | 0.25 | 0.26 | 0.25 | 0.245 | 0.006 | 0.983 |
anteisoC15:0 | 0.49 ab | 0.52 a | 0.49 ab | 0.45 b | 0.488 | 0.011 | 0.041 |
isoC15:0 | 0.72 b | 0.80 ab | 0.81 a | 0.77 ab | 0.775 | 0.014 | 0.050 |
isoC16:0 | 0.37 | 0.39 | 0.39 | 0.36 | 0.378 | 0.008 | 0.240 |
anteisoC17:0 | 0.35 ab | 0.37 a | 0.32 b | 0.27 c | 0.328 | 0.010 | 0.030 |
isoC17:0 | 0.50 ab | 0.53 a | 0.50 ab | 0.45 b | 0.495 | 0.012 | 0.012 |
C17:0 | 0.74 | 0.81 | 0.74 | 0.80 | 0.773 | 0.027 | 0.275 |
C9C17:1 | 0.34 | 0.34 | 0.34 | 0.37 | 0.348 | 0.012 | 0.813 |
C9T11CLA | 1.57 | 1.68 | 1.62 | 1.59 | 1.615 | 0.052 | 0.415 |
Altitude | Content | R2 | p-Value | Regression Equation |
---|---|---|---|---|
A4 | SFA Rate | 0.662 | 0.008 | M-SFA Rate = −0.92 + 2.235G − SFA Rate − 0.075P − SFA Rate |
UFA Rate | 0.587 | 0.008 | M-UFA Rate = −0.239 + 2.235G − UFA Rate − 0.075P − UFA Rate | |
PUFA Rate | 0.784 | 0.000 | M-PUFA Rate = 0.615 − 13.856G − PUFA Rate − 0.684P − PUFA Rate | |
A3 | SFA Rate | 0.647 | 0.004 | M-SFA Rate = 0.54 + 0.154G − SFA Rate − 0.155P − SFA Rate |
UFA Rate | 0.647 | 0.004 | M-UFA Rate = 0.151 + 0.154G − UFA Rate − 0.155P − UFA Rate | |
PUFA Rate | 0.739 | 0.001 | M-PUFA Rate = 1.536 − 37.874G − PUFA Rate + 1.076P − PUFA Rate | |
A2 | SFA Rate | 0.225 | 0.112 | - |
UFA Rate | 0.225 | 0.112 | - | |
PUFA Rate | 0.095 | 0.259 | - | |
A1 | SFA Rate | 0.129 | 0.161 | - |
UFA Rate | 0.129 | 0.161 | - | |
PUFA Rate | 0.315 | 0.034 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Yang, J.; Bai, B.; Malik, M.I.; Huang, Y.; Yang, Y.; Liu, S.; Han, X.; Hao, L. Fatty Acids Composition of Pasture Grass, Yak Milk and Yak Ghee from the Four Altitudes of Qinghai–Tibet Plateau: A Predictive Modelling Approach to Evaluate the Correlation among Altitude, Pasture Grass, Yak Milk and Yak Ghee. Animals 2024, 14, 2975. https://doi.org/10.3390/ani14202975
Wang R, Yang J, Bai B, Malik MI, Huang Y, Yang Y, Liu S, Han X, Hao L. Fatty Acids Composition of Pasture Grass, Yak Milk and Yak Ghee from the Four Altitudes of Qinghai–Tibet Plateau: A Predictive Modelling Approach to Evaluate the Correlation among Altitude, Pasture Grass, Yak Milk and Yak Ghee. Animals. 2024; 14(20):2975. https://doi.org/10.3390/ani14202975
Chicago/Turabian StyleWang, Runze, Jinfen Yang, Binqiang Bai, Muhammad Irfan Malik, Yayu Huang, Yingkui Yang, Shujie Liu, Xuefeng Han, and Lizhuang Hao. 2024. "Fatty Acids Composition of Pasture Grass, Yak Milk and Yak Ghee from the Four Altitudes of Qinghai–Tibet Plateau: A Predictive Modelling Approach to Evaluate the Correlation among Altitude, Pasture Grass, Yak Milk and Yak Ghee" Animals 14, no. 20: 2975. https://doi.org/10.3390/ani14202975