Alien Rainbow Trout Oncorhynchus mykiss in the Balkhash Basin (Kazakhstan, Central Asia): 50 Years of Naturalization
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Fish Treatment
2.3. Descriptive Statistics
3. Results
3.1. Modern Distribution and Co-Occurrence with Other Fish Species
3.2. Life History Traits
4. Discussion
5. Conclusions
- Both the wild rainbow trout from Kamchatka and the cultured rainbow trout from Europe are well adapted to the Balkhash basin. Despite the revealed diversity of lifestyles reflecting intrapopulation competition, this species has not spread beyond the river basins of its initial release after 50 years of naturalization.
- The observed differences between individual rainbow trout in terms of their growth rate, size, weight, and maturation age suggest high plasticity and different life strategies realized within these populations, even in small water bodies. The rainbow trout from the lowland differ in body color from the fish found in mountainous areas.
- The rainbow trout naturalized in the water bodies of the Balkhash system are characterized by a non-piscivorous feeding mode. The rainbow trout is not an evident threat to the present local native fish.
- The self-reproducing populations of the rainbow trout naturalized to the environment of the Balkhash water bodies might be an important source for the development of local strains for aquaculture and food security in the Republic of Kazakhstan. However, this species is a facultative piscivore in its natural range, as well as in many novel invasive ranges [38,68,69,70]. Therefore, the monitoring of this alien fish species is extremely necessary to preserve native fish fauna and ensure ecosystem welfare.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Berg, L.S. Fishes of Freshwaters of USSR and Adjacent Countries; Print house of Academy of Science USSR: Moscow, Russia; Leningrad, Russia, 1948; Volume 1, pp. 1–467. [Google Scholar]
- Alekseev, S.S.; Sviridenko, M.A. Mykiss Salmo mykiss Walbaum (Salmonidae) from Shantar Islands. J. Ichthyol. 1985, 25, 68–73. [Google Scholar]
- Kottelat, M.; Freyhof, J. Handbook of European Freshwater Fishes; Published by the authors: Cornol, Switzerland; Berlin, Germany, 2007; pp. 1–646. [Google Scholar]
- MacCrimmon, H.R. World Distribution of rainbow trout (Salmo gairdneri). J. Fish. Res. Bd. Can. 1971, 28, 663–704. [Google Scholar] [CrossRef]
- Crawford, S.S.; Muir, A.M. Global introductions of salmon and trout in the genus Oncorhynchus: 1870–2007. Rev. Fish Biol. Fish. 2007, 18, 313–344. [Google Scholar] [CrossRef]
- Crowl, T.A.; Townsend, C.R.; McIntosh, A.R. The impact of introduced brown and rainbow trout on native fish: The case of Australasia. Rev. Fish Biol. Fish. 1992, 2, 217–241. [Google Scholar] [CrossRef]
- Lowe, S.; Browne, M.; Boudjelas, S.; De Poorter, M.; IUCN SSC Invasive Species Specialist Group. 100 of the World’s Worst Invasive Alien Species A selection from the Global Invasive Species Database, First published as special lift-out in Aliens 12 December 2000. Updated and reprinted version: November 2004; The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN): Gland, Switzerland, 2000; Volume 12. [Google Scholar]
- Global Invasive Species Database. Species Profile: Oncorhynchus mykiss. Available online: http://www.iucngisd.org/gisd/speciesname/Oncorhynchus+mykiss (accessed on 25 December 2023).
- Berg, L.S. Division of Paleoarctic and Amur District into Zoogeographical Regions on the Basis of Freshwater Fish Distribution. In Selected Works; Akad. Nauk USSR: Leningrad, Russia, 1962; Volume 5, pp. 320–363. [Google Scholar]
- Mitrofanov, V.P. Formation of modern ichthyofauna in Kazakhstan and ichthyogeographic zoning. In Fish of Kazakhstan; Nauka: Alma-Ata, Kazakhstan, 1986; Volume 1, pp. 20–40. [Google Scholar]
- Reshetnikov, Y.S.; Shakirova, F.M. Zoogeographic analysis of the ichthyofauna of Central Asia according to the lists of freshwater fish. J. Ichthyol. 1993, 33, 37–45. [Google Scholar]
- Karpevich, A.F. Theory and Practice of Acclimatization of Water Organisms; Pischevaya Promyshlenost’: Moscow, Russia, 1975. [Google Scholar]
- Dukravets, G.M.; Mitrofanov, V.P. History of acclimatization of fishes in Kazakhstan. In Fish of Kazakhstan; Gylym: Alma-Ata, Kazakhstan, 1992; Volume 5, pp. 6–44. [Google Scholar]
- Sidorova, A.F. Salmo gairdneri Richardson–rainbow trout, or steelhead trout. In Fish of Kazakhstan; Gylym: Alma-Ata, Kazakhstan, 1992; Volume 5, pp. 56–119. [Google Scholar]
- Biryukov, Y.A. Salmo mykiss Walbaum–mykiss. In Fish of Kazakhstan; Gylym: Alma-Ata, Kazakhstan, 1992; Volume 5, pp. 119–125. [Google Scholar]
- Mikkola, H. Implication of Alien Species Introduction to Loss of Fish Biodiversity and Livelihoods on Issyk-Kul Lake in Kyrgyzstan. In Biodiversity Enrichment in a Diverse World; Gbolagade Akeem Lameed, R., Ed.; Tech: Split, Croatia, 2012; pp. 395–420. [Google Scholar] [CrossRef]
- Mirabdullayev, I.M.; Mullabaev, N.R. Ichthyofauna of Uzbekistan: Modern state and taxonomy. Uzbeks. Biol. J. 2020, 5, 43–46. [Google Scholar]
- Baimukanov, M.T.; Baimukanova, Z.M.; Rakybaeva, A.A.; Zhdanko, L.A. The State of Hydrobionts in Water Bodies of Specially Protected Natural Areas Republican Significance of the East Kazakhstan and Almaty Regions of Kazakhstan (Information and Analytical Manual); IHE: Almaty, Kazakhstan, 2017; Volume 2. [Google Scholar]
- Kozhabaeva, E.B.; Ablaisanova, G.M.; Amirbekova, F.T.; Pazylbekov, M.Z.; Abilov, B.I. The modern condition of rainbow trout Parasalmo mykiss from the Kolsai lakes. Eurasian J. Ecol. 2019, 2, 132–141. [Google Scholar]
- Mamilov, N.S.; Balabieva, G.K.; Koishybaeva, G.S. Distribution of alien fish species in small waterbodies of the Balkhash basin. Rus. J. Biol. Invas. 2010, 1, 181–186. [Google Scholar] [CrossRef]
- Klimov, F.V.; Mamilov, N.S. Modern diversity of fish fauna in mountain and submountain zones of the Chilik River. Bull. KazNU Ecol. Ser. 2012, 1, 85–88. [Google Scholar]
- Keeley, E.R.; Parkinson, E.A.; Taylor, E.B. Ecotypic differentiation of native rainbow trout (Oncorhynchus mykiss) populations from British Columbia. Can. J. Fish. Aquat. Sci. 2005, 62, 1523–1539. [Google Scholar] [CrossRef]
- Keeley, E.R.; Parkinson, E.A.; Taylor, E.B. The origins of ecotypic variation of rainbow trout: A test of environmental vs. genetically based differences in morphology. J. Evol. Biol. 2007, 20, 725–736. [Google Scholar] [CrossRef] [PubMed]
- McPhee, M.V.; Utter, F.; Stanford, J.A.; Kuzishchin, K.V.; Savvaitova, K.A.; Pavlov, D.S.; Allendorf, F.W. Population structure and partial anadromy in Oncorhynchus mykiss from Kamchatka:relevance for conservation strategies around the Pacific Rim. Ecol. Freshw. Fish 2007, 16, 539–547. [Google Scholar] [CrossRef]
- Pavlov, D.; Savvaitova, K. On the problem of ratio of anadromy and residence in salmonids (Salmonidae). J. Ichthyol. 2008, 48, 778–791. [Google Scholar] [CrossRef]
- Pavlov, D.S.; Savvaitova, K.A.; Kuzishchin, K.V.; Gruzdeva, M.A.; Mal’tsev, A.Y.; Stanford, J.A. Diversity of Life Strategies and Population Structure of Kamchatka Mykiss Parasalmo mykiss in the Ecosystems of Small Salmon Rivers of Various Types. J. Ichthyol. 2008, 48, 37–44. [Google Scholar] [CrossRef]
- Kuzishschin, K.V.; Semenovaa, A.V.; Gruzdeva, M.A.; Pavlov, D.S. Regularities of Formation of Diversity of Life Strategy and Genetic Variability of The Kamchatka Rainbow Trout Parasalmo mykiss in a Local Population. J. Ichthyol. 2020, 60, 839–857. [Google Scholar] [CrossRef]
- Richardson, J. Fish Health Profile Manual; NIWA Technical Report 38; NIWA: Aukland, New Zeland, 1998; ISSN 1174-2631. [Google Scholar]
- Kuzishchin, K.V.; Pavlov, D.S.; Gruzdeva, M.A.; Savvaitova, K.A. Typical Methods for Collecting Material for Studying and Monitoring the Diversity and Habitat of Salmonids in River Ecosystems (on the Example of Salmonids of the Family Salmonidae); Moscow State University Print: Mosow, Russia, 2009. [Google Scholar]
- Froese, R. Cube law, condition factor and weight–length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 2006, 22, 241–253. [Google Scholar] [CrossRef]
- Rikardsen, A.H.; Elliot, J.M. Variations in juvenile growth, energy allocation and life-history strategies of two populations of Arctic charr in north Norway. J. Fish Biol. 2000, 56, 328–346. [Google Scholar]
- Mina, M.V. A method for objectifying and refining the age estimates of fish, in particular mykiss Salmo mykiss Walbaum, from water bodies of Kamchatka. J. Ichthyol. 1973, 13, 109–118. [Google Scholar]
- Le Louarn, H. Comparaison entre les ecailles et dàutres structures osseuses pour la determination de làge et de la croissance. In Tissus Durs et Age Individuel des Vertebres; ORSTOM-INRA: Paris, France, 1992; pp. 325–334. [Google Scholar]
- Huang, S.; Wang, Y.; Zheng, X.; Wang, W.; Cao, X. Comparative analysis of three methods of making scale specimens for small fish. Environ. Biol. Fish. 2014, 98, 697–703. [Google Scholar] [CrossRef]
- Borutsky, E.V. (Ed.) Methodological Manual for the Study of Fish Nutrition and Food Relations in Natural Conditions; Nauka: Moscow, Russia, 1974. [Google Scholar]
- Hyslop, E.; Hyslop, E.J. Stomach contents analysis—A review of methods and their application. J. Fish Biol. 1980, 17, 411–429. [Google Scholar] [CrossRef]
- Oscoz, J.; Leunda, P.M.; Campos, F.; Escala, M.C.; García-Fresca, C.; Miranda, R. Spring diet composition of rainbow trout, Oncorhynchus mykiss (Walbaum, 1792) in the Urederra River (Spain). Int. J. Limnol. 2005, 41, 27–34. [Google Scholar] [CrossRef]
- Manko, P. Stomach Content Analysis in Freshwater Fish Feeding Ecology; Vydavateľstvo Prešovskej Univerzity: Prešov, Slovakia, 2016. [Google Scholar]
- Amundsen, P.A.; Sánchez-Hernández, J. Feeding studies take guts–critical review and recommendations of methods for stomach contents analysis in fish. J. Fish. Biol. 2019, 95, 1364–1373. [Google Scholar] [CrossRef] [PubMed]
- Colihueque, N.; Parraguez, M.; Estay, F.J.; Diaz, N.F. Skin color characterization in rainbow trout by use of computer-based image analysis. N. Amer. J. Aquac. 2011, 73, 249–258. [Google Scholar] [CrossRef]
- Urban, J. Colometric experiments on aquatic organisms. In IWBBIO 2017, Proceedings, Part I, LNBI 10208; Ortuno, I., Rojas, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 96–107. [Google Scholar]
- McDonald, J.H. Handbook of Biological Statistics; Sparky House Publishing: Baltimore, MD, USA, 2009. [Google Scholar]
- Braak, C.J.E.; Verdonschot, P.E.M. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 1995, 57, 255–289. [Google Scholar] [CrossRef]
- Ren, M.; Guo, Y.; Zhang, Q.; Zhang, R.; Li, H.A.; Cai, L.; Young, W.; Ren, B.; Gao, H.; Deng, G. Fisheries Resources and Fishery of River Yili; Heilongjiang Science and Technology Press: Harbin, China, 1998; pp. 1–345. [Google Scholar]
- Mamilov, N.S. Fish diversity in tributaries of the Ili River. Biol. Sci. 2005, 1, 9–16. [Google Scholar]
- Collier, J.B.; Brummett, R.; Prince, B.P.C. Market Growth Potential for Kazakhstan Fisheries and Aquaculture Products; The World Bank and the Food and Agriculture Organization of the United Nations/World Bank Cooperative Programme: Rome, Italy, 2022. [Google Scholar]
- Graham, N.A.; Pueppke, S.G.; Nurtazin, S.; Konysbayev, T.; Gibadulin, F.; Sailauov, M. The Changing Dynamics of Kazakhstan’s Fisheries Sector: From the Early Soviet Era to the Twenty-First Century. Water 2022, 14, 1409. [Google Scholar] [CrossRef]
- Piferrer, F.; Beaumont, A.; Falguière, J.-C.; Flajšhans, M.; Haffray, P.; Colombo, L. Polyploid fish and shellfish: Production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 2009, 293, 125–156. [Google Scholar] [CrossRef]
- Amirgaliev, N.A.; Timirkhanov, S.R.; Alpeisov, S.A. Ichthyofauna and Ecology of the Alakol Lakes System; Bastau: Almaty, Kazakhstan, 2006. [Google Scholar]
- Danko, E.K.; Sansyzbayev, E.M. Current species composition of the ichthyofauna of the transboundary Emel river. In Current Issues of Fishing, Fish Farming (Aquaculture) and Environmental Monitoring of Aquatic Ecosystems; Publishing House FGBNU “AzNIIRH”: Rostov-on-Don, Russia, 2018; pp. 140–143. [Google Scholar]
- Tate, K.W.; Lancaster, D.L.; Lile, D.F. Assessment of thermal stratification within stream pools as a mechanism to provide refugia for native trout in hot, arid rangelands. Environ. Monit. Assess. 2007, 124, 289–300. [Google Scholar] [CrossRef]
- Gamperl, A.; Rodnick, K.; Faust, H.; Venn, E.; Bennett, M.; Crawshaw, L.; Keeley, E.; Powell, M.; Li, H.W. Metabolism, swimming performance, and tissue biochemistry of high desert redband trout (Oncorhynchus mykiss ssp.): Evidence of phenotypic differences in physiological function. Physiol. Biochem. Zool. 2002, 75, 413–431. [Google Scholar] [CrossRef]
- Rodnick, K.J.; Gamperl, A.K.; Lizars, K.R.; Bennett, M.T.; Rausch, R.N.; Keeley, E.R. Thermal tolerance and metabolic physiology among redband trout populations in southeastern Oregon. J. Fish Biol. 2004, 64, 310–335. [Google Scholar] [CrossRef]
- Hahlbeck, N.; Anlauf-Dunn, K.J.; Piotrowski, S.J.; Ortega, J.D.; Tinniswood, W.R.; Eliason, E.J.; O’Malley, K.G.; Sloat, M.R.; Wyatt, M.A.; Hereford, M.E.; et al. Habitat fragmentation drives divergent survival strategies of a cold-water fish in a warm landscape. Ecosphere 2023, 14, e4622. [Google Scholar] [CrossRef]
- Kammerer, B.D.; Heppell, S.A. Individual condition indicators of thermal habitat quality in field populations of redband trout (Oncorhynchus mykiss gairdneri). Environ. Biol. Fish. 2013, 96, 823–835. [Google Scholar] [CrossRef]
- Colihueque, N. Genetics of skin pigmentation: Clues and prospects for improving the external appearance of farmed salmonids. Rev. Fish Biol. Fish. 2010, 20, 71–86. [Google Scholar] [CrossRef]
- Shapovalov, M.V. Pecularities in Feeding of Rainbow Trout Salmo Gairdneri R. during Acclimatization in Mountain Water Bodies of South-Eastern Kazakhstan. Ph.D. Thesis, KazSU, Alma-Ata, Kazakhstan, 1988; pp. 1–223. [Google Scholar]
- Bergot, P.; Blanc, J.M.; Escaffre, A.M. Relationship between number of pyloric caeca and growth in rainbow trout (Salmo gairdneri Richardson). Aquaculture 1981, 22, 81–96. [Google Scholar] [CrossRef]
- Sidorova, A.F.; Timirkhanov, S.R. Genus Diptychus Steindachner, 1866–Osman. In Fishes of Kazkahstan; Nauka: Alma-Ata, Kazakhstan, 1988; Volume 3, pp. 84–105. [Google Scholar]
- Baimbetov, A.A.; Mitrofanov, V.P.; Timirkhanov, S.R. Schizothorax argentatus Kessler–Balkhash marinka. In Fishes of Kazkahstan; Nauka: Alma–Ata, Kazakhstan, 1988; Volume 3, pp. 57–83. [Google Scholar]
- Mitrofanov, V.P. Genus Noemacheilus Van Hasselt, 1823–Stone loaches. In Fishes of Kazkahstan; Nauka: Alma–Ata, Kazakhstan, 1989; Volume 4, pp. 6–63. [Google Scholar]
- Fulton, W. Review of trout stocking in South Australia. S. Aus. Fish. Man. Ser. 2004, 41, 1–67. [Google Scholar]
- McDowall, R.M. Crying wolf, crying foul, or crying shame: Alien salmonids and a biodiversity crisis in the southern cool-temperate galaxioid fishes? Rev. Fish Biol. Fish. 2006, 16, 233–422. [Google Scholar] [CrossRef]
- Vincenzi, S.; Crivelli, A.J.; Jesensek, D.; Rossi, G.; De Leo, G.A. Innocent until proven guilty? Stable coexistence of alien rainbow trout and native marble trout in a Slovenian stream. Naturwissenschaften 2011, 98, 57–66. [Google Scholar] [CrossRef]
- Available online: https://statsnet.co/companies/kz/5209715#info (accessed on 15 June 2024).
- Evangelista, C.; Britton, R.J.; Cucherousset, J. Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate. Ecol. Evol. 2015, 5, 2193–2202. [Google Scholar] [CrossRef]
- Vigliano, P.H.; Beauchamp, D.A.; Milano, D.; Macchi, P.J.; Alonso, M.F.; Asorey, M.I.G.; Denegri, M.A.; Ciancio, J.E.; Lippolt, G.; Rechencq, M.; et al. Quantifying predation on Galaxiids and other native organisms by introduced rainbow trout in an ultraoligotrophic lake in Northern Patagonia, Argentina: A Bioenergetics Modeling Approach. Trans. Amer. Fish. Soc. 2009, 138, 1405–1419. [Google Scholar] [CrossRef]
- Martín-Torrijos, L.; Sandoval-Sierra, J.V.; Muñoz, J.; Diéguez-Uribeondo, J.; Bosch, J.; Guayasamin, J.M. Rainbow trout (Oncorhynchus mykiss) threaten Andean amphibians. Neotrop. Biodivers. 2016, 2, 26–36. [Google Scholar] [CrossRef]
- Zamora, A.B.E.; Smith, G.R.; Lemos-Espinal, J.A.; Woolrich-Piña, G.A.; Ayala, R.M. Effects of nonnative rainbow trout on two species of endemic Mexican amphibians. Freshw. Sci. 2018, 37, 389–396. [Google Scholar] [CrossRef]
- Mitrofanov, V.P.; Mitrofanov, I.V. Genus Phoxinus Agassiz, 1835—Minnows. In Fishes of Kazkahstan; Nauka: Alma-Ata, Kazakhstan, 1987; Volume 2, pp. 123–147. [Google Scholar]
- Dukravets, G.M.; Mitrofanov, V.P. Perca schrenki Kessler—Balkhash perch. In Fishes of Kazakhstan; Nauka: Alma-Ata, Kazakhstan, 1989; Volume 4, pp. 157–190. [Google Scholar]
Sampling Localities | No of Water Bodies in Figure 1 | Symbol | °C | pH | ppm | FTU |
---|---|---|---|---|---|---|
Rainbow trout present | ||||||
Issyk River (upper) | 1 | ISU | 13.4–14.2 | 7.6–8.0 | 44–102 | 0.4–12.3 |
Turgen River (upper) | 2 | TRU | 14.2–15.3 | 7.0–7.9 | 98–124 | 0.4–17.8 |
Lower Kolsay Lake | 3 | LKL | 16.2–17.1 * | 7.6–8.3 | 96–128 | 0.5–2.4 |
Chilik River (middle reach) | 4 | CHM | 14.3–16.2 | 7.1–8.2 | 42–105 | 3.6–31.2 |
Zhinishke River | 4 | Z | 12.4–16.1 | 6.7–7.9 | 38–126 | 1.7–11.5 |
Masak springs and brooks | 5 | M | 19.1–24.3 | 6.5–7.4 | 234–456 | 0.5–17.6 |
Babatogan branch (mouth of the Chilik) | 5 | B | 22.4–27.3 | 6.4–7.6 | 246–307 | 1.8–12.4 |
Kapchagay Reservoir | 6 | KR | 21.0–26.8 * | 6.7–8.2 | 482–583 | 6.3–15.2 |
Shalkudysu River | 7 | Sh | 12.4–17.4 | 6.3–7.8 | 128–134 | 0.4–5.3 |
Ulken Kokpak | 8 | UK | 11.5–12.7 | 7.2–8.4 | 146–155 | 0.4–3.9 |
Charyn (upper) | 9 | ChU | 12.1–14.8 | 6.7–7.9 | 54–168 | 0.5–8.1 |
Rainbow trout absent | ||||||
Issyk River (lower) | 1 | ISL | 18.2–26.2 | 6.3–8.1 | 257–362 | 1.1–104 |
Turgen River (lower) | 2 | TRL | 16.4–25.8 | 6.5–7.9 | 384–654 | 0.5–126 |
Charyn (lower) | 9 | ChL | 16.3–32.5 | 6.7–8.8 | 340–461 | 0.8–74.6 |
Ili | 10 | Ili | 18.2–31.5 | 6.7–8.2 | 360–777 | 2.6–103.0 |
Borokhudzir River | 11 | Brk | 14.2–15.8 | 6.7–7.5 | 165–220 | 0.5–10.2 |
Usek River | 12 | Us | 12.6–17.3 | 6.8–7.9 | 168–192 | 0.5–16.1 |
Bolshaya Almatinka (upper) | 13 | BA | 14.2–16.5 | 6.7–8.2 | 154–256 | 0.4–18.0 |
Shynzhyly | 15 | Shy | 14.2–26.4 | 7.8–8.3 | 24–96 | 1.2–28.3 |
Tentek River | 16 | Tn | 13.5–26.7 | 7.1–8.4 | 24–268 | 2.6–55.3 |
Emel River | 17 | Em | 27.8–31.5 | 7.6–8.3 | 568–664 | 2.5–37.4 |
Species | Water Bodies (Symbols According to Table 1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ISU | TRU | LKL | CHM | Z | M | B | KR | Sh | UK | ChU | |
Alien species | |||||||||||
Order Salmoniformes | |||||||||||
Oncorhynchus mykiss | 0.133 | 0.100 | 0.990 | 0.047 | 0.128 | 0.153 | 0.007 | 0.001 | 0.032 | 0.323 | 0.036 |
Coregonus peled | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.009 | 0 | 0 | 0 |
Order Cypriniformes | |||||||||||
Carassius gibelio | 0 | 0 | 0 | 0 | 0 | 0.035 | 0.071 | 0.026 | 0 | 0 | 0 |
Cyprinus carpio | 0 | 0 | 0 | 0 | 0 | 0.012 | 0.028 | 0.081 | 0 | 0 | 0 |
Abramis brama | 0 | 0 | 0 | 0 | 0 | 0.035 | 0.085 | 0.391 | 0 | 0 | 0 |
Rutilus lacustris | 0 | 0 | 0 | 0 | 0 | 0.071 | 0.277 | 0.274 | 0 | 0 | 0 |
Ctenopharyngodon idella | 0 | 0 | 0 | 0 | 0 | 0.024 | 0.014 | 0.030 | 0 | 0 | 0 |
Hypophthalmichthys molitrix | 0 | 0 | 0 | 0 | 0 | 0.006 | 0.007 | 0.012 | 0 | 0 | 0 |
Megalobrama mantschuricus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.005 | 0 | 0 | 0 |
Abbottina rivularis | 0 | 0 | 0 | 0 | 0 | 0.012 | 0.007 | 0.002 | 0 | 0 | 0 |
Pseudorasbora parva | 0 | 0 | 0 | 0 | 0 | 0.018 | 0.071 | 0.005 | 0 | 0 | 0 |
Hemiculter leucisculus | 0 | 0 | 0 | 0 | 0 | 0.012 | 0.007 | 0 | 0 | 0 | 0 |
Rhodeus ocellatus | 0 | 0 | 0 | 0 | 0 | 0.018 | 0.085 | 0 | 0 | 0 | 0 |
Misgurnus anguillocaudatus | 0 | 0 | 0 | 0 | 0 | 0.024 | 0 | 0 | 0 | 0 | 0 |
Order Siluriformes | |||||||||||
Silurus glanis | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.045 | 0 | 0 | 0 |
Ictalurus punctatus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.005 | 0 | 0 | 0 |
Order Beloniformes | |||||||||||
Oryzias sinensis | 0 | 0 | 0 | 0 | 0 | 0 | 0.184 | 0 | 0 | 0 | |
Order Perciformes | |||||||||||
Sander lucioperca | 0 | 0 | 0 | 0 | 0 | 0.012 | 0.035 | 0.104 | 0 | 0 | 0 |
Micropercops cintus | 0 | 0 | 0 | 0 | 0 | 0.006 | 0.028 | 0 | 0 | 0 | 0 |
Order Cichliformes | |||||||||||
Oreochromis niloticus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Order Gobiiformes | |||||||||||
Rhinogobius cheni | 0 | 0 | 0 | 0 | 0 | 0 | 0.021 | 0 | 0 | 0 | 0 |
Order Anabantiformes | |||||||||||
Channa argus | 0 | 0 | 0 | 0 | 0 | 0 | 0.035 | 0.011 | 0 | 0 | 0 |
Indigenous species | |||||||||||
Order Cypriniformes | |||||||||||
Diptychus maculatus | 0 | 0 | 0 | 0.186 | 0.048 | 0 | 0 | 0 | 0.258 | 0.548 | 0.214 |
Gymnodiptychus dybowskii | 0.600 | 0.825 | 0.01 | 0.380 | 0.432 | 0.188 | 0 | 0 | 0.581 | 0 | 0.536 |
Schizothorax argentatus | 0 | 0 | 0 | 0 | 0 | 0.071 | 0 | 0 | 0 | 0 | 0 |
Phoxinus brachyurus | 0 | 0 | 0 | 0 | 0 | 0.047 | 0.007 | 0 | 0 | 0 | 0 |
Rhynchocypris poljakowi | 0 | 0 | 0 | 0.008 | 0 | 0.024 | 0 | 0 | 0 | 0 | 0.012 |
Triplophysa stolickai | 0.178 | 0.025 | 0 | 0.380 | 0.176 | 0.024 | 0 | 0 | 0.129 | 0.129 | 0.167 |
Triplophysa dorsalis | 0 | 0.050 | 0 | 0 | 0.047 | 0.007 | 0 | 0 | 0 | 0 | |
Triplophysa strauchii | 0 | 0 | 0.01 | 0 | 0.216 | 0.147 | 0.021 | 0 | 0 | 0 | 0 |
Triplophysa labiata | 0.089 | 0 | 0 | 0 | 0 | 0.018 | 0 | 0 | 0 | 0 | 0 |
Triplophysa sewerzowii | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.036 |
Total number of fishes | 45 | 40 | 200 | 129 | 125 | 170 | 141 | 939 | 31 | 62 | 84 |
Number of indigenous species | 3 | 3 | 2 | 4 | 4 | 8 | 3 | 0 | 3 | 2 | 5 |
Number of alien species | 1 | 1 | 1 | 1 | 1 | 13 | 16 | 15 | 1 | 1 | 1 |
Sampling time, hours | 34 | 52 | 67 | 39 | 36 | 74 | 30 | 76 | 33 | 36 | 34 |
Water Body and Sample Size | SL (mm) | Q (g) | K | Mesenteric Fat |
---|---|---|---|---|
min–max M ± SD | min–max M ± SD | min–max M ± SD | min–max M ± SD | |
Lower Kolsay, n = 20 | 127–237 176.2 ± 28.79 | 45.0–238.0 112.0 ± 49.70 | 1.06–1.51 1.34 ± 0.125 | 0–2 1.1 ± 0.94 |
Ulken Kokpak, n = 20 | 125–318 178.1 ± 48.20 | 34.0–546.1 141.3 ± 128.89 | 1.22–1.72 1.39 ± 0.127 | 0–3 1.1 ± 1.02 |
Masak and Lower Chilik, n = 26 | 82–156 113.0 ± 13.93 | 5.8–56.1 31.1 ± 13.60 | 1.13–1.71 1.44 ± 0.140 | 4–5 4.5 ± 0.52 |
Zhinishke, n = 16 | 78–109 89.9 ± 6.57 | 9.7–22.1 15.2 ± 3.50 | 1.28–1.48 1.40 ± 0.059 | 1–4 2.5 ± 0.71 |
Shalkudysu, n = 1 | 193 | 120.0 | 1.13 | 2 |
Babatogan, n = 1 | 185 | 145.7 | 1.62 | 4 |
Kapchagay Reservoir, n = 1 | 296 | 564.0 | 1.54 | 2 |
Food Items | Lower Kolsay Lake | Ulken Kokpak River | Masak Brooks | ||||||
---|---|---|---|---|---|---|---|---|---|
IV | VI | IX | V | VI | IX | III | VIII | IX | |
n = 16 | n = 20 | n = 18 | n = 6 | n = 15 | n = 5 | n = 3 | n = 12 | n = 5 | |
Aquatic invertebrates | |||||||||
Annelida: Hirudinea: Rhynchobdellidae | 0.063 | 0.100 | 0 | 0.167 | 0.067 | 0 | 0 | 0.250 | 0.200 |
Mollusca: Bivalvia: Sphaeriida: Pisidium amnicum | 0.188 | 0 | 0.222 | 0 | 0 | 0 | 0 | 0 | 0 |
Arthropoda: Crustacea: | |||||||||
Cladocera | 0.063 | 0.400 | 0 | 0 | 0.133 | 0 | 0 | 0.583 | 0 |
Gammarus sp. | 0.688 | 0.750 | 0.778 | 0.833 | 0.267 | 0.200 | 1.000 | 0.833 | 0.400 |
Insect larvae and pupae: | |||||||||
Trichoptera | 1.000 | 0.850 | 1.000 | 1.000 | 1.000 | 1.000 | 0.333 | 0.250 | 0.400 |
Ephemeroptera | 1.000 | 0.600 | 0.944 | 0.833 | 0.800 | 1.000 | 1.000 | 0.917 | 1.000 |
Plecoptera | 0.563 | 0.300 | 0.833 | 1.000 | 0.733 | 0.800 | 0.667 | 0.333 | 0.600 |
Odonata | 0 | 0.150 | 0 | 0.167 | 0.333 | 0.200 | 0.667 | 0.583 | 0.200 |
Diptera | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Terrestrial inveretbrates; insect adults (imago): | |||||||||
Trichoptera | 0 | 0.600 | 0 | 0 | 0.267 | 0 | 0 | 0.167 | 0 |
Plecoptera | 0 | 0.250 | 0 | 0 | 0.400 | 0 | 0 | 0.167 | 0 |
Hymenoptera | 0.188 | 0.650 | 0.056 | 0 | 0.733 | 0.600 | 0 | 0.583 | 0.800 |
Hemiptera | 0.063 | 0.350 | 0 | 0.167 | 0.133 | 0 | 0 | 0.083 | 0 |
Orthoptera | 0 | 0.400 | 0 | 0.333 | 0.333 | 0.200 | 0 | 0.583 | 0.200 |
Coleoptera | 0 | 0.650 | 0.111 | 0.667 | 0.733 | 0.600 | 0 | 0.750 | 0.600 |
Diptera | 0 | 1.000 | 0.111 | 1.000 | 1.000 | 0.400 | 0 | 0.583 | 0.400 |
Non-identified food particles | 0 | 0.400 | 0.389 | 0.333 | 0.600 | 0.600 | 1.000 | 0.917 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamilov, N.S.; Tursynali, M.; Khassengaziyeva, G.K.; Urban, J.; Bartunek, D.; Sharakhmetov, S.E.; Sapargaliyeva, N.; Urgenishbayeva, Z.; Kegenova, G.B.; Kozhabaeva, E.; et al. Alien Rainbow Trout Oncorhynchus mykiss in the Balkhash Basin (Kazakhstan, Central Asia): 50 Years of Naturalization. Animals 2024, 14, 3013. https://doi.org/10.3390/ani14203013
Mamilov NS, Tursynali M, Khassengaziyeva GK, Urban J, Bartunek D, Sharakhmetov SE, Sapargaliyeva N, Urgenishbayeva Z, Kegenova GB, Kozhabaeva E, et al. Alien Rainbow Trout Oncorhynchus mykiss in the Balkhash Basin (Kazakhstan, Central Asia): 50 Years of Naturalization. Animals. 2024; 14(20):3013. https://doi.org/10.3390/ani14203013
Chicago/Turabian StyleMamilov, Nadir Shamilevich, Marlen Tursynali, Gulnur Kuanyshkyzy Khassengaziyeva, Jan Urban, Dinara Bartunek, Sayat Ermukhanbetovich Sharakhmetov, Nazym Sapargaliyeva, Zhansulu Urgenishbayeva, Gulnar Bolatovna Kegenova, Eleonora Kozhabaeva, and et al. 2024. "Alien Rainbow Trout Oncorhynchus mykiss in the Balkhash Basin (Kazakhstan, Central Asia): 50 Years of Naturalization" Animals 14, no. 20: 3013. https://doi.org/10.3390/ani14203013
APA StyleMamilov, N. S., Tursynali, M., Khassengaziyeva, G. K., Urban, J., Bartunek, D., Sharakhmetov, S. E., Sapargaliyeva, N., Urgenishbayeva, Z., Kegenova, G. B., Kozhabaeva, E., Baimukanov, M., & Levin, B. (2024). Alien Rainbow Trout Oncorhynchus mykiss in the Balkhash Basin (Kazakhstan, Central Asia): 50 Years of Naturalization. Animals, 14(20), 3013. https://doi.org/10.3390/ani14203013