Internet of Things (IoT): Sensors Application in Dairy Cattle Farming
Simple Summary
Abstract
1. Internet of Things
1.1. Concept and Vision
- It creates a digital representation of a physical entity, often referred to as a digital twin.
- It involves the use of various sensors and can alter the environment through actuators.
- It has the capability to perform at least some level of information processing.
- Perception Layer: This is the physical layer that includes all the sensors and devices that collect data from the environment. The primary function is to gather information through IoT devices and sensors.
- Network Layer: Responsible for transmitting the data collected from the perception layer to other layers or systems.
- Application Layer: Where the data is processed and utilised by applications, providing services to users.
- Processing Layer: Also known as the middleware layer, this handles data storage, processing, and management. This layer might involve cloud computing and big data platforms that perform analytics or decision-making.
- Business Layer: This layer focuses on managing and orchestrating the IoT system as a whole, including policies, privacy, and business models. It helps ensure that the IoT deployment aligns with organisational goals and provides value.
- Device Layer: Where sensors and actuators reside.
- Network Layer: Manages communication between IoT devices and the back-end systems.
- Service Support and Application Support Layer: Provides the necessary computing power and storage for IoT services.
- Service Layer: Enables different services and applications to run efficiently over the infrastructure.
- Application Layer: Focuses on delivering services to end users.
- Management Layer: Responsible for managing all resources, ensuring scalability, and monitoring the network’s health.
- Security Layer: Ensures data protection, privacy, and secure communication across the system. This layer has become more prominent with the increasing focus on cybersecurity in IoT deployments.
1.2. IoT and Dairy Cattle Farming
2. Dairy Farm Automation
2.1. Animal IoT Sensors
2.1.1. Sensors for Body Measurement
2.1.2. Sensors for Activity Monitoring
2.1.3. Sensors and Systems for Calving Monitoring
2.1.4. Sensors for Mastitis Detection
2.2. Farm IoT Sensors
2.2.1. Automatic Milking System (AMS)
2.2.2. Automatic Feeding Systems (AFS)
2.2.3. Environmental Quality Sensors
- -
- Temperature (°C), measured using a thermometer. It is the most critical parameter for monitoring ambient temperature to avoid extreme heat conditions.
- -
- Relative humidity (%), assessed using a hygrometer. When combined with temperature data, provides a clearer understanding of heat stress risks and THI Index.
- -
- Air velocity (m/s), measured using an anemometer (3D anemometer can also measure wind direction). It is fundamental for evaluating ventilation efficiency and ensuring proper airflow in barns.
- -
- Solar radiation (W/m2), monitored with a pyrheliometer. It helps in assessing the impact of direct sunlight on animals, especially in outdoor or semi-open farm environments.
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Telecommunication Union (ITU). The Internet of Things. ITU Internet Reports 2005. Available online: https://www.itu.int/net/wsis/tunis/newsroom/stats/The-Internet-of-Things-2005.pdf (accessed on 14 October 2024).
- Bassi, A.; Horn, G. Internet of Things in 2020: A Roadmap for the Future. Eur. Comm. Inf. Soc. Media 2008, 22, 97–114. [Google Scholar]
- Bassi, A. What Is an IoT System? A 3-Point Checklist. 2019. Available online: https://www.techtarget.com/iotagenda/blog/IoT-Agenda/What-is-an-IoT-system-A-3-point-checklist (accessed on 1 September 2024).
- Bassi, A.; Bauer, M.; Fiedler, M.; Kramp, T.; Kranenburg, R.; Lange, S.; Meissner, S. Enabling Things to Talk. In Designing IoT Solutions with the IoT Architectural Reference Model; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- IEEE 2413-2019; Standard for an Architectural Framework for the Internet of Things (IoT). IEEE: Piscataway, NJ, USA, 2020; pp. 1–269. [CrossRef]
- ITU-T Internet of Things Global Standard Initiative. 2015. Available online: https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx (accessed on 1 September 2024).
- Mellor, S.; Lin, S.H.; Simmon, E.; Young, D.; Miller, B.; Durand, J.; Bleakley, G.; Chigani, A.; Martin, R.; Murphy, B.; et al. The Industrial Internet Reference Architecture. 2022. Available online: https://www.iiconsortium.org/wp-content/uploads/sites/2/2022/11/IIRA-v1.10.pdf (accessed on 1 July 2024).
- OneM2M Global IoT Technical Specification. 2024. Available online: https://onem2m.org/technical/published-specifications/release-4 (accessed on 1 September 2024).
- Wang, C.Y.; Yeh, I.H.; Liao, H.Y.M. YOLOv9: Learning what you want to learn using programmable gradient information. arXiv 2024, arXiv:2402.13616. [Google Scholar] [CrossRef]
- Siberski-Cooper, C.J.; Mayes, M.S.; Gorden, P.J.; Hayman, K.; Hardie, L.; Shonka-Martin, B.N.; Koltes, D.A.; Healey, M.; Goetz, B.M.; Baumgard, L.H.; et al. The impact of health disorders on automated sensor measures and feed intake in lactating Holstein dairy cattle. Front. Anim. Sci. 2023, 3, 1064205. [Google Scholar] [CrossRef]
- Kang, X.; Liu, G.; Chu, M.; Li, Q.; Wang, Y. Advances and Challenges in Physiological Parameters Monitoring and Diseases. Diagnosing of Dairy Cows Based on Computer Vision. Smart Agric. 2022, 4, 1–18. [Google Scholar] [CrossRef]
- Akbar, M.O.; Saad Shahbaz Kha, M.; Jamshaid Ali, M.; Hussain, A.; Qaiser, G.; Pasha, M.; Pasha, U.; Missen, M.S.; Akthar, N. IoT for development of smart dairy farming. J. Food Qual. 2020, 2020, 4242805. [Google Scholar] [CrossRef]
- Langer, G.; Schulze, H.; Kühl, S. From intentions to adoption: Investigating the attitudinal and emotional factors that drive IoT sensor use among dairy farmers. Smart Agric. Technol. 2024, 7, 100404. [Google Scholar] [CrossRef]
- Bandara, T.M.; Mudiyanselage, W.; Raza, M. Smart farm and monitoring system for measuring the environmental condition using wireless sensor network—IOT technology in farming. In Proceedings of the 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA), Sydney, Australia, 25–27 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7. [Google Scholar]
- Alli, A.A.; Alam, M.M. The fog cloud of things: A survey on concepts, architecture, standards, tools, and applications. Internet Things 2020, 9, 100177. [Google Scholar] [CrossRef]
- Kim, H.; Min, Y.; Choi, B. Real-time temperature monitoring for the early detection of mastitis in dairy cattle: Methods and case researches. Comput. Electron. Agric. 2019, 162, 119–125. [Google Scholar] [CrossRef]
- Kaur, U.; Malacco, V.M.R.; Bai, H.; Price, T.P.; Datta, A.; Xin, L.; Sen, S.; Nawrocki, R.A.; Chiu, G.; Sundaram, S.; et al. Invited review: Integration of technologies and systems for precision animal agriculture—A case study on precision dairy farming. J. Anim. Sci. 2023, 101, skad206. [Google Scholar] [CrossRef]
- Tsipis, A.; Papamichail, A.; Angelis, I.; Koufoudakis, G.; Tsoumanis, G.; Oikonomou, K. An alertness-adjustable cloud/fog IoT solution for timely environmental monitoring based on wildfire risk forecasting. Energies 2020, 13, 3693. [Google Scholar] [CrossRef]
- Bhargava, K.; Ivanov, S. Collaborative edge mining for predicting heat stress in dairy cattle. In Proceedings of the 2016 Wireless Days (WD), Toulouse, France, 23–25 March 2016. [Google Scholar]
- Bhargava, K.; Ivanov, S.; Kulatunga, C.; Donnelly, W. Fog-enabled WSN system for animal behavior analysis in precision dairy. In Proceedings of the 2017 International Conference on Computing, Networking and Communications (ICNC), Silicon Valley, CA, USA, 26–29 January 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 504–510. [Google Scholar]
- Taneja, M.; Byabazaire, J.; Davy, A.; Olariu, C. Fog assisted application support for animal behaviour analysis and health monitoring in dairy farming. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 819–824. [Google Scholar]
- Taneja, M.; Jalodia, N.; Byabazaire, J.; Davy, A.; Olariu, C. SmartHerd management: A microservices-based fog computing-assisted IoT platform towards data-driven smart dairy farming. Softw. Pract. Exp. 2019, 49, 1055–1078. [Google Scholar] [CrossRef]
- Magaja, N.; Gomes, P.; Silva, L.; Sousa, B.; Mavromoustakis, C.X.; Mastorakis, G. Development of mobile IoT solutions: Approaches, architectures, and methodologies. IEEE Internet Things J. 2021, 8, 16452–16472. [Google Scholar] [CrossRef]
- Evans, D. The Internet of Things—How the Next Evolution of the Internet is Changing Everything. CISCO White Paper. 2011. Available online: http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf (accessed on 1 July 2024).
- Niloofar, P.; Francis, D.P.; Lazarova-Molnar, S.; Vulpe, A.; Vochin, M.C.; Suciu, G.; Balanescu, M.; Anestis, V.; Bartzanas, T. Data-driven decision support in livestock farming for improved animal health, welfare and greenhouse gas emissions: Overview and challenges. Comput. Electron. Agric. 2021, 190, 106406. [Google Scholar] [CrossRef]
- Hassoun, A.; Marvin, H.J.P.; Bouzembrak, Y.; Barba, F.J.; Castagnini, J.M.; Pallarés, N.; Rabail, R.; Aadil, R.M.; Bangar, S.P.; Bhat, R.; et al. Digital transformation in the agri-food industry: Recent applications and the role of the COVID-19 pandemic. Front. Sustain. Food Syst. 2023, 7, 1217813. [Google Scholar] [CrossRef]
- Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Kojima, T.; Oishi, K.; Aoki, N.; Matsubara, Y.; Uete, T.; Fukushima, Y.; Inoue, G.; Sato, S.; Shiraishi, T.; Hirooka, H.; et al. Estimation of beef cow body condition score: A machine learning approach using three-dimensional image data and a simple approach with heart girth measurements. Livest. Sci. 2022, 256, 104816. [Google Scholar] [CrossRef]
- Bewley, J.M.; Peacock, A.M.; Lewis, O.; Boyce, R.E.; Roberts, D.J.; Coffey, M.P.; Kenyon, S.J.; Schutz, M.M. Potential for estimation of body condition scores in dairy cattle from digital images. J. Dairy Sci. 2008, 91, 3439–3453. [Google Scholar] [CrossRef] [PubMed]
- Halachmi, I.; Klopcic, M.B.; Polak, P.; Roberts, D.J.; Bewley, J.M. Automatic assessment of dairy cattle body condition score using thermal imaging. Comput. Electron. Agric. 2013, 99, 35–40. [Google Scholar] [CrossRef]
- Xhafa, F.; Krause, P. IoT-Based Computational Modeling for Next Generation Agro-Ecosystems: Research Issues, Emerging Trends and Challenges. In IoT-Based Intelligent Modelling for Environmental and Ecological Engineering; Krause, P., Xhafa, F., Eds.; Lecture Notes on Data Engineering and Communications Technologies; Springer: Cham, Switzerland, 2021; Volume 67, pp. 1–21. [Google Scholar]
- Akhigbe, B.I.; Munir, K.; Akinade, O.; Akanbi, L.; Oyedele, L.O. IoT technologies for livestock management: A review of present status, opportunities, and future trends. Big Data Cogn. Comput. 2021, 5, 10. [Google Scholar] [CrossRef]
- Symeonaki, E.; Arvanitis, K.G.; Loukatos, D.; Piromalis, D. Enabling IoT Wireless Technologies in Sustainable Livestock Farming Toward Agriculture 4.0. In IoT-Based Intelligent Modelling for Environmental and Ecological Engineering; Krause, P., Xhafa, F., Eds.; Lecture Notes on Data Engineering and Communications Technologies; Springer: Cham, Switzerland, 2021; Volume 67, pp. 213–232. [Google Scholar]
- Nyamuryekung’e, S. Transforming ranching: Precision livestock management in the Internet of Things era. Rangelands 2024, 46, 13–22. [Google Scholar] [CrossRef]
- Morrone, S.; Dimauro, C.; Gambella, F.; Cappai, M.G. Industry 4.0 and Precision Livestock Farming (PLF): An up to date overview across animal productions. Sensors 2022, 22, 4319. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Feng, H.; Huang, Q.; Xiao, X.; Zhang, X. Wearable Internet of Things enabled precision livestock farming in smart farms: A review of technical solutions for precise perception, biocompatibility, and sustainability monitoring. J. Clean. Prod. 2021, 312, 127712. [Google Scholar] [CrossRef]
- Kanjilal, D.; Singh, D.; Reddy, R.; Mathew, J. Smart Farm: Extending Automation to the Farm Level. Int. J. Sci. Technol. Res. 2014, 3, 109–113. [Google Scholar]
- Svennersten-Sjaunja, K.M.; Pettersson, G. Pros and cons of automatic milking in Europe. J. Anim. Sci. 2008, 86, 37–46. [Google Scholar] [CrossRef] [PubMed]
- De Koning, K. Automatic milking—Common practice on dairy farms. In Proceedings of the First North American Conference on Precision Dairy Management, Toronto, ON, Canada, 2–5 March 2010; pp. 52–67. [Google Scholar]
- Bewley, J. How precision dairy technologies can change your world. In Proceedings of the Penn State Dairy Cattle Nutrition Workshop 2012, Grantville, PA, USA, 12–14 November 2012; pp. 65–74. [Google Scholar]
- Knijn, H.; Taweel H van Wichen, H.; Wulfse, B.J.; Vonder, M. Smart dairy farming program in the Netherlands. In Proceedings of the Precision Dairy Conference, Rochester, MI, USA, 26–27 June 2013; pp. 41–42. [Google Scholar]
- Rutten, C.J.; Velthuis AG, J.; Steeneveld, W.; Hogeveen, H. Sensors to support health management on dairy farms. J. Dairy Sci. 2013, 96, 1928–1952. [Google Scholar] [CrossRef]
- Heins, B.J.; Pereira, G.M.; Sharpe, K.T. Precision technologies to improve dairy grazing systems. JDS Commun. 2023, 4, 318–323. [Google Scholar] [CrossRef]
- Martins, B.M.; Mendes AL, C.; Silva, L.F.; Moreira, T.R.; Costa JH, C.; Rotta, P.P.; Chizzotti, M.L.; Marcondes, M.I. Estimating body weight, body condition score, and type traits in dairy cows using three dimensional cameras and manual body measurements. Livest. Sci. 2020, 236, 104054. [Google Scholar] [CrossRef]
- Wildman, E.E.; Jones, G.M.; Wagner, P.E.; Boman, R.L.; Troutt, H.F.; Lesch, T.N. A dairy cow body condition scoring system and its relationship to selected production characteristics. J. Dairy Sci. 1982, 65, 495–501. [Google Scholar] [CrossRef]
- Peacock, A.M.; Bewley, J.M.; Lewis, O. Method and Apparatus for the Automatic Grading of Condition of Livestock. U.S. Patent 8538126B2, 17 September 2006. [Google Scholar]
- Spoliansky, R.; Edan, Y.; Parmet, Y.; Halachmi, I. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera. J. Dairy Sci. 2016, 99, 7714–7723. [Google Scholar] [CrossRef]
- Calcante, A.; Bava, L.; Colombini, S.; Sandrucci, A.; Tamburini, A.; Zucali, M.; Oberti, R. Design and development of a low cost device for the automatic estimation of Body Condition Score (BCS) on dairy cattle. In Proceedings of the 11th International AIIA Conference, Bari, Italy, 5–8 July 2017; pp. 79–82. [Google Scholar]
- Kuzuhara, Y.; Kawamura, K.; Yoshitoshi, R.; Tamaki, T.; Sugai, S.; Ikegami, M.; Kurokawa, Y.; Obitsu, T.; Okita, M.; Sugino, T.; et al. A preliminary study for predicting body weight and milk properties in lactating Holstein cows using a three- dimensional camera system. Comput. Electron. Agric. 2015, 111, 186–193. [Google Scholar] [CrossRef]
- Gomes, R.A.; Monteiro, G.R.; Assis, G.J.F.; Busato, K.C.; Ladeira, M.M.; Chizzotti, M.L. Technical note: Estimating body weight and body composition of beef cattle trough digital images analysis. J. Anim. Sci. 2016, 94, 5414–5422. [Google Scholar] [CrossRef]
- Dineva, K.; Atanasova, T. Health status classification for cows using machine learning and data management on AWS cloud. Animals 2023, 13, 3254. [Google Scholar] [CrossRef] [PubMed]
- Zillner, J.C.; Tücking, N.; Plattes, S.; Heggemann, T.; Büscher, W. Using walking speed for lameness detection in lactating dairy cows. Livest. Sci. 2018, 218, 119–123. [Google Scholar] [CrossRef]
- Zhao, K.; Bewley, J.M.; He, D.; Jin, X. Automatic lameness detection in dairy cattle based on leg swing analysis with an image processing technique. Comput. Electron. Agric. 2018, 148, 226–236. [Google Scholar] [CrossRef]
- Van Nuffel, A.; Van De Gucht, T.; Saeys, W.; Sonck, B.; Opsomer, G.; Vangeyte, J.; Mertens, K.C.; De Ketelaere, B.; Van Weyenberg, S. Environmental and cow-related factors affect cow locomotion and can cause misclassification in lameness detection systems. Animal 2016, 10, 1533–1541. [Google Scholar] [CrossRef]
- Liu, N.; Qi, J.; An, X.; Wang, Y. A Review on Information Technologies Applicable to Precision Dairy Farming: Focus on Behavior, Health Monitoring, and the Precise Feeding of Dairy Cows. Agriculture 2023, 13, 1858. [Google Scholar] [CrossRef]
- Tamura, T.; Okubo, Y.; Deguchi, Y.; Koshikawa, S.; Takahashi, M.; Chida, Y.; Okada, K. Dairy cattle behavior classifications based on decision tree learning using 3-axis neck-mounted accelerometers. Anim. Sci. J. 2019, 90, 589–596. [Google Scholar] [CrossRef]
- Roelofs, J.B.; Van Eerdenburg, F.J.C.M.; Soede, N.M.; Kemp, B. Pedometer readings for estrous detection and as predictor for time of ovulation in dairy cattle. Theriogenology 2005, 64, 1690–1703. [Google Scholar] [CrossRef]
- Dolecheck, K.A.; Silvia, W.J.; Heersche, G.; Wood, C.L.; McQuerry, K.J.; Bewley, J.M. A comparison of timed artificial insemination and automated activity monitoring with hormone intervention in 3 commercial dairy herds. J. Dairy Sci. 2016, 99, 1506–1514. [Google Scholar] [CrossRef]
- Benjamin, M.; Yik, S. Precision livestock farming in swine welfare: A review for swine practitioners. Animals 2019, 9, 133. [Google Scholar] [CrossRef]
- Reith, S.; Hoy, S. Review: Behavioral signs of estrus and the potential of fully automated systems for detection of estrus in dairy cattle. Animal 2018, 12, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Reith, S.; Brandt, H.; Hoy, S. Simultaneous analysis of activity and rumination time, based on collar-mounted sensor technology, of dairy cows over the peri-estrus period. Livest. Sci. 2014, 170, 219–227. [Google Scholar] [CrossRef]
- Dolecheck, K.A.; Silvia, W.J.; Heersche, G., Jr.; Chang, Y.M.; Ray, D.L.; Stone, A.E.; Wadsworth, B.A.; Bewley, J.M. Behavioral and physiological changes around estrus events identified using multiple automated monitoring technologies. J. Dairy Sci. 2015, 98, 8723–8731. [Google Scholar] [CrossRef]
- Valenza, A.; Giordano, J.O.; Lopes, G., Jr.; Vincenti, L.; Amundson, M.C.; Fricke, P.M. Assessment of an acceleration system for detection of estrus and treatment with gonadotropin-releasing hormone at the time of insemination in lactating dairy cows. J. Dairy Sci. 2012, 95, 7115–7127. [Google Scholar] [CrossRef]
- Rao, T.K.S.; Kumar, N.; Kumar, P.; Chaurasia, S.; Patel, N.B. Heat detection techniques in cattle and buffalo. Vet. World 2013, 6, 363–369. [Google Scholar] [CrossRef]
- Johanson, J.M.; Berger, P.J. Birth weight as a predictor of calving ease and perinatal mortality in Holstein cattle. J. Dairy Sci. 2003, 86, 3745–3755. [Google Scholar] [CrossRef]
- Dematawena, C.M.B.; Berger, P.J. Effect of dystocia on yield, fertility, and cow losses and an economic evaluation of dystocia scores for Holsteins. J. Dairy Sci. 1997, 80, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Mee, J.F. Managing the dairy cow at calving time. The Veterinary Clinics of North America. Food Anim. Pract. 2004, 20, 521–546. [Google Scholar] [CrossRef] [PubMed]
- Streyl, D.; Sauter-Louis, C.; Braunert, A.; Lange, D.; Weber, F.; Zerbe, H. Establishment of a standard operating procedure for predicting the time of calving in cattle. J. Vet. Sci. 2011, 12, 177–185. [Google Scholar] [CrossRef]
- Hodge, P.B.; Wood, S.J.; Newman, R.D.; Shepherd, R.K. Effect of calving supervision upon calving performance of Hereford heifers. Aust. Vet. J. 1982, 58, 97–100. [Google Scholar] [CrossRef]
- Chang, A.Z.; Swain, D.L.; Trotter, M.G. A multi-sensor approach to calving detection. Inf. Process. Agric. 2022, 11, 45–64. [Google Scholar] [CrossRef]
- Fujomoto, Y.; Kimura, E.; Sawada, T.; Ishikawa, M.; Matsunaga, H.; Mori, J. Change in rectal temperature, and heart and respiration rate of dairy cows before parturition. Jpn. J. Zootech. Sci. 1988, 59, 301–305. [Google Scholar]
- Aoki, M.; Kimura, K.; Suzuki, O. Predicting time of parturition from changing vaginal temperature measured by data-logging apparatus in beef cows with twin fetuses. Anim. Reprod. Sci. 2005, 86, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.A.; White, I.R.; Russel, A.J.; Whyte, T.K.; McBean, A.J. Prediction of calving date in beef cows by real-time ultrasonic scanning. Vet. Rec. 1988, 123, 228–229. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.D.; Nakao, T.; Kubota, H.; Maeda, T. Peripartum changes in plasma estrone sulphate and estradiol-17beta profiles associated with and without the retention of fetal membranes in Holstein–Friesian cattle. J. Reprod. Dev. 2007, 53, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Matsas, D.J.; Nebel, R.L.; Pelzer, K.D. Evaluation of an on-farm blood progesterone test for predicting the day of parturition in cattle. Theriogenology 1992, 37, 859–868. [Google Scholar] [CrossRef]
- Dufaty, J.H. Determination of the onset of parturition in Hereford cattle. Aust. Vet. J. 1971, 47, 77–82. [Google Scholar] [CrossRef]
- Bleul, U.; Spirig, S.; Hässig, M.; Kähn, W. Electrolytes in bovine prepartum mammary secretions and their usefulness for predicting parturition. J. Dairy Sci. 2006, 89, 3059–3065. [Google Scholar] [CrossRef]
- Szenci, O. Accuracy to Predict the Onset of Calving in Dairy Farms by Using Different Precision Livestock Farming Devices. Animals 2022, 12, 2006. [Google Scholar] [CrossRef]
- Calcante, A.; Tangorra, F.M.; Marchesi, G.; Lazzari, M. A GPS/GSM based birth alarm system for grazing cows. Comput. Electron. Agric. 2014, 100, 123–130. [Google Scholar] [CrossRef]
- Kunes, R.; Bartos, P.; Iwasaka, G.K.; Lang, A.; Hankovec, T.; Smutny, L.; Cerny, P.; Poborska, A.; Smetana, P.; Kriz, P.; et al. In-Line Technologies for the Analysis of Important Milk Parameters during the Milking Process: A Review. Agriculture 2021, 11, 239. [Google Scholar] [CrossRef]
- Fernando, R.S.; Rindsig, R.B.; Spahr, S.L. Electrical conductivity of milk for detection of mastitis. J. Dairy Sci. 1982, 65, 659–664. [Google Scholar] [CrossRef]
- Maatje, K.; Huijsmans, P.J.M.; Rossing, W.; Hogewerf, P.H. The efficacy of in-line measurement of quarter milk electrical conductivity, milk yield and milk temperature for the detection of clinical and subclinical mastitis. Livest. Prod. Sci. 1992, 30, 239–249. [Google Scholar] [CrossRef]
- Nielen, M.; Deluyker, H.; Schukken, Y.H.; Brand, A. Electrical conductivity of milk: Measurement, modifiers, and meta analysis of mastitis detection performance. J. Dairy Sci. 1992, 75, 606–614. [Google Scholar] [CrossRef] [PubMed]
- De Mol, R.M.; Ouweltjes, W. Detection model for mastitis in cows milked in an automatic milking system. Prev. Vet. Med. 2001, 49, 71–82. [Google Scholar] [CrossRef]
- Norberg, E.; Hogeveen, H.; Korsgaard, I.R.; Friggens, N.C.; Lbvendahl, P. Electrical conductivity of milk: Ability to predict mastitis status. J. Dairy Sci. 2004, 87, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Norberg, E.; Rogers, G.W.; Goodling, R.C.; Cooper, J.B.; Madsen, P. Genetic parameters for test-day electrical conductivity of milk for first lactation cows from random regression models. J. Dairy Sci. 2004, 87, 1917–1924. [Google Scholar] [CrossRef]
- Inzaghi, V.; Zucali, M.; Thompson, P.D.; Penry, J.F.; Reinemann, D.J. Changes in Electrical Conductivity, Milk Production Rate and Milk Flow Rate Prior to Clinical Mastitis Confirmation. Ital. J. Anim. Sci. 2021, 20, 1554–1561. [Google Scholar] [CrossRef]
- Hamann, J.; Zecconi, A. Evaluation of the Electrical Conductivity of Milk as a Mastitis Indicator; International Dairy Federation: Brussels, Belgium, 1998; Volume 334. [Google Scholar]
- Sheldrake, R.; Hoare, R.; McGregor, G. Lactation stage, parity, and infection affecting somatic cells, electrical conductivity, and serum albumin in milk. J. Dairy Sci. 1983, 66, 548–555. [Google Scholar] [CrossRef]
- Mabrook, M.F.; Petty, M.C. Effect of composition on the electrical conductivity of milk. J. Food Eng. 2003, 60, 321–325. [Google Scholar] [CrossRef]
- Hovinen, M.; Aisla, A.M.; Pyörälä, S. Accuracy and reliability of mastitis detection with electrical conductivity and milk colour measurement in automatic milking. Acta Agric. Scand. Sect. A Anim. Sci. 2007, 56, 121–127. [Google Scholar] [CrossRef]
- Norberg, E. Electrical conductivity of milk as a phenotypic and genetic indicator of bovine mastitis: A review. Livest. Prod. Sci. 2005, 96, 129–139. [Google Scholar] [CrossRef]
- Friggens, N.C.; Chagunda, M.G.G.; Bjerring, M.; Ridder, C.; Hojsgaard, S.; Larsen, T. Estimating degree of mastitis from time-series measurements in milk: A test of a model based on lactate dehydrogenase measurements. J. Dairy Sci. 2007, 90, 5415–5427. [Google Scholar] [CrossRef]
- Mazeris, F. DeLaval Herd Navigator® Proactive Herd Management. In Proceedings of the First North American Conference on Precision Dairy Management, Toronto, ON, Canada, 2–5 March 2010. [Google Scholar]
- Iweka, P.; Kawamura, S.; Mitani, T.; Kawaguchi, T.; Koseki, S. Online Milk Quality Assessment during Milking Using Near-infrared Spectroscopic Sensing System. Environ. Control. Biol. 2020, 58, 1–6. [Google Scholar] [CrossRef]
- Evangelista, C.; Basirico, L.; Bernabucci, U. An Overview on the Use of Near Infrared Spectroscopy (NIRS) on Farms for the Management of Dairy Cows. Agriculture 2021, 11, 296. [Google Scholar] [CrossRef]
- Filho, L.M.S.; Lopes, M.A.; Brito, S.C.; Rossi, G.; Conti, L.; Barbari, M. Robotic milking of dairy cows: A review. Semin. Ciências Agrárias 2020, 41, 2833–2850. [Google Scholar] [CrossRef]
- De Koning, K.; Rodenburg, J. State of the art in Europe and North America. In Proceedings of the International Symposium on Robotic Milking, Lelystad, The Netherlands, 24–26 March 2004; pp. 1–10. [Google Scholar]
- Perov, I. Robotic dairy systems—Change in management paradigm. In Smart Innovations Systems and Technologies; Springer: Singapore, 2022; pp. 15–25. [Google Scholar] [CrossRef]
- Jacobs, J.A.; Siegford, J.M. Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare. J. Dairy Sci. 2012, 95, 2227–2247. [Google Scholar] [CrossRef]
- Castro, A.; Pereira, J.M.; Amiama, C.; Bueno, J. Estimating efficiency in automatic milking systems. J. Dairy Sci. 2012, 95, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Stelwagen, K.; Phyn, C.V.; Davis, S.R.; Guinard-Flament, J.; Pomiès, D.; Roche, J.R.; Kay, J.K. Invited review: Reduced milking frequency: Milk production and management implications. J. Dairy Sci. 2013, 96, 3401–3413. [Google Scholar] [CrossRef] [PubMed]
- Hogeveen, H.; van der Vost, Y.; de Koning, C.; Slaghuis, B. Concepts et implications de la traite automatisee. In Proceedings of the Symposium sur les Bovines Laitiers, 2001, CRAAQ, St-Hyacinthe, QC, Canada, 17 October 2001; pp. 104–120. [Google Scholar]
- De Koning, K.; van der Vost, Y.; Meijering, A. Automatic milking experience and development in Europe. In Proceedings of the First North American Conference Robotic Milking, Toronto, ON, Canada, 20–22 March 2002; pp. I1–I11. [Google Scholar]
- Ouweltjes, W. Demands and Opportunity for Operational Management Support. Deliverable D28 from EU Project Implications of the Introduction of Automatic Milking on Dairy Farms (QLK5 2000-31006). 2004. Available online: www.automaticmilking.nl (accessed on 1 July 2024).
- Calcante, A. I robot di Mungitura, Mondo Macchina/Machinery World, 2022, nr. 2. Available online: https://www.mondomacchina.it/it/i-robot-di-mungitura-c3388 (accessed on 1 July 2024).
- Caria, M.; Tangorra, F.M.; Leonardi, S.; Bronzo, V.; Murgia, L.; Pazzona, A. Evaluation of the performance of the first automatic milking system for buffaloes. J. Dairy Sci. 2014, 97, 1491–1498. [Google Scholar] [CrossRef]
- Kazumoto, I. Full-automatic TMR preparation feeding equipment mainly used self-sufficient feed. Livest. Technol. 1999, 526, 2–5. [Google Scholar]
- Tamaki, K. Livestock management with “relaxation” for both humans and domestic animals (4)-III. Development and utilization of full-automatic TMR preparation and feeding equipment. Anim. Husb. 2002, 56, 1065–1070. [Google Scholar]
- Tangorra, F.M.; Agazzi, A.; Perricone, V.; Costa, A. Precision feeding e automazione. In Manuale di Nutrizione dei Ruminanti da Latte; Ronchi, G., Savoini, M., Marinucci, T., Eds.; Edises Università: Napoli, Italy, 2020; pp. 365–374. ISBN 9788836230082. [Google Scholar]
- DeVries, T.J.; von Keyserlingk, M.A.G.; Beauchemin, K.A. Frequency of feed delivery affects the behaviour of lactating dairy cows. J. Dairy Sci. 2005, 88, 3553–3562. [Google Scholar] [CrossRef] [PubMed]
- Mäntysaari, P.; Khalili, H.; Sariola, J. Effect of feeding frequency of a Total Mixed Ration on the performance of high-yielding dairy cows. J. Dairy Sci. 2006, 89, 4312–4320. [Google Scholar] [CrossRef] [PubMed]
- Pompe, J.C.A.M.; Alders, D.H.J.; Heutinck, L.F.M.; Lokhorst, C. Automatic individual feeding systems for dairy cows: Observations of facility utilization. In Precision Livestock Farming; Cox, S., Ed.; Wageningen Academic Publishers: Skiathos, Greece, 2007; pp. 45–51. [Google Scholar]
- Azizi, O.; Kaufmann, O.; Hasselmann, L. Relationship between feeding behaviour and feed intake of dairy cows depending on their parity and milk yield. Livest. Sci. 2009, 122, 156–161. [Google Scholar] [CrossRef]
- Belle, Z.; Geert, A.; Pompe, J.C.A.M. Effect of automatic feeding of total mixed rations on the diurnal visiting pattern of dairy cows to an automatic milking system. Biosyst. Eng. 2012, 111, 33–39. [Google Scholar] [CrossRef]
- Modroño, S.; Soldado, A.; Martínez-Fernández, A.; de la Roza-Delgado, B. Handheld NIRS sensors for routine compound feed quality control: Real time analysis and field monitoring. Talanta 2016, 162, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Tangorra, F.M.; Perricone, V.; Agazzi, A.; Calcante, A.; Savoini, G.; Costa, A. Calculation of The Mixing Time as A Function of The Dairy Cow Diet Chemical Homogeneity Inside the Mixing Hopper; Lecture Notes in Civil Engineering; Springer: Cham, Switzerland, 2022; Volume 252, pp. 60–66. [Google Scholar]
- Piccioli-Cappelli, F.; Calegari, F.; Calamari, L.; Bani, P.; Minuti, A. Application of a NIR device for precision feeding in dairy farms: Effect on metabolic conditions and milk production. Ital. J. Anim. Sci. 2019, 18, 754–765. [Google Scholar] [CrossRef]
- Bisaglia, C.; Borciani, M.; Brambilla, M.; Calcante, A.; Cutini, M.; Gastaldo, M.; Giovinazzo, S.; Lazzari, A.; Motta, A.; Rossi, P.; et al. I Sistemi Automatici di Alimentazione nell’allevamento Bovino: Linee Guida dal Progetto AUTOFEED; Brambilla, M., Bisaglia, C., Eds.; Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria: Rome, Italy, 2023; ISBN 978-88-33852-41-6.
- Yuan, K. How Profitable Is Pushing up Feed? 2020. Available online: https://www.qlf.com/news/how-profitable-is-pushing-up-feed/ (accessed on 29 July 2024).
- Oberschatzl-kopp, R.; Haidn, B.; Peis, R.; Reiter, K.; Bernhardt, H. Effects of an automatic feeding system with dynamic feed delivery times on the behaviour of dairy cows. In Proceedings of the CIGR-AgEng 2016 Conference, Aarhus, Denmark, 26–29 June 2016; pp. 1–8. Available online: https://www.cabdirect.org/cabdirect/abstract/20183376882 (accessed on 1 July 2024).
- Yan, G.; Liu, K.; Hao, Z.; Shi, Z.; Li, H. The effects of cow-related factors on rectal temperature, respiration rate, and temperature-humidity index thresholds for lactating cows exposed to heat stress. J. Therm. Biol. 2021, 100, 103041. [Google Scholar] [CrossRef]
- Park, T.; Ma, L.; Gao, S.; Bu, D.; Yu, Z. Heat stress impacts the multidomain ruminal microbiota and some of the functional features independent of its effect on feed intake in lactating dairy cows. J. Anim. Sci. Biotechnol. 2022, 13, 71. [Google Scholar] [CrossRef]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J.; Imtiwati Kumar, R. Impact of heat stress on health and performance of dairy animals: A review. Vet. World 2016, 9, 260. [Google Scholar] [CrossRef] [PubMed]
- Sammad, A.; Wang, Y.J.; Umer, S.; Lirong, H.; Khan, I.; Khan, A.; Ahmad, B.; Wang, Y. Nutritional physiology and biochemistry of dairy cattle under the influence of heat stress: Consequences and opportunities. Animals 2020, 10, 793. [Google Scholar] [CrossRef]
- Ammer, S.; Lambertz, C.; Von Soosten, D.; Zimmer, K.; Meyer, U.; Dänicke, S.; Gauly, M. Impact of diet composition and temperature-humidity index on water and dry matter intake of high-yielding dairy cows. J. Anim. Physiol. Anim. Nutr. 2018, 102, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Ramos, S.C.; Valencia, R.A.; Cho, Y., II; Lee, S.S. Heat Stress: Effects on Rumen Microbes and Host Physiology, and Strategies to Alleviate the Negative Impacts on Lactating Dairy Cows. Front. Microbiol. 2022, 13, 804562. [Google Scholar] [CrossRef]
- De Campos, I.L.; Chud, T.C.S.; Oliveira, H.R.; Baes, C.F.; Cánovas, A.; Schenkel, F.S. Using publicly available weather station data to investigate the effects of heat stress on milk production traits in Canadian Holstein cattle. Can. J. Anim. Sci. 2022, 102, 368–381. [Google Scholar] [CrossRef]
- Herbut, P.; Angrecka, S.; Gody’n, D. Effect of the duration of high air temperature on cow’s milking performance in moderate climate conditions. Ann. Anim. Sci. 2018, 18, 195–207. [Google Scholar] [CrossRef]
- Bodo, S.; Lüttmerding, G.; Gálik, R.; Kunc, P.; Knížková, I.; Gürdil, G.A.K. Analysis of selected data from robotic milking regarding to heat stress of dairy cows. Acta Technol. Agric. 2022, 25, 92–96. [Google Scholar] [CrossRef]
- Cao, M.; Rong, L.; Choi, C.Y.; Wang, K.; Wang, X. Computational evaluation of air jet cooling from a perforated air ducting system to mitigate heat stress of cows in free stalls. Comput. Electron. Agric. 2022, 199, 107198. [Google Scholar] [CrossRef]
- Tomasello, N.; Valenti, F.; Cascone, G.; Porto SM, C. Development of a CFD model to simulate natural ventilation in a semi-open free-stall barn for dairy cows. Buildings 2019, 9, 183. [Google Scholar] [CrossRef]
- Fournel, S.; Ouellet, V.; Charbonneau, É. Practices for alleviating heat stress of dairy cows in humid continental climates: A literature review. Animals 2017, 7, 37. [Google Scholar] [CrossRef]
- Herzog, A.; Winckler, C.; Hörtenhuber, S.; Zollitsch, W. Environmental impacts of implementing basket fans for heat abatement in dairy farms. Animal 2021, 15, 100274. [Google Scholar] [CrossRef] [PubMed]
- Van Os JM, C. Considerations for Cooling Dairy Cows with Water. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 157–173. [Google Scholar] [CrossRef]
- Ekine-Dzivenu, C.C.; Mrode, R.; Oyieng, E.; Komwihangilo, D.; Lyatuu, E.; Msuta, G.; Ojango, J.M.K.; Okeyo, A.M. Evaluating the impact of heat stress as measured by temperature-humidity index (THI) on test-day milk yield of small holder dairy cattle in a sub-Sahara African climate. Livest. Sci. 2020, 242, 104314. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (US). A Guide to Environmental Research on Animals; National Academies: Washington, DC, USA, 1971. [Google Scholar]
- Heinicke, J.; Ibscher, S.; Belik, V.; Amon, T. Cow individual activity response to the accumulation of heat load duration. J. Therm. Biol. 2019, 82, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Sakatani, M.; Balboula, A.Z.; Yamanaka, K.; Takahashi, M. Effect of summer heat environment on body temperature, estrous cycles and blood antioxidant levels in Japanese Black cow. Anim. Sci. J. 2012, 83, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Chen, S.; Li, G.; Chen, J.; Wang, J.; Gu, X. Infrared thermography measured body surface temperature and its relationship with rectal temperature in dairy cows under different temperature-humidity indexes. Int. J. Biometeorol. 2019, 63, 327–336. [Google Scholar] [CrossRef]
- Eastwood, C.R. Innovative Precision Dairy Systems: A Case Study of Farmer Learning and Technology Co-Development. Ph.D. Thesis, The University of Melbourne, Melbourne, Australia, 2008. [Google Scholar]
- Bewley, J. Precision dairy farming: Advanced analysis solutions for future profitability. In Proceedings of the First North American Conference on Precision Dairy Management, Toronto, ON, Canada, 2–5 March 2010; pp. 2–17. [Google Scholar]
- Schulze, C.; Spilke, J.; Lehner, W. Data modeling for Precision Dairy Farming within the competitive field of operational and analytical tasks. Comput. Electron. Agric. 2007, 59, 39–55. [Google Scholar] [CrossRef]
- Steeneveld, W.; van der Gaag, L.C.; Ouweltjes, W.; Mollenhorst, H.; Hogeveen, H. Discriminating between true-positive and false-positive clinical mastitis alerts from automatic milking systems. J. Dairy Sci. 2010, 93, 2559–2568. [Google Scholar] [CrossRef]
- Hogeveen, H.; Steeneveld, W. Integrating It All: Making It Work and Pay at the Farm. In Proceedings of the Precision Dairy Conference, Rochester, MN, USA, 26–27 June 2013; pp. 113–121. [Google Scholar]
- Sauer, J.; Zilberman, D. Sequential technology implementation, network externalities, and risk: The case of automatic milking systems. Agric. Econ. 2012, 43, 233–251. [Google Scholar] [CrossRef]
- Wathes, C.M.; Kristensen, H.H.; Aerts, J.M.; Berckmans, D. Is Precision Livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmers panacea or pitfall? Comput. Electron. Agric. 2008, 64, 2–10. [Google Scholar] [CrossRef]
- Frost, A.R.; Schofield, C.P.; Beaulah, S.A.; Mottram, T.T.; Lines, J.A.; Wathes, C.M. A review of livestock monitoring and the need for integrated systems. Comput. Electron. Agric. 1997, 17, 139–159. [Google Scholar] [CrossRef]
- Kaloxylos, A.; Eigenmann, R.; Teye, F.; Politopoulou, Z.; Wolfertf, S.; Shrank, C.; Dillinger, M.; Lampropoulou, I.; Antoniou, E.; Pesonen, L.; et al. Farm management systems and the Future Internet era. Comput. Electron. Agric. 2012, 89, 130–144. [Google Scholar] [CrossRef]
- Achour, B.; Belkadi, M.; Filali, I.; Laghrouche, M.; Lahdir, M. Image analysis for individual identification and feeding behaviour monitoring of dairy cows based on Convolutional Neural Networks (CNN). Biosyst. Eng. 2020, 198, 31–49. [Google Scholar] [CrossRef]
- Farooq, M.S.; Sohail, O.O.; Abid, A.; Rasheed, S. A survey on the role of IoT in agriculture for the implementation of smart livestock environment. IEEE Access 2022, 10, 9483–9505. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tangorra, F.M.; Buoio, E.; Calcante, A.; Bassi, A.; Costa, A. Internet of Things (IoT): Sensors Application in Dairy Cattle Farming. Animals 2024, 14, 3071. https://doi.org/10.3390/ani14213071
Tangorra FM, Buoio E, Calcante A, Bassi A, Costa A. Internet of Things (IoT): Sensors Application in Dairy Cattle Farming. Animals. 2024; 14(21):3071. https://doi.org/10.3390/ani14213071
Chicago/Turabian StyleTangorra, Francesco Maria, Eleonora Buoio, Aldo Calcante, Alessandro Bassi, and Annamaria Costa. 2024. "Internet of Things (IoT): Sensors Application in Dairy Cattle Farming" Animals 14, no. 21: 3071. https://doi.org/10.3390/ani14213071
APA StyleTangorra, F. M., Buoio, E., Calcante, A., Bassi, A., & Costa, A. (2024). Internet of Things (IoT): Sensors Application in Dairy Cattle Farming. Animals, 14(21), 3071. https://doi.org/10.3390/ani14213071