Management Effects on Gastrointestinal Disease in Red Wolves (Canis rufus) Under Human Care: A Retrospective Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Subjects and Surveys
2.2. GI Assessment and Comorbidities
2.3. Diet
2.4. Housing
2.5. NSAID Prescriptions and Life History Variables
2.6. Analyses
3. Results
3.1. GI Assessment and Comorbidities
3.2. Diet
3.3. Housing
3.4. NSAID Prescriptions and Life History Variables
3.5. Global Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phillips, M. Canis rufus (Errata Version Published in 2020). IUCN Red List Threat. Species 2018, 2018, e.T3747A163509841. [Google Scholar] [CrossRef]
- U.S. Fish & Wildlife Service. Red Wolf Recovery Program. Available online: https://www.fws.gov/project/red-wolf-recovery-program (accessed on 16 July 2024).
- Rodden, M.; Siminski, P.; Waddell, W.; Quick, M.; Maslanka, M.; Henry, B. Large Canid (Canidae) Care Manual; Association of Zoos and Aquariums: Silver Spring, MD, USA, 2012. [Google Scholar]
- Bragg, M.; Muletz-Wolz, C.R.; Songsasen, N.; Freeman, E.W. Kibble Diet Is Associated with Higher Faecal Glucocorticoid Metabolite Concentrations in Zoo-Managed Red Wolves (Canis rufus). Conserv. Physiol. 2024, 12, coae008. [Google Scholar] [CrossRef] [PubMed]
- Lynch, E.C.; Kendall, C.J. Linking Management Practices with Survival to Improve Outcomes for a Red Wolf Population. J. Wildl. Manag. 2023, 87, e22392. [Google Scholar] [CrossRef]
- Bragg, M.; Freeman, E.W.; Lim, H.C.; Songsasen, N.; Muletz-Wolz, C.R. Gut Microbiomes Differ Among Dietary Types and Stool Consistency in the Captive Red Wolf (Canis rufus). Front. Microbiol. 2020, 11, 590212. [Google Scholar] [CrossRef]
- Acton, A.E.; Munson, L.; Waddell, W.T. Survey of Necropsy Results in Captive Red Wolves (Canis rufus), 1992–1996. J. Zoo Wildl. Med. 2000, 31, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Seeley, K.E.; Garner, M.M.; Waddell, W.T.; Wolf, K.N. A Survey of Diseases in Captive Red Wolves (Canis rufus), 1997–2012. J. Zoo Wildl. Med. 2016, 47, 83–90. [Google Scholar] [CrossRef]
- Vuori, K.A.; Hemida, M.; Moore, R.; Salin, S.; Rosendahl, S.; Anturaniemi, J.; Hielm-Björkman, A. The Effect of Puppyhood and Adolescent Diet on the Incidence of Chronic Enteropathy in Dogs Later in Life. Sci. Rep. 2023, 13, 1830. [Google Scholar] [CrossRef]
- Trewin, I.; Kathrani, A. Pre-Illness Dietary Risk Factors in Dogs with Chronic Enteropathy. J. Vet. Intern. Med. 2023, 37, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- Hemida, M.; Vuori, K.A.; Moore, R.; Anturaniemi, J.; Hielm-Björkman, A. Early Life Modifiable Exposures and Their Association with Owner Reported Inflammatory Bowel Disease Symptoms in Adult Dogs. Front. Vet. Sci. 2021, 8, 552450. [Google Scholar] [CrossRef]
- Pipan, M.; Brown, D.C.; Battaglia, C.L.; Otto, C.M. An Internet-Based Survey of Risk Factors for Surgical Gastric Dilatation-Volvulus in Dogs. J. Am. Vet. Med. Assoc. 2012, 240, 1456–1462. [Google Scholar] [CrossRef]
- Wernimont, S.M.; Radosevich, J.; Jackson, M.I.; Ephraim, E.; Badri, D.V.; MacLeay, J.M.; Jewell, D.E.; Suchodolski, J.S. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Front. Microbiol. 2020, 11, 1266. [Google Scholar] [CrossRef] [PubMed]
- Barraza-Guerrero, S.I.; Meza-Herrera, C.A.; García-De la Peña, C.; Ávila-Rodríguez, V.; Vaca-Paniagua, F.; Díaz-Velásquez, C.E.; Pacheco-Torres, I.; Valdez-Solana, M.A.; Siller-Rodríguez, Q.K.; Valenzuela-Núñez, L.M.; et al. Unveiling the Fecal Microbiota in Two Captive Mexican Wolf (Canis lupus baileyi) Populations Receiving Different Type of Diets. Biology 2021, 10, 637. [Google Scholar] [CrossRef] [PubMed]
- Pilla, R.; Suchodolski, J.S. The Role of the Canine Gut Microbiome and Metabolome in Health and Gastrointestinal Disease. Front. Vet. Sci. 2020, 6, 498. [Google Scholar] [CrossRef] [PubMed]
- Leigh, S.-J.; Uhlig, F.; Wilmes, L.; Sanchez-Diaz, P.; Gheorghe, C.E.; Goodson, M.S.; Kelley-Loughnane, N.; Hyland, N.P.; Cryan, J.F.; Clarke, G. The Impact of Acute and Chronic Stress on Gastrointestinal Physiology and Function: A Microbiota–Gut–Brain Axis Perspective. J. Physiol. 2023, 601, 4491–4538. [Google Scholar] [CrossRef]
- Terio, K.; Whitham, J.; Chosy, J.; Sanchez, C.; Marker, L.; Wielebnowski, N. Associations Between Gastritis, Temperament and Management Risk Factors in Captive Cheetahs (Acinonyx jubatus). In Proceedings of the Annual Conference of the American Association of Zoo Veterinarians, Orlando, FL, USA, 23 October 2014. [Google Scholar]
- Munson, L.; Terio, K.A.; Worley, M.; Jago, M.; Bagot-Smith, A.; Marker, L. Extrinsic Factors Significantly Affect Patterns of Disease in Free-ranging and Captive Cheetah (Acinonyx jubatus) Populations. J. Wildl. Dis. 2005, 41, 542–548. [Google Scholar] [CrossRef]
- Kelly, B.; Hubbard, C.; Lynch, E. Access to Multiple Habitats Improves Welfare: A Case Study of Two Zoo-Housed Black Bears (Ursus americanus). J. Zool. Bot. Gard. 2023, 4, 87. [Google Scholar] [CrossRef]
- Fazio, J.M.; Freeman, E.W.; Bauer, E.; Rockwood, L.; Brown, J.L.; Hope, K.; Siegal-Willott, J.; Parsons, E.C.M. Longitudinal Fecal Hormone Monitoring of Adrenocortical Function in Zoo Housed Fishing Cats (Prionailurus viverrinus) during Institutional Transfers and Breeding Introductions. PLoS ONE 2020, 15, e0230239. [Google Scholar] [CrossRef]
- Clubb, R.; Mason, G.J. Natural Behavioural Biology as a Risk Factor in Carnivore Welfare: How Analysing Species Differences Could Help Zoos Improve Enclosures. Appl. Anim. Behav. Sci. 2007, 102, 303–328. [Google Scholar] [CrossRef]
- Frézard, A.; Pape, G.L. Contribution to the Welfare of Captive Wolves (Canis lupus lupus): A Behavioral Comparison of Six Wolf Packs. Zoo Biol. 2003, 22, 33–44. [Google Scholar] [CrossRef]
- Delaroque, C.; Chervy, M.; Gewirtz, A.T.; Chassaing, B. Social Overcrowding Impacts Gut Microbiota, Promoting Stress, Inflammation, and Dysglycemia. Gut Microbes 2021, 13, 2000275. [Google Scholar] [CrossRef]
- Li, Y.; Song, Z.; Kerr, K.A.; Moeser, A.J. Chronic Social Stress in Pigs Impairs Intestinal Barrier and Nutrient Transporter Function, and Alters Neuro-Immune Mediator and Receptor Expression. PLoS ONE 2017, 12, e0171617. [Google Scholar] [CrossRef] [PubMed]
- Reber, S.O.; Obermeier, F.; Straub, R.H.; Falk, W.; Neumann, I.D. Chronic Intermittent Psychosocial Stress (Social Defeat/Overcrowding) in Mice Increases the Severity of an Acute DSS-Induced Colitis and Impairs Regeneration. Endocrinology 2006, 147, 4968–4976. [Google Scholar] [CrossRef] [PubMed]
- Okanishi, H.; Sano, T.; Yamaya, Y.; Kagawa, Y.; Watari, T. The Characteristics of Short- and Long-Term Surviving Shiba Dogs with Chronic Enteropathies and the Risk Factors for Poor Outcome. Acta Vet. Scand. 2013, 55, 32. [Google Scholar] [CrossRef] [PubMed]
- Allenspach, K.; Wieland, B.; Gröne, A.; Gaschen, F. Chronic Enteropathies in Dogs: Evaluation of Risk Factors for Negative Outcome. J. Vet. Intern. Med. 2007, 21, 700–708. [Google Scholar] [CrossRef]
- Melis, C.; Billing, A.M.; Wold, P.-A.; Ludington, W.B. Gut Microbiome Dysbiosis Is Associated with Host Genetics in the Norwegian Lundehund. Front. Microbiol. 2023, 14, 1209158. [Google Scholar] [CrossRef]
- Delaski, K.M.; Ramsay, E.; Gamble, K.C. Retrospective Analysis of Mortality in the North American Captive Red Panda (Ailurus fulgens) Population, 1992–2012. J. Zoo Wildl. Med. 2015, 46, 779–788. [Google Scholar] [CrossRef]
- Lawson, A. Monitoring Side Effects of Long-Term NSAID Use in Dogs with Chronic Osteoarthritis. Practice 2019, 41, 148. [Google Scholar] [CrossRef]
- Mabry, K.; Hill, T.; Tolbert, M.K. Prevalence of Gastrointestinal Lesions in Dogs Chronically Treated with Nonsteroidal Anti-inflammatory Drugs. J. Vet. Intern. Med. 2021, 35, 853–859. [Google Scholar] [CrossRef]
- Long, M.D.; Kappelman, M.D.; Martin, C.F.; Chen, W.; Anton, K.; Sandler, R.S. Role of Non-Steroidal Anti-Inflammatory Drugs in Exacerbations of Inflammatory Bowel Disease. J. Clin. Gastroenterol. 2016, 50, 152–156. [Google Scholar] [CrossRef]
- Laine, L. The Gastrointestinal Effects of Nonselective NSAIDs and COX-2–Selective Inhibitors. Semin. Arthritis Rheum. 2002, 32, 25–32. [Google Scholar] [CrossRef]
- Hunt, J.R.; Dean, R.S.; Davis, G.N.D.; Murrell, J.C. An Analysis of the Relative Frequencies of Reported Adverse Events Associated with NSAID Administration in Dogs and Cats in the United Kingdom. Vet. J. 2015, 206, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Davis, N.K. Red Wolf (Canis rufus) International AZA Studbook; Point Defiance Zoo and Aquarium: Tacoma, WA, USA, 2022. [Google Scholar]
- Schafer, K.A.; Eighmy, J.; Fikes, J.D.; Halpern, W.G.; Hukkanen, R.R.; Long, G.G.; Meseck, E.K.; Patrick, D.J.; Thibodeau, M.S.; Wood, C.E.; et al. Use of Severity Grades to Characterize Histopathologic Changes. Toxicol. Pathol. 2018, 46, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Wolf, K.; Garner, M.; Waddell, W.; Anderson, K. Clinicopathologic Findings of Inflammatory Bowel Disease in Red Wolves (Canis rufus). In Proceedings of the Joint EAZWV/AAZV/Leibniz-IZW Conference, Prague, Czech Republic, 6–12 October 2018. [Google Scholar]
- Crissey, S.D.; Slifka, K.A.; Shumway, P.; Spencer, S.B. Handling Frozen/Thawed Meat and Prey Items Fed to Captive Exotic Animals: A Manual of Standard Operating Procedures. 2001. U.S. Department of Agriculture, Agricultural Research Service, National Agricultural Library. Available online: https://nagonline.net/wp-content/uploads/2013/12/S.-D.-Crissey-et-al.-2001-Handling-frozenthawed-meat-and-prey-items-fed-to-.pdf (accessed on 25 October 2024).
- Davis, M.S.; Willard, M.D.; Bowers, D.; Payton, M.E. Effect of Simulated Deployment Patrols on Gastric Mucosa of Explosive Detection Dogs. Comp. Exerc. Physiol. 2014, 10, 99–103. [Google Scholar] [CrossRef]
- Pearson, S.P.; Kelberman, I. Gastrointestinal Effects of NSAIDs: Difficulties in Detection and Management. Postgrad. Med. J. 1996, 100, 131–143. [Google Scholar] [CrossRef]
- Bergh, M.S.; Budsberg, S.C. The Coxib NSAIDs: Potential Clinical and Pharmacologic Importance in Veterinary Medicine. J. Vet. Intern. Med. 2005, 19, 633–643. [Google Scholar] [CrossRef]
- Streppa, H.K.; Jones, C.J.; Budsberg, S.C. Cyclooxygenase Selectivity of Nonsteroidal Anti-Inflammatory Drugs in Canine Blood. Am. J. Vet. Res. 2002, 63, 91–94. [Google Scholar] [CrossRef]
- Lacy, R.C.; Ballou, J.D.; Pollak, J.P. PMx: Software Package for Demographic and Genetic Analysis and Management of Pedigreed Populations. Methods Ecol. Evol. 2012, 3, 433–437. [Google Scholar] [CrossRef]
- Miller, P.S.; Parsons, A.; Faust, L.; Franklin, A. Population Viability Analysis of the Red Wolf (Canis rufus): Integrated Management of In Situ and Ex Situ Populations in Support of Species Recovery in a Mixed Canid Landscape; Final Report; IUCN SSC Conservation Planning Specialist Group: Apple Valley, MN, USA, 2023. Available online: https://ecos.fws.gov/ServCat/DownloadFile/237369 (accessed on 25 October 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 25 October 2024).
- Svetunkov, I. Greybox: Toolbox for Model Building and Forecasting. R Package Version 2.0.0. 2023. Available online: https://CRAN.R-project.org/package=greybox (accessed on 25 October 2024).
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Symonds, M.R.E.; Moussalli, A. A Brief Guide to Model Selection, Multimodel Inference and Model Averaging in Behavioural Ecology Using Akaike’s Information Criterion. Behav. Ecol. Sociobiol. 2011, 65, 13–21. [Google Scholar] [CrossRef]
- Christensen, R. Ordinal-Regression Models for Ordinal Data 2023. Available online: https://github.com/runehaubo/ordinal (accessed on 19 August 2024).
- Hurvich, C.M.; Tsai, C.-L. Regression and Time Series Model Selection in Small Samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Brewer, M.J.; Butler, A.; Cooksley, S.L. The Relative Performance of AIC, AICC and BIC in the Presence of Unobserved Heterogeneity. Methods Ecol. Evol. 2016, 7, 679–692. [Google Scholar] [CrossRef]
- Johnson, J.B.; Omland, K.S. Model Selection in Ecology and Evolution. Trends Ecol. Evol. 2004, 19, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Sutherland, C.; Hare, D.; Johnson, P.J.; Linden, D.W.; Montgomery, R.A.; Droge, E. Practical Advice on Variable Selection and Reporting Using Akaike Information Criterion. Proc. R. Soc. B Biol. Sci. 2023, 290, 20231261. [Google Scholar] [CrossRef]
- Sugden, S.; Sanderson, D.; Ford, K.; Stein, L.Y.; St. Clair, C.C. An Altered Microbiome in Urban Coyotes Mediates Relationships between Anthropogenic Diet and Poor Health. Sci. Rep. 2020, 10, 22207. [Google Scholar] [CrossRef]
- Geary, E.L.; Parsons, C.M.; Utterback, P.L.; Templeman, J.R.; Swanson, K.S. Standardized Amino Acid Digestibility and Nitrogen-Corrected True Metabolizable Energy of Frozen Raw, Freeze-Dried Raw, Fresh, and Extruded Dog Foods Using Precision-Fed Cecectomized and Conventional Rooster Assays. J. Anim. Sci. 2023, 101, skad377. [Google Scholar] [CrossRef]
- Corsato Alvarenga, I.; Aldrich, C.G.; Shi, Y.-C. Factors Affecting Digestibility of Starches and Their Implications on Adult Dog Health. Anim. Feed Sci. Technol. 2021, 282, 115134. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Fu, L. Dietary Advanced Glycation End-Products: Perspectives Linking Food Processing with Health Implications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2559–2587. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.A.; Hodgkinson, S.M.; Rutherfurd, S.M.; Hendriks, W.H. Lysine Content in Canine Diets Can Be Severely Heat Damaged. J. Nutr. 2006, 136, 1998S–2000S. [Google Scholar] [CrossRef]
- Phuong-Nguyen, K.; McNeill, B.A.; Aston-Mourney, K.; Rivera, L.R. Advanced Glycation End-Products and Their Effects on Gut Health. Nutrients 2023, 15, 405. [Google Scholar] [CrossRef]
- van der Lugt, T.; Opperhuizen, A.; Bast, A.; Vrolijk, M.F. Dietary Advanced Glycation Endproducts and the Gastrointestinal Tract. Nutrients 2020, 12, 2814. [Google Scholar] [CrossRef] [PubMed]
- Jansen, F.A.C.; Fogliano, V.; Rubert, J.; Hoppenbrouwers, T. Dietary Advanced Glycation End Products Interacting with the Intestinal Epithelium: What Do We Really Know? Mol. Metab. 2023, 73, 101734. [Google Scholar] [CrossRef] [PubMed]
- Corsello, A.; Pugliese, D.; Gasbarrini, A.; Armuzzi, A. Diet and Nutrients in Gastrointestinal Chronic Diseases. Nutrients 2020, 12, 2693. [Google Scholar] [CrossRef] [PubMed]
- Fajstova, A.; Galanova, N.; Coufal, S.; Malkova, J.; Kostovcik, M.; Cermakova, M.; Pelantova, H.; Kuzma, M.; Sediva, B.; Hudcovic, T.; et al. Diet Rich in Simple Sugars Promotes Pro-Inflammatory Response via Gut Microbiota Alteration and TLR4 Signaling. Cells 2020, 9, 2701. [Google Scholar] [CrossRef]
- Rhimi, S.; Kriaa, A.; Mariaule, V.; Saidi, A.; Drut, A.; Jablaoui, A.; Akermi, N.; Maguin, E.; Hernandez, J.; Rhimi, M. The Nexus of Diet, Gut Microbiota and Inflammatory Bowel Diseases in Dogs. Metabolites 2022, 12, 1176. [Google Scholar] [CrossRef]
- Suchodolski, J.S.; Markel, M.E.; Garcia-Mazcorro, J.F.; Unterer, S.; Heilmann, R.M.; Dowd, S.E.; Kachroo, P.; Ivanov, I.; Minamoto, Y.; Dillman, E.M.; et al. The Fecal Microbiome in Dogs with Acute Diarrhea and Idiopathic Inflammatory Bowel Disease. PLoS ONE 2012, 7, e51907. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-Gut Microbiota Metabolic Interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef]
- Mentella, M.C.; Scaldaferri, F.; Pizzoferrato, M.; Gasbarrini, A.; Miggiano, G.A.D. Nutrition, IBD and Gut Microbiota: A Review. Nutrients 2020, 12, 944. [Google Scholar] [CrossRef]
- Castañeda, S.; Ariza, G.; Rincón-Riveros, A.; Muñoz, M.; Ramírez, J.D. Diet-Induced Changes in Fecal Microbiota Composition and Diversity in Dogs (Canis lupus familiaris): A Comparative Study of BARF-Type and Commercial Diets. Comp. Immunol. Microbiol. Infect. Dis. 2023, 98, 102007. [Google Scholar] [CrossRef]
- Kathrani, A. Dietary and Nutritional Approaches to the Management of Chronic Enteropathy in Dogs and Cats. Vet. Clin. North Am. Small Anim. Pract. 2021, 51, 123–136. [Google Scholar] [CrossRef]
- Simpson, K.W.; Jergens, A.E. Pitfalls and Progress in the Diagnosis and Management of Canine Inflammatory Bowel Disease. Vet. Clin. North Am. Small Anim. Pract. 2011, 41, 381–398. [Google Scholar] [CrossRef] [PubMed]
- Bjarnason, I.; Scarpignato, C.; Holmgren, E.; Olszewski, M.; Rainsford, K.D.; Lanas, A. Mechanisms of Damage to the Gastrointestinal Tract from Nonsteroidal Anti-Inflammatory Drugs. Gastroenterology 2018, 154, 500–514. [Google Scholar] [CrossRef] [PubMed]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef]
- FitzGerald, G.A.; Patrono, C. The Coxibs, Selective Inhibitors of Cyclooxygenase-2. N. Engl. J. Med. 2001, 345, 433–442. [Google Scholar] [CrossRef]
- Maier, L.; Pruteanu, M.; Kuhn, M.; Zeller, G.; Telzerow, A.; Anderson, E.E.; Brochado, A.R.; Fernandez, K.C.; Dose, H.; Mori, H.; et al. Extensive Impact of Non-Antibiotic Drugs on Human Gut Bacteria. Nature 2018, 555, 623–628. [Google Scholar] [CrossRef]
- Zádori, Z.S.; Király, K.; Al-Khrasani, M.; Gyires, K. Interactions between NSAIDs, Opioids and the Gut Microbiota—Future Perspectives in the Management of Inflammation and Pain. Pharmacol. Ther. 2023, 241, 108327. [Google Scholar] [CrossRef] [PubMed]
- Maseda, D.; Ricciotti, E. NSAID–Gut Microbiota Interactions. Front. Pharmacol. 2020, 11, 1153. [Google Scholar] [CrossRef]
- Rogers, M.A.M.; Aronoff, D.M. The Influence of Non-Steroidal Anti-Inflammatory Drugs on the Gut Microbiome. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2016, 22, e1–e178. [Google Scholar] [CrossRef]
- Leão, C.; Borges, A.; Simões, M. NSAIDs as a Drug Repurposing Strategy for Biofilm Control. Antibiotics 2020, 9, 591. [Google Scholar] [CrossRef]
- Roŝkar, T.; Nemec, S.A.; Jerin, A.; Butinar, J.; Kobal, S. Effect of Meloxicam and Meloxicam with Misoprostol on Serum Prostaglandins and Gastrointestinal Permeability in Healthy Beagle Dogs: Acta Veterinaria. Acta Vet. 2011, 61, 33–47. [Google Scholar] [CrossRef]
- Henson, L.H.; Songsasen, N.; Waddell, W.; Wolf, K.N.; Emmons, L.; Gonzalez, S.; Freeman, E.; Maldonado, J. Characterization of Genetic Variation and Basis of Inflammatory Bowel Disease in the Toll-like Receptor 5 Gene of the Red Wolf and the Maned Wolf. Endanger. Species Res. 2017, 32, 135–144. [Google Scholar] [CrossRef]
- Stevens, C.; Norris, S.; Arbeeva, L.; Enomoto, M.; Nelson, A.E.; Lascelles, B.D.X. Gut Microbiome and Osteoarthritis: Insights from the Naturally Occurring Canine Model of OA. Osteoarthr. Cartil. 2024, 32, S486–S487. [Google Scholar] [CrossRef]
- Cintio, M.; Scarsella, E.; Sgorlon, S.; Sandri, M.; Stefanon, B. Gut Microbiome of Healthy and Arthritic Dogs. Vet. Sci. 2020, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Rukavina Mikusic, N.L.; Kouyoumdzian, N.M.; Choi, M.R. Gut Microbiota and Chronic Kidney Disease: Evidences and Mechanisms That Mediate a New Communication in the Gastrointestinal-Renal Axis. Pflüg. Arch.-Eur. J. Physiol. 2020, 472, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Karlin, M.; Chadwick, J. Red Wolf Natal Dispersal Characteristics: Comparing Periods of Population Increase and Stability. J. Zool. 2012, 286, 266–276. [Google Scholar] [CrossRef]
- Sparkman, A.M.; Waits, L.P.; Murray, D.L. Social and Demographic Effects of Anthropogenic Mortality: A Test of the Compensatory Mortality Hypothesis in the Red Wolf. PLoS ONE 2011, 6, e20868. [Google Scholar] [CrossRef]
- Sherwen, S.L.; Hemsworth, P.H. The Visitor Effect on Zoo Animals: Implications and Opportunities for Zoo Animal Welfare. Animals 2019, 9, 366. [Google Scholar] [CrossRef]
- Suchodolski, J.S.; Dowd, S.E.; Wilke, V.; Steiner, J.M.; Jergens, A.E. 16S rRNA Gene Pyrosequencing Reveals Bacterial Dysbiosis in the Duodenum of Dogs with Idiopathic Inflammatory Bowel Disease. PLoS ONE 2012, 7, e39333. [Google Scholar] [CrossRef]
Item | Number Requested | Number Received | Response Rate (%) |
---|---|---|---|
Husbandry Surveys | 13 | 12 | 92 |
Necropsy Reports | 96 | 82 | 85 |
Routine Medical Records | 96 | 75 | 78 |
Model | Predictors | K | AICc | ΔAICc | w | LL |
---|---|---|---|---|---|---|
1 | First Diet + Final Diet * | 5 | 101.94 | 0.00 | 0.35 | −44.97 |
2 | First Diet × Final Diet * | 5 | 101.94 | 0.00 | 0.35 | −44.97 |
3 | Final Diet * | 4 | 102.86 | 0.92 | 0.22 | −46.79 |
Model | Predictors | K | AICc | ΔAICc | w | LL |
---|---|---|---|---|---|---|
1 | Guest Access | 4 | 105.65 | 0.00 | 0.15 | −48.18 |
2 | Null | 3 | 105.92 | 0.27 | 0.13 | −49.58 |
3 | Visual Access | 4 | 106.99 | 1.34 | 0.08 | −48.85 |
Model | Predictors | K | AICc | ΔAICc | w | LL |
---|---|---|---|---|---|---|
1 | NSAID | 4 | 101.75 | 0.00 | 0.44 | −46.21 |
2 | NSAID * + Inbreeding Coefficient | 5 | 103.84 | 2.08 | 0.16 | −45.89 |
3 | NSAID + Sex | 5 | 104.42 | 2.66 | 0.12 | −46.17 |
Model | Predictors | K | AICc | ΔAICc | w | LL |
---|---|---|---|---|---|---|
1 | Final Diet * + NSAID * | 5 | 94.69 | 0.00 | 0.49 | −41.31 |
2 | Final Diet * × NSAID * | 6 | 97.01 | 2.32 | 0.15 | −41.00 |
3 | Final Diet * + Guest Access + NSAID * | 6 | 97.45 | 2.77 | 0.12 | −41.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontaine, A.C.; Campbell, J.; Opperman, L.; Minter, L.J.; Wolf, K.; Anderson, K.M.; Kendall, C.J.; Lynch, E.C. Management Effects on Gastrointestinal Disease in Red Wolves (Canis rufus) Under Human Care: A Retrospective Study. Animals 2024, 14, 3121. https://doi.org/10.3390/ani14213121
Fontaine AC, Campbell J, Opperman L, Minter LJ, Wolf K, Anderson KM, Kendall CJ, Lynch EC. Management Effects on Gastrointestinal Disease in Red Wolves (Canis rufus) Under Human Care: A Retrospective Study. Animals. 2024; 14(21):3121. https://doi.org/10.3390/ani14213121
Chicago/Turabian StyleFontaine, Amy Clare, Jennifer Campbell, Logan Opperman, Larry J. Minter, Karen Wolf, Kadie M. Anderson, Corinne J. Kendall, and Emily C. Lynch. 2024. "Management Effects on Gastrointestinal Disease in Red Wolves (Canis rufus) Under Human Care: A Retrospective Study" Animals 14, no. 21: 3121. https://doi.org/10.3390/ani14213121
APA StyleFontaine, A. C., Campbell, J., Opperman, L., Minter, L. J., Wolf, K., Anderson, K. M., Kendall, C. J., & Lynch, E. C. (2024). Management Effects on Gastrointestinal Disease in Red Wolves (Canis rufus) Under Human Care: A Retrospective Study. Animals, 14(21), 3121. https://doi.org/10.3390/ani14213121