Population Structure and Selection Signatures in Chinese Indigenous Zhaotong Pigs Revealed by Whole-Genome Resequencing
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Sample Collection and DNA Extraction
2.3. Whole-Genome Sequencing and Data Collection
2.4. Reads Mapping and SNP Detection
2.5. Genetic Diversity Analysis
2.6. Population Structure Analysis
2.7. Genetic Distance and Relationship Analysis
2.8. Selection Signatures Analysis
2.9. Functional Prediction Analysis
3. Results
3.1. Sequencing and Detection of SNPs
3.2. Analysis of Genetic Diversity
3.3. Analysis of Population Structure
3.4. Genetic Distance and Relationship Between Individuals of ZTPs
3.5. Candidate Genes Under Selection Signatures
3.6. Functional Enrichment Analysis of Candidate Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ai, H.; Fang, X.; Yang, B.; Huang, Z.; Chen, H.; Mao, L.; Zhang, F.; Zhang, L.; Cui, L.; He, W.; et al. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat. Genet. 2015, 47, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.B.; López-Cortegano, E.; Oyelami, F.O.; Zhang, Z.; Ma, P.P.; Wang, Q.S.; Pan, Y.C. Conservation priorities analysis of Chinese indigenous pig breeds in the Taihu lake region. Front. Genet. 2021, 12, 558873. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Wang, Z.G.; Liu, B.; Zhang, G.X.; Zhao, S.H.; Yu, M.; Fan, B.; Li, M.H.; Xiong, T.A.; Li, K. Genetic variation and relationships of eighteen Chinese indigenous pig breeds. Genet. Sel. Evol. 2003, 35, 657–671. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhang, H.; Wu, Z.P.; Wang, X.P.; Li, D.S.; Liu, S.J.; Zheng, S.M.; Yang, L.J.; Liu, B.B.; Li, G.X.; et al. Whole-genome resequencing reveals genetic structure and introgression in Pudong White pigs. Animal 2021, 15, 100354. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, L.; Zhou, M.; Su, S.; Dong, L.; Meng, X.; Li, X.; Wang, C. Assessing population structure and signatures of selection in Wanbei pigs using whole genome resequencing data. Animals 2022, 13, 13. [Google Scholar] [CrossRef]
- Wang, X.; Ran, X.; Niu, X.; Huang, S.; Li, S.; Wang, J. Whole-genome sequence analysis reveals selection signatures for important economic traits in Xiang pigs. Sci. Rep. 2022, 12, 11823. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Jiang, Y.; Zhou, M.; Liu, L.; Su, S.; Xu, C.; Li, X.; Wang, C. Genetic architecture and selection of Anhui autochthonous pig population revealed by whole genome resequencing. Front. Genet. 2022, 13, 1022261. [Google Scholar] [CrossRef]
- National Commission of Animal Genetic Resources of China. Animal Genetic Resources in China: Pigs; China Agriculture Press: Beijing, China, 2011; pp. 306–310. [Google Scholar]
- Lu, S.X.; Li, M.L.; Yan, D.W.; Ge, C.R. Germplasm characteristics, conservation and various utilization of Yunnan local pig breeds. J. Yunnan Agric. Univ. (Nat. Sci.) 2020, 35, 1096–1195. [Google Scholar] [CrossRef]
- GB/T 35892-2018; Laboratory Animal—Guideline for Ethical Review of Animal Welfare. 2018. Available online: https://www.chinesestandard.net/PDF.aspx/GBT35892-2018 (accessed on 27 August 2023).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Mckenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Kai, W.; Mingyao, L.; Hakon, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; Depristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Retief, J.D. Phylogenetic analysis using PHYLIP. Methods. Mol. Biol. 2000, 132, 243–258. [Google Scholar] [CrossRef]
- Yu, G.; Lam, T.T.; Zhu, H.; Guan, Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 2018, 35, 3041–3043. [Google Scholar] [CrossRef]
- Alexander, D.H.; Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 2011, 12, 246. [Google Scholar] [CrossRef]
- Francis, R.M. Pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 2017, 17, 27–32. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, S.S.; Xu, J.Y.; He, W.M.; Yang, T.L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Weijun, L.; Cory, B. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 2013, 14, 1830–1831. [Google Scholar] [CrossRef]
- Wu, F.; Sun, H.; Lu, S.X.; Gou, X.; Yan, D.W.; Xu, Z.; Zhang, Z.Y.; Qadri, Q.R.; Zhang, Z.; Wang, Z.; et al. Genetic diversity and selection signatures within Diannan small-ear pigs revealed by next-generation sequencing. Front. Genet. 2020, 11, 733. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhou, X.; Xu, G.Q.; Xu, S.P.; Liu, B. Genetic diversity and population structure of Tongcheng pigs in China using whole-genome SNP chip. Front. Genet. 2022, 13, 910521. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.Q.; Wang, Z.Y.; Xie, X.F.; Tian, S.S.; Wang, F.F.; Wang, Q.S.; Ni, S.H.; Pan, Y.C.; Xiao, Q. Evaluation of the genetic diversity, population structure and selection signatures of three native Chinese pig populations. Animals 2023, 13, 2010. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Q.; Yang, Y.; Liao, R.; Zhao, J.; Zhang, Z.; Chen, Z.; Zhang, X.; Xue, M.; Yang, H.; et al. Genetic diversity and population structure of six Chinese indigenous pig breeds in the Taihu Lake region revealed by sequencing data. Anim. Genet. 2015, 46, 697–701. [Google Scholar] [CrossRef]
- Liu, B.; Shen, L.Y.; Guo, Z.X.; Gan, M.L.; Chen, Y.; Yang, R.Y.; Niu, L.L.; Jiang, D.M.; Zhong, Z.J.; Li, X.W.; et al. Single nucleotide polymorphism based analysis of the genetic structure of Liangshan pig population. Anim. Biosci. 2021, 34, 1105–1115. [Google Scholar] [CrossRef]
- Meng, F.B.; Cai, J.C.; Wang, C.N.; Fu, D.C.; Di, S.W.; Wang, X.B.; Chang, Y.; Xu, C.Z. Single nucleotide polymorphism-based analysis of the genetic structure of the Min pig conserved population. Anim. Biosci. 2022, 35, 1839–1849. [Google Scholar] [CrossRef]
- Chen, M.H.; Wang, J.Y.; Wang, Y.P.; Wu, Y.; Fu, J.L.; Liu, J.F. Genome-wide detection of selection signatures in Chinese indigenous Laiwu pigs revealed candidate genes regulating fat deposition in muscle. BMC Genet. 2018, 19, 31. [Google Scholar] [CrossRef]
- Medeiros, P.J.; Pascetta, S.A.; Kirsh, S.M.; Al-Khazraji, B.K.; Uniacke, J. Expression of hypoxia inducible factor-dependent neuropeptide Y receptors Y1 and Y5 sensitizes hypoxic cells to NPY stimulation. J. Biol. Chem. 2022, 298, 101645. [Google Scholar] [CrossRef]
- Inui, A. Neuropeptide Y feeding receptors: Are multiple subtypes involved? Trends. Pharmacol. Sci. 1999, 20, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, H.; Zhang, Y.; Tang, Z.; Li, K.; Liu, B. Genome-wide analysis reveals artificial selection on coat colour and reproductive traits in Chinese domestic pigs. Mol. Ecol. Resour. 2015, 15, 414–424. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, M.; Zhou, M.; Wang, Y.; Wu, X.; Zhang, X.; Ding, Y.; Zhao, G.; Yin, Z.; Wang, C. Identification of signatures of selection by whole-genome resequencing of a Chinese native pig. Front. Genet. 2020, 11, 566255. [Google Scholar] [CrossRef]
- Inooka, H.; Sakamoto, K.; Shinohara, T.; Masuda, Y.; Terada, M.; Kumano, S.; Yokoyama, K.; Noguchi, J.; Nishizawa, N.; Kamiguchi, H.; et al. A PEGylated analog of short-length neuromedin U with potent anorectic and anti-obesity effects. Bioorg. Med. Chem. 2017, 25, 2307–2312. [Google Scholar] [CrossRef] [PubMed]
- Egecioglu, E.; Ploj, K.; Xu, X.; Bjursell, M.; Salomé, N.; Andersson, N.; Ohlsson, C.; Taube, M.; Hansson, C.; Bohlooly-Y, M.; et al. Central NMU signaling in body weight and energy balance regulation: Evidence from NMUR2 deletion and chronic central NMU treatment in mice. Am. J. Physiol. Endocrinol. Metab. 2009, 297, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Uyanga, V.A.; Bello, S.F.; Qian, X.; Chao, N.; Li, H.; Zhao, J.; Wang, X.; Jiao, H.; Onagbesan, O.M.; Lin, H. Transcriptomics analysis unveils key potential genes associated with brain development and feeding behavior in the hypothalamus of L-citrulline-fed broiler chickens. Poult. Sci. 2023, 102, 103136. [Google Scholar] [CrossRef]
- Wei, S.; Kang, X.; Amevor, F.K.; Du, X.; Wu, Y.; Xu, Z.; Cao, X.; Shu, G.; Zhao, X. RNA-Seq analysis reveals the molecular mechanisms regulating the development of different adipose tissues in broiler chicks. Animals 2024, 14, 899. [Google Scholar] [CrossRef]
- Kuivaniemi, H.; Tromp, G. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene 2019, 707, 151–171. [Google Scholar] [CrossRef]
- Vlkkil, M.; Melkoniemi, M.; Kvist, L.; Kuivaniemi, H.; Ala-Kokko, L. Genomic organization of the human COL3A1 and COL5A2 genes: COL5A2 has evolved differently than the other minor fibrillar collagen genes. Matrix Biol. 2001, 20, 357–366. [Google Scholar] [CrossRef]
- Sun, Q.; Zhao, H.; Zhang, C.; Hu, T.; Wu, J.; Lin, X.; Luo, D.; Wang, C.; Meng, L.; Xi, L.; et al. Gene co-expression network reveals shared modules predictive of stage and grade in serous ovarian cancers. Oncotarget 2017, 8, 42983–42996. [Google Scholar] [CrossRef]
- Sun, T.; Xiao, C.; Yang, Z.; Deng, J.; Yang, X. Transcriptome profiling analysis of uterus during chicken laying periods. BMC Genom. 2023, 24, 433. [Google Scholar] [CrossRef]
- Sun, T.; Xiao, C.; Yang, Z.; Deng, J.; Yang, X. Grade follicles transcriptional profiling analysis in different laying stages in chicken. BMC Genom. 2022, 23, 492. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Yang, S.; Chen, M.; Sun, R.; Zhao, L.; Gu, B.; Zhang, J.; Huang, D.; Zheng, T.; Zhao, Y.; et al. Association analysis of polymorphisms at GLRB, GRIA2, and GASK1B genes with reproductive traits in Dazu black goats. Anim. Biotechnol. 2023, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pintado, C.O.; Pinto, F.M.; Pennefather, J.N.; Hidalgo, A.; Baamonde, A.; Sanchez, T.; Candenas, M.L. A role for tachykinins in female mouse and rat reproductive function. Biol. Reprod. 2003, 69, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Zhang, J.; Chang, Y.; Wu, Y. Association study of TAC3 and TACR3 gene polymorphisms with idiopathic precocious puberty in Chinese girls. J. Pediatr. Endocrinol. Metab. 2015, 28, 65–71. [Google Scholar] [CrossRef]
- Lai, F.N.; Zhai, H.L.; Cheng, M.; Ma, J.Y.; Cheng, S.F.; Ge, W.; Zhang, G.L.; Wang, J.J.; Zhang, R.Q.; Wang, X.; et al. Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus). Sci. Rep. 2016, 6, 38096. [Google Scholar] [CrossRef]
- Tuomela, S.; Rautajoki, K.J.; Moulder, R.; Nyman, T.A.; Lahesmaa, R. Identification of novel Stat6 regulated proteins in IL-4-treated mouse lymphocytes. Proteomics 2009, 9, 1087–1098. [Google Scholar] [CrossRef]
- Maffei, M.; Halaas, J.; Ravussin, E.; Pratley, R.E.; Lee, G.H.; Zhang, Y.; Fei, H.; Kim, S.; Lallone, R.; Ranganathan, S.; et al. Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1995, 1, 1155–1161. [Google Scholar] [CrossRef]
- Rincon, G.; Farber, E.A.; Farber, C.R.; Nkrumah, J.D.; Medrano, J.F. Polymorphisms in the STAT6 gene and their association with carcass traits in feedlot cattle. Anim. Genet. 2010, 40, 878–882. [Google Scholar] [CrossRef]
- DeAtley, K.L.; Rincon, G.; Farber, C.R.; Medrano, J.F.; Luna-Nevarez, P.; Enns, R.M.; Vanleeuwen, D.M.; Silver, G.A.; Thomas, M.G. Genetic analyses involving microsatellite ETH10 genotypes on bovine chromosome 5 and performance trait measures in Angus- and Brahman-influenced cattle. J. Anim. Sci. 2011, 89, 2031–2041. [Google Scholar] [CrossRef]
- Jackson, M.R.; Melideo, S.L.; Jorns, M.S. Role of human sulfide: Quinone oxidoreductase in H2S metabolism. Methods Enzymol. 2015, 554, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Xu, L.; Yang, J.; Gao, H.; Zhang, L.; Gao, X.; Li, J.; Zhu, B. Weighted single-step genome-wide association study for growth traits in Chinese Simmental beef cattle. Genes 2020, 11, 189. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, I.M.; Hui, J.; Nazar, M.; Arbab, A.A.I.; Xu, T.; Abdu, S.M.N.; Mao, Y.; Yang, Z.; Lu, X. Identification of candidate genes and functional pathways associated with body size traits in Chinese Holstein cattle based on GWAS analysis. Animals 2023, 13, 992. [Google Scholar] [CrossRef] [PubMed]
- Bergqvist, L.P. The role of teeth in mammal history. Braz. J. Oral Sci. 2003, 2, 249–257. [Google Scholar] [CrossRef]
- Stokstad, E. Tooth theory revises history of mammals. Science 2001, 291, 26. [Google Scholar] [CrossRef]
- Mu, Y.; Tian, R.; Xiao, L.; Sun, D.; Zhang, Z.; Xu, S.; Yang, G. Molecular evolution of tooth-related genes provides new insights into dietary adaptations of mammals. J. Mol. Evol. 2021, 89, 458–471. [Google Scholar] [CrossRef]
- Delsuc, F.; Gasse, B.; Sire, J.Y. Evolutionary analysis of selective constraints identifies ameloblastin (AMBN) as a potential candidate for amelogenesis imperfecta. BMC Evol. Biol. 2015, 15, 148. [Google Scholar] [CrossRef]
- Shintani, S.; Kobata, M.; Toyosawa, S.; Ooshima, T. Identification and characterization of ameloblastin gene in an amphibian, Xenopus laevis. Gene 2003, 318, 125–136. [Google Scholar] [CrossRef]
- Daubert, D.M.; Kelley, J.L.; Udod, Y.G.; Habor, C.; Kleist, C.G.; Furman, I.K.; Tikonov, I.N.; Swanson, W.J.; Roberts, F.A. Human enamel thickness and ENAM polymorphism. Int. J. Oral Sci. 2016, 8, 93–97. [Google Scholar] [CrossRef]
- Kawasaki, K. Odontogenic ameloblast-associated protein (ODAM) and amelotin: Major players in hypermineralization of enamel and enameloid. J. Oral Biosci. 2013, 55, 85–90. [Google Scholar] [CrossRef]
- Takahashi, K.; Ezekowitz, R.A. The role of the mannose-binding lectin in innate immunity. Clin. Infect. Dis. 2005, 41, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ju, Z.; Huang, J.; Hou, M.; Zhou, L.; Qi, C.; Zhang, Y.; Gao, Q.; Pan, Q.; Li, G.; et al. The relationship between the variants of the bovine MBL2 gene and milk production traits, mastitis, serum MBL-C levels and complement activity. Vet. Immunol. Immunopathol. 2012, 148, 311–319. [Google Scholar] [CrossRef]
- Chan, A.H.; Schroder, K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J. Exp. Med. 2020, 217, e20190314. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, F.; Zhu, Z.; Yang, Y.; Wang, Z.; Cao, W.; Dang, W.; Li, L.; Mao, R.; Liu, Y.; et al. Cellular DNAJA3, a novel VP1-interacting protein, inhibits foot-and-mouth disease virus replication by inducing lysosomal degradation of VP1 and attenuating its antagonistic role on the IFN-β signaling pathway. J. Virol. 2019, 93, e00588-19. [Google Scholar] [CrossRef] [PubMed]
- Eom, C.Y.; Lehman, I.R. The human DnaJ protein, hTid-1, enhances binding of a multimer of the herpes simplex virus type 1 UL9 protein to oris, an origin of viral DNA replication. Proc. Natl. Acad. Sci. USA 2002, 99, 1894–1898. [Google Scholar] [CrossRef]
- Lo, J.F.; Zhou, H.; Fearns, C.; Reisfeld, R.A.; Yang, Y.; Lee, J.D. Tid1 is required for T cell transition from double-negative 3 to double-positive stages. J. Immunol. 2005, 174, 6105–6112. [Google Scholar] [CrossRef] [PubMed]
- Syken, J.; Macian, F.; Agarwal, S.; Rao, A.; Münger, K. TID1, a mammalian homologue of the drosophila tumor suppressor lethal(2) tumorous imaginal discs, regulates activation-induced cell death in Th2 cells. Oncogene 2003, 22, 4636–4641. [Google Scholar] [CrossRef]
- Sayson, S.L.; Fan, J.N.; Ku, C.L.; Lo, J.F.; Chou, S.H. DNAJA3 regulates B cell development and immune function. Biomed. J. 2024, 47, 100628. [Google Scholar] [CrossRef]
Populations | HE | HO | PN | MAF | π | Fis |
---|---|---|---|---|---|---|
ZTPs | 0.3271 | 0.2208 | 0.9779 | 0.2380 | 0.3325 | 0.0125 |
AWBs | 0.2805 | 0.2296 | 0.7912 | 0.2069 | 0.2967 | 0.1856 |
Terms/Pathways | p-Value | Genes |
---|---|---|
GO:0030199~collagen fibril organization | 2.68483 × 10−5 | COL3A1, COL5A2, P4HA1, MMP11 |
GO:0005201~extracellular matrix structural constituent | 3.44971 × 10−5 | AMBN, ENAM, COL3A1, COL5A2 |
GO:0009887~animal organ morphogenesis | 0.0003 | NPY1R, NPY5R, AREG, AMBN, ENAM, NAB2, STAT6, COL3A1, COL5A2, SHOX2, ODAM, E2F5 |
GO:0005581~collagen trimer | 0.0007 | COL3A1, COL5A2, P4HA1, MBL2 |
GO:0019083~viral transcription | 0.0011 | REST, LOC100621006, TARBP2 |
GO:0046782~regulation of viral transcription | 0.0011 | REST, LOC100621006, TARBP2 |
GO:0019080~viral gene expression | 0.0018 | REST, LOC100621006, TARBP2 |
GO:0034308~primary alcohol metabolic process | 0.0018 | REST, LOC100621006, LOC100624541 |
GO:0043200~response to amino acid | 0.0021 | GLRB, COL3A1, COL5A2 |
GO:0005791~rough endoplasmic reticulum | 0.0024 | SEC63, RPS26, MBL2, SEC62 |
ssc00920~sulfur metabolism | 0.0035 | SUOX, SQOR |
ssc04080~neuroactive ligand-receptor interaction | 0.0182 | NPY1R, NPY5R, GLRB, GRIA2, TAC3, RLN2, NPFF, NMU |
ssc03060~protein export | 0.0182 | SEC63, SEC62 |
ssc00650~butanoate metabolism | 0.0214 | LOC110260333, L2HGDH |
ssc04012~ErbB signaling pathway | 0.0407 | EREG, AREG, SOS2 |
ssc05210~colorectal cancer | 0.0470 | EREG, AREG, SOS2 |
ssc04010~MAPK signaling pathway | 0.0473 | EREG, AREG, IL1A, MAP3K12, MECOM, SOS2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Wang, X.; Yang, Y.; Wang, L.; Xu, C.; Xu, W.; Chen, Q.; Li, M.; Lu, S. Population Structure and Selection Signatures in Chinese Indigenous Zhaotong Pigs Revealed by Whole-Genome Resequencing. Animals 2024, 14, 3129. https://doi.org/10.3390/ani14213129
Zhu Y, Wang X, Yang Y, Wang L, Xu C, Xu W, Chen Q, Li M, Lu S. Population Structure and Selection Signatures in Chinese Indigenous Zhaotong Pigs Revealed by Whole-Genome Resequencing. Animals. 2024; 14(21):3129. https://doi.org/10.3390/ani14213129
Chicago/Turabian StyleZhu, Yixuan, Xiaoyi Wang, Yongli Yang, Lixing Wang, Chengliang Xu, Wenkun Xu, Qiang Chen, Mingli Li, and Shaoxiong Lu. 2024. "Population Structure and Selection Signatures in Chinese Indigenous Zhaotong Pigs Revealed by Whole-Genome Resequencing" Animals 14, no. 21: 3129. https://doi.org/10.3390/ani14213129
APA StyleZhu, Y., Wang, X., Yang, Y., Wang, L., Xu, C., Xu, W., Chen, Q., Li, M., & Lu, S. (2024). Population Structure and Selection Signatures in Chinese Indigenous Zhaotong Pigs Revealed by Whole-Genome Resequencing. Animals, 14(21), 3129. https://doi.org/10.3390/ani14213129