Genomic Variants Associated with Haematological Parameters and T Lymphocyte Subpopulations in a Large White and Min Pig Intercross Population
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Population and Phenotypic Data
2.3. Genotyping and Quality Control
2.4. Genome-Wide Association Study
2.5. Assignment of Genes to Gene Ontology (GO) Pathways and Pathway Analyses
2.6. Primer Design and Synthesis
2.7. Statistical Analysis
3. Results
3.1. Phenotype Description
3.2. Genome-Wide Association Study of Haematological Parameters Traits
3.3. Genome-Wide Association Study of T Lymphocyte Subpopulation Traits
3.4. GO Analysis
3.5. Statistical Analysis of Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, S.; Wu, K.; Zhao, M.; Yuan, J.; Ma, S.; Zhu, E.; Chen, Y.; Ding, H.; Yi, L.; Chen, J. LDHB inhibition induces mitophagy and facilitates the progression of CSFV infection. Autophagy 2021, 17, 2305–2324. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Song, Y.; Wang, X.; Fu, C.; Zhao, F.; Zou, L.; Wu, K.; Chen, W.; Li, Z.; Fan, J.; et al. The regulation of cell homeostasis and antiviral innate immunity by autophagy during classical swine fever virus infection. Emerg. Microbes Infect. 2023, 12, 2164217. [Google Scholar] [CrossRef] [PubMed]
- Lunney, J.K.; Fang, Y.; Ladinig, A.; Chen, N.; Li, Y.; Rowland, B.; Renukaradhya, G.J. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and Interaction with the Immune System. Annu. Rev. Anim. Biosci. 2016, 4, 129–154. [Google Scholar] [CrossRef]
- Xu, K.; Zhou, Y.; Mu, Y.; Liu, Z.; Hou, S.; Xiong, Y.; Fang, L.; Ge, C.; Wei, Y.; Zhang, X.; et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. eLife 2020, 9, e57132. [Google Scholar] [CrossRef]
- Poonsuk, K.; Giménez-Lirola, L.; Zimmerman, J.J. A review of foot-and-mouth disease virus (FMDV) testing in livestock with an emphasis on the use of alternative diagnostic specimens. Anim. Health Res. Rev. 2018, 19, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zha, Z.; Huang, P.; Sun, H.; Huang, Y.; He, M.; Chen, T.; Lin, L.; Chen, Z.; Kong, Z.; et al. Structures of pseudorabies virus capsids. Nat. Commun. 2022, 13, 1533. [Google Scholar] [CrossRef] [PubMed]
- Diao, F.; Jiang, C.; Sun, Y.; Gao, Y.; Bai, J.; Nauwynck, H.; Wang, X.; Yang, Y.; Jiang, P.; Liu, X. Porcine reproductive and respiratory syndrome virus infection triggers autophagy via ER stress-induced calcium signaling to facilitate virus replication. PLoS Pathog. 2023, 19, e1011295. [Google Scholar] [CrossRef]
- Roth, K.; Pröll-Cornelissen, M.J.; Henne, H.; Appel, A.K.; Schellander, K.; Tholen, E.; Große-Brinkhaus, C. Multivariate genome-wide associations for immune traits in two maternal pig lines. BMC Genom. 2023, 24, 492. [Google Scholar] [CrossRef]
- Clapperton, M.; Diack, A.B.; Matika, O.; Glass, E.J.; Gladney, C.D.; Mellencamp, M.A.; Hoste, A.; Bishop, S.C. Traits associated with innate and adaptive immunity in pigs: Heritability and associations with performance under different health status conditions. Genet. Sel. Evol. GSE 2009, 41, 54. [Google Scholar] [CrossRef]
- Flori, L.; Gao, Y.; Laloë, D.; Lemonnier, G.; Leplat, J.J.; Teillaud, A.; Cossalter, A.M.; Laffitte, J.; Pinton, P.; de Vaureix, C.; et al. Immunity traits in pigs: Substantial genetic variation and limited covariation. PLoS ONE 2011, 6, e22717. [Google Scholar] [CrossRef]
- Yang, L.; Liu, X.; Huang, X.; Zhang, L.; Yan, H.; Hou, X.; Wang, L.; Wang, L. Metabolite and Proteomic Profiling of Serum Reveals the Differences in Molecular Immunity between Min and Large White Pig Breeds. Int. J. Mol. Sci. 2023, 24, 5924. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ersoz, E.; Lai, C.Q.; Todhunter, R.J.; Tiwari, H.K.; Gore, M.A.; Bradbury, P.J.; Yu, J.; Arnett, D.K.; Ordovas, J.M.; et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 2010, 42, 355–360. [Google Scholar] [CrossRef]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Wang, J.Y.; Luo, Y.R.; Fu, W.X.; Lu, X.; Zhou, J.P.; Ding, X.D.; Liu, J.F.; Zhang, Q. Genome-wide association studies for hematological traits in swine. Anim. Genet. 2013, 44, 34–43. [Google Scholar] [CrossRef]
- Lu, X.; Liu, J.; Fu, W.; Zhou, J.; Luo, Y.; Ding, X.; Liu, Y.; Zhang, Q. Genome-wide association study for cytokines and immunoglobulin G in swine. PLoS ONE 2013, 8, e74846. [Google Scholar] [CrossRef]
- Reiner, G.; Kliemt, D.; Willems, H.; Berge, T.; Fischer, R.; Köhler, F.; Hepp, S.; Hertrampf, B.; Daugschies, A.; Geldermann, H.; et al. Mapping of quantitative trait loci affecting resistance/susceptibility to Sarcocystis miescheriana in swine. Genomics 2007, 89, 638–646. [Google Scholar] [CrossRef]
- Reiner, G.; Fischer, R.; Hepp, S.; Berge, T.; Köhler, F.; Willems, H. Quantitative trait loci for white blood cell numbers in swine. Anim. Genet. 2008, 39, 163–168. [Google Scholar] [CrossRef]
- Bian, T.; Zhang, W.; Wang, F.; Chu, X.; Pan, X.; Ruan, J.; Yu, S.; Liu, L.; Sun, H.; Qiu, H.; et al. Identification of CLIC5 as a Prognostic Biomarker and Correlated Immunomodulator for Lung Adenocarcinoma. Comb. Chem. High Throughput Screen. 2023, 26, 2452–2468. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Zhao, C.; Zhao, W. Emerging Roles of MHC Class I Region-Encoded E3 Ubiquitin Ligases in Innate Immunity. Front. Immunol. 2021, 12, 687102. [Google Scholar] [CrossRef]
- Togawa, N.; Miyaji, T.; Izawa, S.; Omote, H.; Moriyama, Y. A Na+-phosphate cotransporter homologue (SLC17A4 protein) is an intestinal organic anion exporter. Am. J. Physiol. Cell Physiol. 2012, 302, C1652–C1660. [Google Scholar] [CrossRef]
- Dong, Z.; Zhou, J.; Jiang, S.; Li, Y.; Zhao, D.; Yang, C.; Ma, Y.; Wang, Y.; He, H.; Ji, H.; et al. Effects of multiple genetic loci on the pathogenesis from serum urate to gout. Sci. Rep. 2017, 7, 43614. [Google Scholar] [CrossRef] [PubMed]
- Hollis-Moffatt, J.E.; Phipps-Green, A.J.; Chapman, B.; Jones, G.T.; van Rij, A.; Gow, P.J.; Harrison, A.A.; Highton, J.; Jones, P.B.; Montgomery, G.W.; et al. The renal urate transporter SLC17A1 locus: Confirmation of association with gout. Arthritis Res. Ther. 2012, 14, R92. [Google Scholar] [CrossRef]
- Julio-Pieper, M.; Flor, P.J.; Dinan, T.G.; Cryan, J.F. Exciting times beyond the brain: Metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol. Rev. 2011, 63, 35–58. [Google Scholar] [CrossRef]
- Fallarino, F.; Volpi, C.; Fazio, F.; Notartomaso, S.; Vacca, C.; Busceti, C.; Bicciato, S.; Battaglia, G.; Bruno, V.; Puccetti, P.; et al. Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation. Nat. Med. 2010, 16, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Kansara, M.; Thomson, K.; Pang, P.; Dutour, A.; Mirabello, L.; Acher, F.; Pin, J.P.; Demicco, E.G.; Yan, J.; Teng, M.W.L.; et al. Infiltrating Myeloid Cells Drive Osteosarcoma Progression via GRM4 Regulation of IL23. Cancer Discov. 2019, 9, 1511–1519. [Google Scholar] [CrossRef]
- Watts, C.; Powis, S. Pathways of antigen processing and presentation. Rev. Immunogenet. 1999, 1, 60–74. [Google Scholar]
Chr 1 | SNPs | Average Distance (kb) |
---|---|---|
1 | 5255 | 52.20 |
2 | 2739 | 55.47 |
3 | 2253 | 58.97 |
4 | 2908 | 45.02 |
5 | 1960 | 53.33 |
6 | 2614 | 65.36 |
7 | 2777 | 43.88 |
8 | 2284 | 60.84 |
9 | 2725 | 51.20 |
10 | 1473 | 47.09 |
11 | 1569 | 50.46 |
12 | 1322 | 46.60 |
13 | 3371 | 61.80 |
14 | 3085 | 45.95 |
15 | 2401 | 58.48 |
16 | 1547 | 51.68 |
17 | 1366 | 46.48 |
18 | 1100 | 50.89 |
Total | 42,749 |
Traits | Mean | Standard Deviation | Maximum | Minimum |
---|---|---|---|---|
WBC | 18.13 | 3.49 | 31.80 | 7.40 |
PLT | 261.01 | 76.63 | 467 | 45.00 |
PCT | 0.20 | 0.06 | 0.38 | 0.03 |
MPV | 8.05 | 1.16 | 11.70 | 5.10 |
PDW | 14.49 | 0.78 | 17.20 | 12.00 |
LYM | 11.79 | 2.58 | 20.00 | 4.40 |
MID | 2.24 | 0.86 | 5.20 | 0.80 |
GRN | 4.10 | 2.48 | 15.50 | 0.20 |
LYM% | 65.33 | 9.70 | 84.70 | 36.30 |
MID% | 12.44 | 4.49 | 27.60 | 4.80 |
GRN% | 22.22 | 11.51 | 52.80 | 1.20 |
CD4−CD8−CD3+ | 23.70 | 7.91 | 46.70 | 4.60 |
CD4+CD8−CD3+ | 15.97 | 5.04 | 37.70 | 2.20 |
CD4−CD8+CD3+ | 31.43 | 6.80 | 59.10 | 14.80 |
CD4+CD8+CD3+ | 8.75 | 3.54 | 23.60 | 1.30 |
CD3 | 79.86 | 5.61 | 94.30 | 57.30 |
CD4+/CD8+ | 0.54 | 0.24 | 1.85 | 0.05 |
Traits | SNP | Alleles | Chr 1 | Position 2 | Nearest Genes | Distance 3 (bp) | p Value |
---|---|---|---|---|---|---|---|
PCT | MARC0014928 | C/T | 7 | 18186149 | ENSSSCG00000054723 | 34,111 | 1.76 × 10−7 |
PLT | MARC0014928 | C/T | 7 | 18186149 | ENSSSCG00000054723 | 34,111 | 9.75 × 10−11 |
ALGA0040148 | T/C | 7 | 29487703 | COL21A1 | within | 3.40 × 10−8 | |
ALGA0039151 | T/C | 7 | 19039982 | DCDC2 | 8106 | 3.53 × 10−8 | |
ASGA0031602 | T/C | 7 | 18666443 | ENSSSCG00000057284 | 17,358 | 4.02 × 10−8 | |
MARC0087333 | A/G | 7 | 25830498 | HCRTR2 | within | 2.75 × 10−7 | |
MARC0058766 | C/T | 7 | 30144081 | GRM4 | 35,224 | 2.94 × 10−7 | |
H3GA0020692 | A/G | 7 | 29338532 | DST | 38,380 | 3.71 × 10−7 | |
H3GA0020765 | T/G | 7 | 30095798 | ENSSSCG00000047035 | 26,926 | 3.85 × 10−7 | |
MARC0033464 | C/T | 7 | 30572315 | ILRUN | within | 4.27 × 10−7 | |
ASGA0032322 | A/G | 7 | 28798509 | BEND6 | within | 5.26 × 10−7 | |
ALGA0040120 | G/A | 7 | 29289201 | DST | within | 1.15 × 10−6 | |
WBC | ASGA0098229 | A/C | 12 | 57522622 | ENSSSCG00000059067 | 69,298 | 8.82 × 10−7 |
Traits | SNP | Alleles | Chr 1 | Position 2 | Nearest Genes | Distance 3 (bp) | p Value |
---|---|---|---|---|---|---|---|
CD4+/CD8+ | ASGA0031860 | G/A | 7 | 22075114 | ZSCAN9 | 7057 | 2.60 × 10−11 |
ASGA0032099 | C/T | 7 | 24944510 | ENSSSCG00000001456 | 8984 | 3.37 × 10−10 | |
ALGA0039770 | A/G | 7 | 25014857 | ENSSSCG00000063263 | 11,156 | 4.21 × 10−9 | |
ASGA0031822 | A/C | 7 | 21349121 | ENSSSCG00000059172 | within | 4.98 × 10−9 | |
ALGA0039343 | C/T | 7 | 20515855 | SLC17A4 | within | 6.89 × 10−9 | |
MARC0015432 | A/G | 7 | 40842218 | CLIC5 | within | 1.23 × 10−8 | |
INRA0024930 | T/G | 7 | 34123154 | BTBD9 | within | 1.56 × 10−7 | |
H3GA0020975 | T/C | 7 | 34136279 | BTBD9 | 11,821 | 1.56 × 10−7 | |
ALGA0041094 | G/A | 7 | 41580629 | ENSSSCG00000001724 | 7120 | 1.62 × 10−7 | |
ASGA0032255 | G/A | 7 | 27765368 | KHDRBS2 | within | 2.82 × 10−7 | |
H3GA0055194 | A/G | 7 | 21926288 | ENSSSCG00000054486 | within | 3.37 × 10−7 | |
ALGA0041025 | C/T | 7 | 40830444 | CLIC5 | within | 3.46 × 10−7 | |
MARC0055565 | G/A | 7 | 22727959 | TRIM15 | within | 3.80 × 10−7 | |
DRGA0007396 | C/T | 7 | 25565917 | ENSSSCG00000055495 | 16,872 | 5.21 × 10−7 | |
MARC0006637 | A/C | 7 | 22951243 | ENSSSCG00000041364 | within | 1.06 × 10−6 | |
CD4+CD8+CD3+ | ALGA0017071 | C/T | 2 | 151238895 | SLC6A7 | within | 3.46 × 10−7 |
ASGA0012938 | C/A | 2 | 151287051 | CAMK2A | within | 7.50 × 10−7 | |
CD4+CD8−CD3+ | ASGA0032099 | C/T | 7 | 24944510 | ENSSSCG00000001456 | 8984 | 1.76 × 10−8 |
ASGA0031549 | T/C | 7 | 17257230 | ENSSSCG00000049691 | within | 2.80 × 10−7 | |
MARC0028162 | A/G | 5 | 65032951 | NTF3 | 19,568 | 3.55 × 10−07 | |
CD4−CD8+CD3+ | ASGA0031860 | G/A | 7 | 22075114 | ZSCAN9 | 7057 | 2.09 × 10−9 |
ASGA0031822 | A/C | 7 | 21349121 | ENSSSCG00000059172 | within | 7.45 × 10−9 | |
ASGA0083507 | A/G | 7 | 19971763 | CMAH | 16,004 | 7.00 × 10−8 | |
MARC0015432 | A/G | 7 | 40842218 | CLIC5 | within | 1.35 × 10−7 | |
MARC0055565 | G/A | 7 | 22727959 | TRIM15 | within | 1.46 × 10−7 | |
ALGA0039343 | C/T | 7 | 20515855 | SLC17A4 | within | 1.62 × 10−7 | |
ASGA0032668 | A/G | 7 | 32640406 | MTCH1 | 4831 | 1.74 × 10−7 | |
ALGA0039300 | A/G | 7 | 20253597 | CARMIL1 | within | 3.98 × 10−7 | |
ALGA0039634 | T/G | 7 | 23504078 | C6orf15 | 11,559 | 5.43 × 10−7 |
SNP 1 | Gene | Amino Acids | Number | Genotypes | CD4+/CD8+ | CD4−CD8+CD3+ |
---|---|---|---|---|---|---|
c.2696 C>T | SLC17A4 | A/V | 1 | TT | 0.40 | 34.20 |
45 | TC | 0.44 ± 0.03 | 34.20 ± 1.21 | |||
360 | CC | 0.57 ± 0.01 | 30.91 ± 0.34 | |||
c.2707 G>A | SLC17A4 | V/I | 15 | AA | 0.79 ± 0.10 a | 27.54 ± 1.42 b |
144 | AG | 0.65 ± 0.02 b | 29.45 ± 0.55 ab | |||
282 | GG | 0.49 ± 0.01 c | 32.24 ± 0.38 a | |||
c.425 A>C | TRIM15 | D/A | 12 | CC | 0.90 ± 0.13 a | 25.73 ± 1.30 b |
70 | CA | 0.71 ± 0.03 b | 29.44 ± 0.77 ab | |||
378 | AA | 0.50 ± 0.01 c | 32.04 ± 0.35 a | |||
c.500 C>T | TRIM15 | A/V | 5 | TT | 0.61 ± 0.11 ab | 34.22 ± 1.71 |
56 | TC | 0.74 ± 0.04 a | 29.12 ± 0.85 | |||
398 | CC | 0.52 ± 0.01 b | 31.71 ± 0.35 | |||
c.733 A>G | TRIM15 | T/A | 2 | GG | 1.05 ± 0.01 a | 23.65 ± 3.75 |
59 | GA | 0.56 ± 0.03 b | 29.35 ± 0.93 | |||
410 | AA | 0.54 ± 0.01 b | 31.79 ± 0.33 | |||
c.957 T>C | CLIC5 | T/A | 34 | TT | 0.67 ± 0.05 a | 29.26 ± 0.91 b |
83 | TC | 0.61 ± 0.03 a | 30.93 ± 0.70 ab | |||
321 | CC | 0.51 ± 0.01 b | 31.76 ± 0.39 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, N.; Zhao, R.; Tian, M.; Zong, W.; Hou, X.; Liu, X.; Wang, L.; Wang, L.; Zhang, L. Genomic Variants Associated with Haematological Parameters and T Lymphocyte Subpopulations in a Large White and Min Pig Intercross Population. Animals 2024, 14, 3140. https://doi.org/10.3390/ani14213140
Niu N, Zhao R, Tian M, Zong W, Hou X, Liu X, Wang L, Wang L, Zhang L. Genomic Variants Associated with Haematological Parameters and T Lymphocyte Subpopulations in a Large White and Min Pig Intercross Population. Animals. 2024; 14(21):3140. https://doi.org/10.3390/ani14213140
Chicago/Turabian StyleNiu, Naiqi, Runze Zhao, Ming Tian, Wencheng Zong, Xinhua Hou, Xin Liu, Ligang Wang, Lixian Wang, and Longchao Zhang. 2024. "Genomic Variants Associated with Haematological Parameters and T Lymphocyte Subpopulations in a Large White and Min Pig Intercross Population" Animals 14, no. 21: 3140. https://doi.org/10.3390/ani14213140
APA StyleNiu, N., Zhao, R., Tian, M., Zong, W., Hou, X., Liu, X., Wang, L., Wang, L., & Zhang, L. (2024). Genomic Variants Associated with Haematological Parameters and T Lymphocyte Subpopulations in a Large White and Min Pig Intercross Population. Animals, 14(21), 3140. https://doi.org/10.3390/ani14213140