Nutritional Value Evaluation and Processing Technology of Feed and Nutrition Regulation Measures for Ruminants
1. Introduction
2. Feed Ingredients and Nutritional Value
3. Feed Processing Technology
4. Nutrition Regulation Measures
4.1. Unconventional Feeds for Ruminants
4.2. Applied Plant Extract
5. Conclusions
Funding
Conflicts of Interest
References
- Jones, A.; Smith, R. The impact of feed costs on livestock production. Anim. Feed Sci. Technol. 2022, 265, 114–125. [Google Scholar]
- Zebeli, Q.; Dijkstra, J.; Tafaj, M.; Steingass, H.; Ametaj, B.; Drochner, W. Modeling the Adequacy of Dietary Fiber in Dairy Cows Based on the Responses of Ruminal pH and Milk Fat Production to Composition of the Diet. J. Dairy Sci. 2008, 91, 2046–2066. [Google Scholar] [CrossRef] [PubMed]
- De Brito, G.F.; McGrath, S.R.; Holman, B.W.; Friend, M.A.; Fowler, S.M.; van de Ven, R.J.; Hopkins, D.L. The effect of forage type on lamb carcass traits, meat quality and sensory traits. Meat Sci. 2016, 119, 95–101. [Google Scholar]
- Wilson, T.; Moore, C. Forage quality and its implications on livestock performance. Livest. Prod. Rev. 2020, 45, 210–218. [Google Scholar]
- Himanshu, H.; Murphy, J.; Grant, J.; O’Kiely, P. Synergies from co-digesting grass or clover silages with cattle slurry in in vitro batch anaerobic digestion. Renew. Energy 2018, 127, 474–480. [Google Scholar] [CrossRef]
- Cole, N.; Meyer, B.; Parker, D.; Neel, J.; Turner, K.; Northup, B.; Jennings, T.; Jennings, J. Effects of diet quality on energy metabolism and methane production by beef steers fed a warm-season grass-based hay diet. Appl. Anim. Sci. 2020, 36, 652–667. [Google Scholar] [CrossRef]
- Eugène, M.; Klumpp, K.; Sauvant, D. Methane mitigating options with forages fed to ruminants. Grass Forage Sci. 2021, 76, 196–204. [Google Scholar] [CrossRef]
- Waghorn, G.C.; McNabb, W.C. Consequences of plant phenolic compounds for productivity and health of ruminants. Proc. Nutr. Soc. 2003, 62, 383–392. [Google Scholar] [CrossRef]
- Patra, A.K. A meta-analysis on effects of supplementing diets with tannins on methane production and nitrogen excretion in ruminants. J. Anim. Physiol. Anim. Nutr. 2014, 98, 102–116. [Google Scholar]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Tiemann, T.T.; Lascano, C.E.; Wettstein, H.-R.; Mayer, A.C.; Kreuzer, M.; Hess, H.D. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal 2008, 2, 790–799. [Google Scholar] [CrossRef]
- Boadi, D.A.; Wittenberg, K.M.; Scott, S.L.; Burton, D.; Buckley, K.; Small, J.A.; Ominski, K.H. Effect of low and high forage diet on enteric and manure pack greenhouse gas emissions from a feedlot. Can. J. Anim. Sci. 2004, 84, 445–453. [Google Scholar] [CrossRef]
- Martin, C.; Ferlay, A.; Mosoni, P.; Rochette, Y.; Chilliard, Y.; Doreau, M. Increasing linseed supply in dairy cow diets based on hay or corn silage: Effect on enteric methane emission, rumen microbial fermentation, and digestion. J. Dairy Sci. 2016, 99, 3445–3456. [Google Scholar] [CrossRef] [PubMed]
- Hammond, K.; Jones, A.; Humphries, D.; Crompton, L.; Reynolds, C. Effects of diet forage source and neutral detergent fiber content on milk production of dairy cattle and methane emissions determined using GreenFeed and respiration chamber techniques. J. Dairy Sci. 2016, 99, 7904–7917. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, H. Advances in feed processing technologies for ruminants. Anim. Nutr. 2018, 4, 137–144. [Google Scholar]
- Miller, R.; Davis, P. The effects of silage processing on feed quality. J. Agric. Res. 2021, 18, 123–135. [Google Scholar]
- Green, J.; Miller, S. Bioconversion of unconventional feedstuffs in livestock diets. Sustain. Agric. 2019, 23, 67–75. [Google Scholar]
- Arowolo, M.A.; He, J. Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review. Anim. Nutr. 2018, 4, 241–249. [Google Scholar]
- Smith, G.; Brown, H. Methane mitigation strategies in ruminant livestock. Environ. Sustain. Agric. 2020, 32, 45–58. [Google Scholar]
- Carter, A.; Thomas, E. Precision feeding in ruminant livestock: A review. Anim. Feed Sci. Technol. 2021, 269, 116–127. [Google Scholar]
- Xu, C.; Zhang, S.; Sun, B.; Xie, P.; Liu, X.; Chang, L.; Lu, F.; Zhang, S. Dietary Supplementation with Microalgae (Schizochytrium sp.) Improves the Antioxidant Status, Fatty Acids Profiles and Volatile Compounds of Beef. Animals 2021, 11, 3517. [Google Scholar] [CrossRef]
- Silva, L.H.; Assis, D.E.; Estrada, M.M.; Assis, G.J.; Zamudio, G.D.; Carneiro, G.B.; Valadares Filho, S.C.; Paulino, M.F.; Chizzotti, M.L. Carcass and meat quality traits of Nellore young bulls and steers throughout fattening. Livest. Sci. 2019, 229, 28–36. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Xue, X.; Zhang, X.; Wang, H.; Gao, T.; Phillips, C. Effect of feeding a diet comprised of various corn silages inclusion with peanut vine or wheat straw on performance, digestion, serum parameters and meat nutrients in finishing beef cattle. Anim. Biosci. 2022, 35, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Natalello, A.; Priolo, A.; Valenti, B.; Codini, M.; Mattioli, S.; Pauselli, M.; Puccio, M.; Lanza, M.; Stergiadis, S.; Luciano, G. Dietary pomegranate by-product improves oxidative stability of lamb meat. Meat Sci. 2020, 162, 108037. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Li, J.; Gao, Q.; Shen, W.; Liu, W.; Xia, M.; Xiao, H.; Xiao, D. In Vitro Evaluation of Chito-Oligosaccharides on Disappearance Rate of Nutrients, Rumen Fermentation Parameters, and Micro-Flora of Beef Cattle. Animals 2024, 14, 1657. [Google Scholar] [CrossRef]
- Menci, R.; Coppa, M.; Torrent, A.; Natalello, A.; Valenti, B.; Luciano, G.; Priolo, A.; Niderkorn, V. Effects of two tannin extracts at different doses in interaction with a green or dry forage substrate on rumen fermentation and biohydrogenation-an in vitro study. Anim. Feed Sci. Technol. 2021, 278, 114977. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, S.; Zou, X.; Ruan, S.; Kholif, A.E.; Hu, L.; Chen, X.; Zhou, W. Effects of Neolamarckia cadamba leaves extract on methanogenesis, microbial community in the rumen and digestibility of stylo silage. J. Clean. Prod. 2022, 369, 133338. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, D.; Meng, T. Nutritional Value Evaluation and Processing Technology of Feed and Nutrition Regulation Measures for Ruminants. Animals 2024, 14, 3153. https://doi.org/10.3390/ani14213153
Xiao D, Meng T. Nutritional Value Evaluation and Processing Technology of Feed and Nutrition Regulation Measures for Ruminants. Animals. 2024; 14(21):3153. https://doi.org/10.3390/ani14213153
Chicago/Turabian StyleXiao, Dingfu, and Tiantian Meng. 2024. "Nutritional Value Evaluation and Processing Technology of Feed and Nutrition Regulation Measures for Ruminants" Animals 14, no. 21: 3153. https://doi.org/10.3390/ani14213153
APA StyleXiao, D., & Meng, T. (2024). Nutritional Value Evaluation and Processing Technology of Feed and Nutrition Regulation Measures for Ruminants. Animals, 14(21), 3153. https://doi.org/10.3390/ani14213153