Thermal Behavior of Tropical Sea Cucumber of Isostichopus isabellae: Preliminary Issues
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Biological Samples
2.3. Sea Cucumber Favorable Temperature of Conditioning of the Culture
2.4. Sea Cucumber Thermal Preference
Rearing System and Experimental Conditions
2.5. Sea Cucumber Thermal Resistance
2.5.1. Critical Thermal Maximum (CTMax)
2.5.2. Critical Thermal Minimum (CTMin)
2.6. Statistical Analysis
3. Results
3.1. Favorable Conditioning Temperature of Sea Cucumber
3.2. Thermal Preference of Isostichopus isabellae
3.3. Thermal Resistance of Isostichopus isabellae
3.3.1. Behavioral Responses to Characterize the Critical Thermal Maximum (CTMax)
- (a)
- At the beginning of the experiment (time 0), the individuals showed normal behavior representing slow movement. (Figure 5A).
- (b)
- The cucumbers were gregarious. No papillae were observed in expansion (Figure 5B).
- (c)
- One hour after at 28 ± 0.3 °C, the animals showed larger movements of the podia (8 oscillations/10 sec), with their papillae projected and extended. Also, 75% changed their position to be placed in a group along the wall of the aquarium (Figure 5C).
- (d)
- At 30 ± 0.5 °C, the cucumbers were grouped in the corner of the aquarium and stuck to the walls (Figure 5D). This behavior was defined as an increase in movement of podia. Papillae were projected and extended (IMP + PE).
- (e)
- At 31 ± 0.3 °C, the cucumbers were dispersed at the bottom of the aquarium, with a decrease in movement of the podia (5 oscillations/10 s), while the length of the animals increased by approximately 1.5 times their initial size (Figure 5E). This response is reflected in the decrease in movement of the podia and the start of corporal relaxation (DMP + SCR).
3.3.2. Behavioral Responses to Characterize the Critical Thermal Minimum (CTMin)
- (a)
- In the beginning (time 0), the animals showed normal behavior (Figure 7A).
- (b)
- When the temperature decreased to 20 ± 0.2 °C, the cucumbers began to move toward the walls or toward the corner of the aquarium when possible (Figure 7B). The behavior was defined as the start of the activity (SA).
- (c)
- At 18 ± 0.1 °C, the animals overlapped with each other. In total, 60% extended their tentacles and 40% took the position of a “cobra” (Figure 7C). These behaviors are summarized as tentacles extended and cobra body position (TE + CBP).
- (d)
- At 14 ± 0.5 °C, the animals took the position of a U shape, were separated from each other, and their movement was virtually nil (Figure 7D). This response was characterized as a total decrease in movement and body position in U (TDM + BPU).
- (e)
- When the temperature of the water reached 9 ± 0.2 °C, 62.5% of the animals simultaneously lost the U shape, had slight movements, extended their tentacles, and were not relaxed (Figure 7E). At 8 ± 0.5 °C, there was no movement. These behaviors were summarized as decreased movement of podia, tentacles relaxed, and the cessation of body movement (DMP + TE + CBM).
4. Discussion
4.1. Favorable Temperature of Maintenance
4.2. Thermal Preference of Isostichopus isabellae
4.3. Thermal Resistance of Isostichopus isabellae
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elliot, J.A. A comparison of thermal polygons for british freshwater teleosts. Freshw. Forum 1995, 5, 178–184. [Google Scholar]
- Wood, C.M.; McDonald, D.G. Global Warming: Implications for Freshwater and Marine Fish; Cambridge University Press: Cambridge, UK, 2008; p. 444. [Google Scholar]
- Nithirojpakdee, P.; Beamish, F.W.H.; Boonphakdee, T. Diet diversity among five co-existing fish species in a tropical river: Integration of dietary and stable isotope data. Limnology 2014, 15, 99–107. [Google Scholar] [CrossRef]
- Brett, J.R. Environmental factors, part 1. Temperature. In Marine Ecology; Kinne, O., Ed.; Wiley: London, UK, 1970. [Google Scholar]
- Fry, F. Effects of the environment on animal activity. Publ. Out. Fish. Res. Lab. 1947, 55, 1–62. [Google Scholar]
- Jobling, M. Temperature tolerance and final preferendum: Rapid methods for the assessment of optimum growth temperatures. J. Fish. Biol. 1981, 19, 439–455. [Google Scholar] [CrossRef]
- Kellog, R. Temperature requirements for the survival and early development of the anadromous alewife. Progr. Fish Cult. 1982, 44, 63–73. [Google Scholar] [CrossRef]
- Kellog, R.; Gift, J. Re1ationship between optimum temperatures for growth and preferred temperatures for the young of four species. Trans. Am. Fish. Soc. 1983, 112, 424–430. [Google Scholar] [CrossRef]
- Fry, F.; Brett, J. Lethal Limits of Temperature; Department of Biology, University of Toronto: Toronto, ON, Canada, 1971. [Google Scholar]
- McCauley, R.; Casselman, J. The final preferendum as an index of the temperature for optimum growth in [freshwater] fish. In Proceedings of the World Symposium on Aquaculture in Heated Effluents and Recirculation Systems, Stavanger, Norway, 28–30 May 1980; Volume 2, pp. 81–93. [Google Scholar]
- Giattina, J.; Garton, R. Graphical model of thermoregulatory behavior by fishes with a new measure of eurythermality. Can. J. Fish. Aquat. Sci. 1982, 39, 524–528. [Google Scholar] [CrossRef]
- Lutterschmidt, W.; Hutchison, V. The critical thermal maximum: History and critique. Can. J. Zool. 1997, 75, 1561–1574. [Google Scholar] [CrossRef]
- Eme, J.; Bennett, W. Critical thermal tolerance polygons of tropical marine fishes from Sulawesi, Indonesia. J. Thermal Biol. 2009, 34, 220–225. [Google Scholar] [CrossRef]
- Cowles, R.B.; Bogert, C.M. A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist 1944, 83, 261–296. [Google Scholar]
- Bennett, W.A.; Beitinger, T.L. Temperature toleranceof sheepshead minnow, Cyprinodon variegatus. Copeia 1997, 1997, 77–87. [Google Scholar] [CrossRef]
- Kilgour, D.; McCauley, R.; Kwain, W. Modeling the lethal effects of high temperature on fish. Can. J. Fish. Aquat. Sci. 1985, 42, 947–951. [Google Scholar] [CrossRef]
- Beitinger, T.J.; Lutterschmidt, W.I. Temperature: Measures of thermal tolerance. In Encyclopedia of Fish Physiology: From Genome to Environment; Farrell, A.P., Stevens, E.D., Cech, J.J., Richard, J.G., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 1695–1702. [Google Scholar]
- Paladino, F.V.; Spotila, J.R.; Schubauer, J.P.; Kowalski, K.T. The critical thermal maximum: A technique used to elucidate physiological stress and adaptation in fishes. Rev. Can. Biol. 1980, 39, 115–122. [Google Scholar]
- Beitinger, T.L.; Bennett, W.A.; McCauley, R.W. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ. Biol. Fishes 2000, 58, 237–275. [Google Scholar] [CrossRef]
- Hillyard, S.D.; Podrabsky, J.E.; van Breukelen, F. Desert Environments. In Extremophile Fishes; Springer International Publishing: Cham, Switzerland, 2015; pp. 59–83. [Google Scholar]
- Hernández, M.; Bückle, F.; Guisado, C.; Barón, B.; Estavillo, N. Critical thermal maximum and osmotic pressure of the red sea urchin Strongylocentrotus franciscanus acclimated at different temperatures. J. Therm. Biol. 2004, 29, 231–236. [Google Scholar] [CrossRef]
- An, Z.; Dong, Y.; Dong, S. Temperature effects on growth-ration relationships of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture 2007, 272, 644–648. [Google Scholar] [CrossRef]
- Meng, X.L.; Ji, T.T.; Dong, Y.W.; Wang, Q.L.; Dong, S.L. Thermal resistance in sea cucumbers (Apostichopus japonicus) with differing thermal history: The role of Hsp70. Aquaculture 2009, 294, 314–318. [Google Scholar] [CrossRef]
- Dong, Y.; DongJi, S.T. Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus Selenka. Aquaculture 2008, 275, 329–334. [Google Scholar] [CrossRef]
- Wang, H.; Li, C.; Wang, Z.; Shao, Y.; Lv, Z.; Zhang, W. p44/42MAPK and p90RSK modulate thermal stressed physiology response in Apostichopus japonicus. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2016, 196, 57–66. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, L.B.; Pan, Y.; Lin, C.; Wang, F.; Yang, H.S. Effect of Water Temperature on Diel Feeding, Locomotion Behaviour and Digestive Physiology in the Sea Cucumber Apostichopus japonicus. J. Exp. Biol. 2018, 221, jeb177451. [Google Scholar] [CrossRef]
- Ren, A.; Yu, L.; Zhao, X.; Jia, F.; Han, F.; Hou, H.; Liu, Y. A multi-objective optimization approach for green supply chain network design for the sea cucumber (Apostichopus japonicus) industry. Sci. Total Environ. 2024, 927, 172050. [Google Scholar] [CrossRef] [PubMed]
- Hendler, G.; Miller, J.; Pawson, D.; Kier, P. Echinoderms of Florida and the Caribbean. In Sea Stars, Sea urchins and Allies; Smithsonian Institution: Washington, DC, USA, 1995; p. 392. ISBN 1560984503. [Google Scholar]
- Uthicke, S. Interactions between sediment-feeders and microalgae on coral reefs: Grazing losses versus production enhancement. Mar. Ecol. Progr. Ser. 2001, 210, 125–138. [Google Scholar] [CrossRef]
- Mangion, P.; Taddei, D.; Frouin, P.; Conand, C. Feeding rate and impact of sediment reworking by two deposit feeders Holothuria leucospilota and Holothuria atra on a fringing reef (Reunion Island, Indian Ocean). In Proceedings of the Echinoderms: Munchen: Proceedings of the 11th International Echinoderm Conference, Munich, Germany, 6–10 October 2003; CRC Press: Boca Raton, FL, USA, 2003; p. 311. [Google Scholar]
- James, D. Twenty sea cucumbers from seas around India. ICLARM Naga 2001, 24, 4–8. [Google Scholar]
- Purcell, S.; Samyn, Y.; Conand, C. Commercially important sea cucumbers of the world. In FAO Species Catalogue for Fishery Purposes; FAO: Rome, Italy, 2012; p. 186. [Google Scholar]
- Rodríguez Forero, A.; Vergara Hernández, W.; Agudelo Martínez, V. First insight into Colombian Caribbean Sea cucumbers and sea cucumber fishery. SPC Beche-De-Mer Inf. Bull. 2013, 33, 9–13. [Google Scholar]
- Agudelo, V.; Rodríguez, A. Advances on spontaneous captive breeding and culture conditions of Caribbean Sea cucumber Stichopus sp. SPC Beche-De-Mer Inf. Bull. 2015, 35, 50–57. [Google Scholar]
- Agudelo-Martínez, V.; Rodríguez-Forero, A. Gametogenesis, spawning and larval development of Isostichopus sp. aff badionotus. SPC Beche-De-Mer Inf. Bull. 2017, 37, 65–74. [Google Scholar]
- Vergara, W.; Rodríguez, A. Histología del tubo digestivo de tres especies de pepino de mar Isostichopus badionotus, Isostichopus sp. y Stichopus hermanni (Aspidochirotida: Stichopodidae). Rev. Biol. Trop. Int. J. Trop. Biol. Conserv. 2015, 63, 1021–1033. [Google Scholar] [CrossRef]
- Vergara, W.; Rodríguez, A. Nutritional composition of sea cucumber Isostichopus sp. Nat. Res. 2016, 7, 130–137. [Google Scholar]
- Hernández, O.A.; Pabón, E.A.; Montoya, O.J.C.; Duran, E.C.; Narváez, R.O.C.; Forero, A.R. Sea Cucumber (Isostichopus sp. aff badionotus) Dry-Salting Protocol Design. Nat. Res. 2017, 8, 278–289. [Google Scholar]
- Vergara, W.; Agudelo, V.; Castro, L.; Rodríguez, A.; Eeckhaut, I. Morphological and molecular characterization of Isostichopus sp. in the Colombian Caribbean Sea. J. Bas. Appl. 2018, XXIX, 33–48. [Google Scholar]
- Acosta, E.J.; Rodríguez-Forero, A.; Werding, B.; Kunzmann, A. Effect of density, temperature and diet on the growth, survival and development of larvae and juveniles of Isostichopus sp. Aquac. Res. 2021, 52, 611–624. [Google Scholar] [CrossRef]
- Acosta, E.J.; Rodríguez-Forero, A.; Werding, B.; Kunzmann, A. Ecological and reproductive characteristics of holothuroids Isostichopus badionotus and Isostichopus sp. in Colombia. PLoS ONE 2021, 16, e0247158. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Guide for the Care and Use of Laboratory Animals: Eighth Edition; The National Academies Press: Washington, DC, USA, 2011; p. 246. [Google Scholar]
- Márquez, G. Los sistemas ecológicos marinos del sector adyacente a Santa Marta, Caribe colombiano I: Generalidades. Ecol. Trop. 1982, 2, 5–18. [Google Scholar]
- Ramírez, G. Características fisicoquímicas de la bahía de Santa Marta (agosto 1980-julio 1981). Boletín Investig. Mar. Costeras 1983, 13, 111–121. [Google Scholar]
- Díaz, J.; Barrios, M.; Cendales, J.; Garzón, J.; Geister, M.; López, M.; Ospina, G.; Parra, F.; Pinzón, B.; Vargas, J.; et al. Áreas coralinas de Colombia. INVEMAR Ser. Publicaciones Espec. 2000, 5, 1–176. [Google Scholar]
- Guillard, R.R. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals; Smith, W.L., Chanley, M.H., Eds.; Springer: Boston, MA, USA, 1975; pp. 29–60. [Google Scholar]
- Moon, S.; Kwon, I.; Kim, T. Growth of sea cucumber (Apostichopus japonicus, Selenka) to different stocking densities and body sizes, with monitoring and the use of VIE tags. J. Korean Soc. Fish. Technol. 2017, 53, 49–59. [Google Scholar] [CrossRef]
- Liang, M.; Dong, S.; Gao, Q.; Wang, F.; Tian, X. Individual variation in growth in sea cucumber Apostichopus japonicus (Selenck) housed individually. J. Ocean Univ. China 2010, 9, 291–296. [Google Scholar] [CrossRef]
- Hall, W.L.; Cincotta, D.A.; Stauffer, J.; Hocutt, C. Temperature Preference of the Crayfish Orconectes obscurus. Arch. Environ. Contam. Toxicol. 1978, 7, 379–383. [Google Scholar] [CrossRef]
- Hernández, M.; Bückle, L. Thermal preference area for Macrobrachium tenellum in the context of global climatic change. J. Therm. Biol. 1997, 22, 309–313. [Google Scholar] [CrossRef]
- Folkvord, A. Comparison of size-at-age of larval Atlantic cod (Gadus morhua) from different populations based on size- and temperature-dependent growth models. Can. J. Fish. Aquat. Sci. 2005, 62, 1037–1052. [Google Scholar] [CrossRef]
- 52) Imsland, A.; Folkvord, A.; Stefansson, S.; Jonassen, T. The interrelation between temperature regimes and fish size in juvenile Atlantic cod (Gadus morhua): Effects on growth hand feed conversion efficiency. Fish Physiol. Biochem. 2005, 31, 347–361. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, X.; Zhou, Y.; Mao, Y.; Zhang, T.; Liu, Y. Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to an estivation. Aquacult. Res. 2005, 36, 1085–1092. [Google Scholar] [CrossRef]
- Handeland, O.; Imsland, A.; Stefansson, S. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 2008, 283, 36–42. [Google Scholar] [CrossRef]
- Siikavuopio, S.; James, P.; Lysne, H.; Sæther, B.; Samuelsen, T.; Mortensen, A. Effects of size and temperature on growth and feed conversion of juvenile green sea urchin (Strongylocentrotus droebachiensis). Aquaculture 2012, 354, 27–30. [Google Scholar] [CrossRef]
- Shao, Y.; Li, C.; Chen, X.; Zhang, P.; Li, Y.; Li, T.; Jiang, J. Metabolomic responses of sea cucumber Apostichopus japonicus to thermal stresses. Aquaculture 2015, 435, 390–397. [Google Scholar] [CrossRef]
- Hernández, M.; Bückle, L. Preference, tolerance and resistance responses of Poecilia sphenops Valenciennes, 1846 (Pisces: Poeciliidae) to thermal fluctuations. Lat. Am. J. Aquat. Res. 2010, 38, 427–437. [Google Scholar] [CrossRef]
- Battaglene, S.C.; Seymour, E.; Ramofafia, C. Survival and growth of cultured juvenile sea cucumbers, Holothuria scabra. Aquaculture 1999, 178, 293–322. [Google Scholar] [CrossRef]
- Tan, X.Y.; Luo, Z.; Li, X.D.; Zhang, S.L.; Sun, Z.Z. Effect of dietary fish meal replacement by different levels of alga Spirulina meal on growth performance and body composition of sea cucumber Apostichopus japonicus. J. Dalian Fish. Univ. 2009, 24, 559–562, (In Chinese with English Abstract). [Google Scholar]
- Shi, C.; Dong, S.; Wang, F.; Gao, Q.; Tian, X. Effects of four fresh microalgae in diet on growth and energy budget of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture 2013, 416, 296–301. [Google Scholar] [CrossRef]
- Ge, B.; Gao, Q.; Dong, S. Effects of different algae powders on the growth, body composition and digestive enzyme activity of sea cucumber (Apostichopus japonicus). Trans. Oceanol. Limnol. 2017, 1, 80–87, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yanagisawa, T. Aspects of the biology and culture of the sea cucumber. In Tropical Mariculture; Da Silva, S., Ed.; Academic Press: London, UK, 1998; pp. 291–308. [Google Scholar]
- Zamora, L.; Jeffs, A. Feeding, metabolism and growth in response to temperature in juveniles of the Australasian sea cucumber, Australostichopus mollis. Aquaculture 2012, 358, 92–97. [Google Scholar] [CrossRef]
- Ji, T.; Dong, Y.; Dong, S. Growth and physiological responses in the sea cucumber, Apostichopus japonicus Selenka: Aestivation and temperature. Aquaculture 2008, 283, 180–187. [Google Scholar] [CrossRef]
- Kühnhold, H.; Kamyab, E.; Novais, S.; Indriana, L.; Kunzmann, A.; Slater, M.; Lemos, M. Thermal stress effects on energy resource allocation and oxygen consumption rate in the juvenile sea cucumber, Holothuria scabra (Jaeger, 1833). Aquaculture 2017, 467, 109–117. [Google Scholar] [CrossRef]
- Cossins, A.; Bowler, K. Temperature Biology of Animals; Chapman & Hall: New York, NY, USA, 1987; p. 339. [Google Scholar]
- Haesemeyer, M. Thermoregulation in fish. Mol. Cell. Endocrinol. 2020, 518, 110986. [Google Scholar] [CrossRef] [PubMed]
- Kelsch, S.; Neill, W. Temperature preference versus acclimation in fishes: Selection for changing metabolic optima. Trans. Am. Fish. Soc. 1990, 119, 601–610. [Google Scholar] [CrossRef]
- Kelsch, S. Temperature selection and performance by bluegills: Evidence for selection in response to available power. Trans. Am. Fish. Soc. 1996, 125, 948–955. [Google Scholar] [CrossRef]
- Brett, J. Some principles in the thermal requirements of fishes. Q. Rev. Biol. 1956, 31, 75–87. [Google Scholar] [CrossRef]
- Reynolds, W.; Casterlin, M. Behavioral thermoregulation and the “final preferendum” paradigm. Am. Zool. 1979, 19, 211–224. [Google Scholar] [CrossRef]
- Cox, D. Effects of the three heating rates on the critical thermal maximum of bluegill. Therm. Ecol. 1974, 150–163. [Google Scholar]
Water Parameters | Temperature 23 °C | Temperature 26 °C |
---|---|---|
Water temperature (°C) | 23.02 ± 0.31 | 26.09 ± 0.12 |
pH | 8.10 ± 0.12 | 8.10 ± 0.13 |
Dissolved oxygen (mg L−1) | 7.21 ± 0.47 | 6.82 ± 0.61 |
Salinity (UPS) | 37.13 ± 1.05 | 37.45 ± 1.02 |
Variables | 23 °C | 26 °C |
---|---|---|
Initial weight (g) | 216.1 ± 29.9 | 177.5 ± 14.2 |
Final weight (g) | 130.2 ± 9.1 | 122.0 ± 24.0 |
Weight gain (%) | −39.18 ± 7.9 | −27.89 ± 1.5 |
SGR (% d−1) | −1.67 ± 0.4 | −1.13 ± 0.7 |
C.V. (%) | 7.0 | 19.7 |
Survival (%) | 87.7 | 10.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Forero, A.; Villacob-Royerth, J.; Hernández Rodríguez, M. Thermal Behavior of Tropical Sea Cucumber of Isostichopus isabellae: Preliminary Issues. Animals 2024, 14, 3613. https://doi.org/10.3390/ani14243613
Rodríguez-Forero A, Villacob-Royerth J, Hernández Rodríguez M. Thermal Behavior of Tropical Sea Cucumber of Isostichopus isabellae: Preliminary Issues. Animals. 2024; 14(24):3613. https://doi.org/10.3390/ani14243613
Chicago/Turabian StyleRodríguez-Forero, Adriana, Jose Villacob-Royerth, and Mónica Hernández Rodríguez. 2024. "Thermal Behavior of Tropical Sea Cucumber of Isostichopus isabellae: Preliminary Issues" Animals 14, no. 24: 3613. https://doi.org/10.3390/ani14243613
APA StyleRodríguez-Forero, A., Villacob-Royerth, J., & Hernández Rodríguez, M. (2024). Thermal Behavior of Tropical Sea Cucumber of Isostichopus isabellae: Preliminary Issues. Animals, 14(24), 3613. https://doi.org/10.3390/ani14243613