Effects of Oregano Essential Oil and/or Yeast Cultures on the Rumen Microbiota of Crossbred Simmental Calves
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Animals
2.2. Feeding Procedure
2.3. Sample Collection and Measurement
2.4. High-Throughput Sequencing Data Analysis
3. Results
3.1. Pan–Core Species Analysis
3.2. Venn Species Analysis
3.3. Alpha Diversity Analysis
3.4. Beta Diversity Analysis
3.5. Analysis of Species Composition
3.6. Species Difference Analysis
3.7. Species Functional Prediction Analysis
4. Discussion
4.1. Effect of OEO and YCs on Ruminal Microbial Diversity
4.2. Ruminal Microbial Species Differences in Calves Fed OEO and YCs
4.3. OEO and YC Impacts Ruminal Microbial Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jee, Y.; Carlson, J.; Rafai, E.; Musonda, K.; Huong, T.T.G.; Daza, P.; Sattayawuthipong, W.; Yoon, T. Antimicrobial resistance: A threat to global health. Lancet Infect Dis. 2018, 18, 939–940. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, Z.M.; Górka, P.; Schlagheck, A.; Jagusiak, W.; Micek, P.; Strzetelski, J. Performance of Holstein calves fed milk-replacer and starter mixture supplemented with probiotic feed additive. J. Anim. Feed. Sci. 2009, 18, 399–411. [Google Scholar] [CrossRef]
- Cangiano, L.; Yohe, T.; Steele, M.; Renaud, D. Invited Review- Strategic use of microbial-based probiotics and prebiotics in dairy calf rearing. Appl. Anim. Sci. 2020, 36, 630–651. [Google Scholar] [CrossRef]
- Liu, T.; Chen, H.; Bai, Y.; Wu, J.; He, B.; Casper, D.P. Calf starter containing a blend of essential oils and prebiotics affects the growth performance of Holstein calves. J. Dairy Sci. 2020, 103, 2315–2323. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.R.K.; Elghandour, M.M.M.Y.; Salem, A.Z.M.; Yasaswini, D.; Reddy, P.P.R.; Reddy, A.N.; Hyder, I. Plant secondary metabolites as feed additives in calves for antimicrobial stewardship. Anim. Feed Sci. Technol. 2020, 264, 114469. [Google Scholar] [CrossRef]
- Stefańska, B.; Sroka, J.; Katzer, F.; Goliński, P.; Nowak, W. The effect of probiotics, phytobiotics and their combination as feed additives in the diet of dairy calves on performance, rumen fermentation and blood metabolites during the preweaning period. Anim. Feed Sci. Technol. 2021, 272, 114738. [Google Scholar] [CrossRef]
- Froehlich, K.A.; Abdelsalam, K.W.; Chase, C.; Koppien-Fox, J.; Casper, D.P. Evaluation of essential oils and prebiotics for newborn dairy calves. J. Anim. Sci. 2017, 95, 3772–3782. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Y.; Peng, Q.Y.; Liu, Y.R.; Ma, Q.G.; Zhang, J.Y.; Guo, Y.P.; Xue, Z.; Zhao, L.H. Effects of oregano essential oil as an antibiotic growth promoter alternative on growth performance, antioxidant status, and intestinal health of broilers. Poult. Sci. 2021, 100, 101163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luo, Z.; Liu, T.; Li, P.; Cheng, S.; Casper, D.P. Effects of Essential Oil and/or Encapsulated Butyrate on Fecal Microflora in Neonatal Holstein Calves. Animals 2023, 13, 3523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Swedzinski, C.; A Froehlich, K.; Abdelsalam, K.W.; Chase, C.; Greenfield, T.J.; Koppien-Fox, J.; Casper, D.P. Evaluation of essential oils and a prebiotic for newborn dairy calves. Transl. Anim. Sci. 2019, 4, 75–83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, J.; Guo, J.; Liu, T.; Chen, H.; Bai, Y.; Casper, D.P. Feeding a calf starter containing monensin alone or in combination with an oregano, and cobalt blend to Holstein calves. J. Anim. Sci. 2020, 98, skaa214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, T.; Luo, Z.; Li, P.; Cheng, S.; Zhu, J.; Casper, D.P. Growth performance of neonatal Holstein heifers fed acidified waste milk containing essential oil blend and encapsulated butyrate alone or in combination. J. Dairy Sci. 2024, 108. [Google Scholar] [CrossRef] [PubMed]
- Hall, H.N.; Wilkinson, D.J.; Le Bon, M. Oregano essential oil improves piglet health and performance through maternal feeding and is associated with changes in the gut microbiota. Anim. Microbiome 2021, 3, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jia, L.; Wu, J.; Lei, Y.; Kong, F.; Zhang, R.; Sun, J.; Wang, L.; Li, Z.; Shi, J.; Wang, Y.; et al. Oregano Essential Oils Mediated Intestinal Microbiota and Metabolites and Improved Growth Performance and Intestinal Barrier Function in Sheep. Front. Immunol. 2022, 13, 908015. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boudaoud, S.; Aouf, C.; Devillers, H.; Sicard, D.; Segond, D. Sourdough yeast-bacteria interactions can change ferulic acid metabolism during fermentation. Food Microbiol. 2021, 98, 103790. [Google Scholar] [CrossRef] [PubMed]
- Poppy, G.; Rabiee, A.; Lean, I.; Sanchez, W.; Dorton, K.; Morley, P. A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows. J. Dairy Sci. 2012, 95, 6027–6041. [Google Scholar] [CrossRef] [PubMed]
- Lesmeister, K.; Heinrichs, A.; Gabler, M. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. J. Dairy Sci. 2004, 87, 1832–1839. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Zhang, H.; Wen, H.; Wan, H.; Wu, H.; Chen, Y.; Li, S.; Zhang, L.; Sun, X.; Li, B.; et al. Yeast Probiotic and Yeast Products in Enhancing Livestock Feeds Utilization and Performance: An Overview. J. Fungi 2022, 8, 1191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- A Adeyemi, J.; Harmon, D.L.; Compart, D.M.P.; Ogunade, I.M. Effects of a blend of Saccharomyces cerevisiae-based direct-fed microbial and fermentation products in the diet of newly weaned beef steers: Growth performance, whole-blood immune gene expression, serum biochemistry, and plasma metabolome1. J. Anim. Sci. 2019, 97, 4657–4667. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ogunade, I.M.; Lay, J.; Andries, K.; McManus, C.J.; Bebe, F. Effects of live yeast on differential genetic and functional attributes of rumen microbiota in beef cattle. J. Anim. Sci. Biotechnol. 2019, 10, 68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, C.; Fan, J.; Ma, K.; Wang, H.; Li, D.; Li, T.; Ma, Y. Effects of adding Allium mongolicum Regel powder and yeast cultures to diet on rumen microbial flora of Tibetan sheep (Ovis aries). Front. Vet. Sci. 2024, 11, 1283437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chaucheyras-Durand, F.; Walker, N.; Bach, A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed Sci. Technol. 2008, 145, 5–26. [Google Scholar] [CrossRef]
- Chambers, E.S.; Byrne, C.S.; Rugyendo, A.; Morrison, D.J.; Preston, T.; Tedford, C.; Bell, J.D.; Thomas, L.; Akbar, A.N.; Riddell, N.E.; et al. The effects of dietary supplementation with inulin and inulin-propionate ester on hepatic steatosis in adults with non-alcoholic fatty liver disease. Diabetes Obes. Metab. 2018, 21, 372–376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Szeligowska, N.; Cholewińska, P.; Czyż, K.; Wojnarowski, K.; Janczak, M. Inter and intraspecies comparison of the level of selected bacterial phyla in in cattle and sheep based on feces. BMC Vet. Res. 2021, 17, 224. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dias, A.L.G.; Freitas, J.A.; Micai, B.; Azevedo, R.A.; Greco, L.F.; Santos, J.E.P. Effect of supplemental yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows. J. Dairy Sci. 2018, 101, 201–221. [Google Scholar] [CrossRef] [PubMed]
- Prudence, S.M.; Addington, E.; Castaño-Espriu, L.; Mark, D.R.; Pintor-Escobar, L.; Russell, A.H.; McLean, T.C. Advances in actinomycete research: An ActinoBase review of 2019. Microbiology 2020, 166, 683–694. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tao, P.; Liu, H.; Hou, G.; Lu, J.; Xu, Y. Kangxianling formula attenuates renal fibrosis by regulating gut microbiota. Eur. J. Med. Res. 2024, 29, 183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, J.; Laitila, A.; Ouwehand, A.C. Bifidobacterium animalis subsp. lactis HN019 Effects on Gut Health: A Review. Front. Nutr. 2021, 8, 790561. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gholizadeh, P.; Mahallei, M.; Pormohammad, A.; Varshochi, M.; Ganbarov, K.; Zeinalzadeh, E.; Yousefi, B.; Bastami, M.; Tanomand, A.; Mahmood, S.S.; et al. Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease. Microb. Pathog. 2019, 127, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Saiprasad, S.M.; Saiprasad, S.M.; Moreno, O.G.; Moreno, O.G.; Savaiano, D.A.; Savaiano, D.A. A Narrative Review of Human Clinical Trials to Improve Lactose Digestion and Tolerance by Feeding Bifidobacteria or Galacto-Oligosacharides. Nutrients 2023, 15, 3559. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, C.; Lin, Y.; Wang, S.; Wang, J.; Mao, X.; Zhou, Y.; Zhang, H.; Chen, W.; Wang, G. Bifidobacterium animalis subsp. lactis boosts neonatal immunity: Unravelling systemic defences against Salmonella. Food Funct. 2023, 15, 236–254. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Paliwoda, A.; Błasiak, J. Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: A review of mechanisms and therapeutic perspectives. Crit. Rev. Food Sci. Nutr. 2018, 59, 3456–3467. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hao, C.; Yao, W.; Zhu, D.; Lu, H.; Li, L.; Ma, B.; Sun, B.; Xue, D.; Zhang, W. Intestinal flora imbalance affects bile acid metabolism and is associated with gallstone formation. BMC Gastroenterol. 2020, 20, 59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, J.; Liu, M.; Zhou, M.; Wu, L.; Yang, H.; Huang, L.; Chen, C. Isolation and genomic characterization of five novel strains of Erysipelotrichaceae from commercial pigs. BMC Microbiol. 2021, 21, 125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bunesova, V.; Lacroix, C.; Schwab, C. Mucin Cross-Feeding of Infant Bifidobacteria and Eubacterium hallii. Microb. Ecol. 2017, 75, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, J.; Liu, X.; Liu, R.; Wang, Y.; Huang, X.; Li, Y.; Liu, R.; Yang, X. Dietary folic acid addition reduces abdominal fat deposition mediated by alterations in gut microbiota and SCFA production in broilers. Anim. Nutr. 2022, 12, 54–62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Q.; Yin, Q.; Xie, Q.; Jiang, C.; Zhou, L.; Liu, J.; Li, B.; Jiang, S. 2′-Fucosyllactose Promotes the Production of Short-Chain Fatty Acids and Improves Immune Function in Human-Microbiota-Associated Mice by Regulating Gut Microbiota. J. Agric. Food Chem. 2022, 70, 13615–13625. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Y.; Zhou, Q.Y.-J.; Chen, L.; Liao, X.; Li, R.; Xie, T. The Aurantii Fructus Immaturus flavonoid extract alleviates inflammation and modulate gut microbiota in DSS-induced colitis mice. Front. Nutr. 2022, 9, 1013899. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duncan, S.H.; Barcenilla, A.; Stewart, C.S.; Pryde, S.E.; Flint, H.J. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl. Environ. Microbiol. 2002, 68, 5186–5190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, F.; Guo, X.; Zhang, J.; Zhang, M.; Ou, Z.; Peng, Y. Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract. Exp. Ther. Med. 2017, 14, 3122–3126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, R.; Shan, S.; Shi, J.; Li, H.; An, N.; Li, S.; Cui, K.; Guo, H.; Li, Z. Coprococcus eutactus, a Potent Probiotic, Alleviates Colitis via Acetate-Mediated IgA Response and Microbiota Restoration. J. Agric. Food Chem. 2023, 71, 3273–3284. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Yuan, X.; Liu, J.; Shi, Z.; Cao, L.; Yang, L.; Wu, K.; Lou, Y.; Tong, H.; Jiang, L.; et al. Albuca Bracteata Polysaccharides Attenuate AOM/DSS Induced Colon Tumorigenesis via Regulating Oxidative Stress, Inflammation and Gut Microbiota in Mice. Front. Pharmacol. 2022, 13, 833077. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Han, L.; Liu, J.; Kang, L.; Zhao, L.; Cui, K. Yeast Peptides Improve the Intestinal Barrier Function and Alleviate Weaning Stress by Changing the Intestinal Microflora Structure of Weaned Lambs. Microorganisms 2023, 11, 2472. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sundar, R.; Sivaperumal, P. Melanin pigments from sediment-associated Nocardiopsis sp. marine actinobacterium and antibacterial potential. J. Adv. Pharm. Technol. Res. 2022, 13, S88–S92. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, J.; Zhang, X.; Xu, D.; Zhang, D.; Zhang, Y.; Song, Q.; Li, X.; Zhao, Y.; Zhao, L.; Li, W.; et al. Relationship between rumen microbial differences and traits among Hu sheep, Tan sheep, and Dorper sheep. J. Anim. Sci. 2022, 100, skac261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahmad, A.A.; Yang, C.; Zhang, J.; Kalwar, Q.; Liang, Z.; Li, C.; Du, M.; Yan, P.; Long, R.; Han, J.; et al. Effects of Dietary Energy Levels on Rumen Fermentation, Microbial Diversity, and Feed Efficiency of Yaks (Bos grunniens). Front. Microbiol. 2020, 11, 625. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, J.; Li, P.; Liu, S.; Zhang, B.; Hu, Y.; Ma, H.; Wang, S. Green tea leaf powder prevents dyslipidemia in high-fat diet-fed mice by modulating gut microbiota. Food Nutr. Res. 2020, 13, 64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ariza-Nieto, C.; Bandrick, M.; Baidoo, S.K.; Anil, L.; Molitor, T.W.; Hathaway, M.R. Effect of dietary supplementation of oregano essential oils to sows on colostrum and milk composition, growth pattern and immune status of suckling pigs. J. Anim. Sci. 2011, 89, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Lizarraga-Valderrama, L.R. Effects of essential oils on central nervous system: Focus on mental health. Phytotherapy Res. 2020, 35, 657–679. [Google Scholar] [CrossRef] [PubMed]
- Samojlik, I.; Mijatović, V.; Petković, S.; Škrbić, B.; Božin, B. The influence of essential oil of aniseed (Pimpinella anisum, L.) on drug effects on the central nervous system. Fitoterapia 2012, 83, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
- Mathilde, M.; Romain, K.; Arnaud, A.; Laurent, M.B.; Eric, O.; Isabelle, C.; Ivan, M.; Annie, M. Chromatographic fractiona-tion of yeast extract: A strategy to identify physicochemical properties of compounds promoting CHO cell culture. Process Biochem. 2012, 47, 1178–1185. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, C.; Su, K.; Fan, T.; Chen, L.; Yang, Z.; Zhang, M.; Li, J.; Zhang, Y.; Liu, J. Oregano Essential Oil in Livestock and Veterinary Medicine. Animals 2024, 14, 1532. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, S.; Yang, L.; Zhang, Y.; Chen, H.; Li, X.; Xu, Z.; Du, R.; Li, X.; Ma, J.; Liu, D. Review of yeast culture concerning the interactions between gut microbiota and young ruminant animals. Front. Veter. Sci. 2024, 11, 1335765. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Sahlany, S.T.G.; Altemimi, A.B.; Al-Manhel, A.J.A.; Niamah, A.K.; Lakhssassi, N.; Ibrahim, S.A. Purification of Bioactive Peptide with Antimicrobial Properties Produced by Saccharomyces cerevisiae. Foods 2020, 9, 324. [Google Scholar] [CrossRef]
- Hales, K.E. Relationships between digestible energy and metabolizable energy in current feedlot diets. Transl. Anim. Sci. 2019, 3, 945–952. [Google Scholar] [CrossRef]
- Maamouri, O.; Ben Salem, M. Effect of yeast culture feed supply on growth, ruminal pH, and digestibility of fattening calves. Food Sci. Nutr. 2021, 9, 2762–2767. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keum, G.B.; Pandey, S.; Kim, E.S.; Doo, H.; Kwak, J.; Ryu, S.; Choi, Y.; Kang, J.; Kim, S.; Kim, H.B. Understanding the Diversity and Roles of the Ruminal Microbiome. J. Microbiol. 2024, 62, 217–230. [Google Scholar] [CrossRef]
- Hou, P.; Li, B.; Wang, Y.; Li, D.; Huang, X.; Sun, W.; Liang, X.; Zhang, E. The Effect of Dietary Supplementation with Zinc Amino Acids on Immunity, Antioxidant Capacity, and Gut Microbiota Composition in Calves. Animals 2023, 13, 1570. [Google Scholar] [CrossRef]
- Hammon, H.M.; Liermann, W.; Frieten, D.; Koch, C. Review: Importance of colostrum supply and milk feeding intensity on gastrointestinal and systemic development in calves. Animal 2020, 14, s133–s143. [Google Scholar] [CrossRef] [PubMed]
- Ockenden, E.M.; Russo, V.M.; Leury, B.J.; Giri, K.; Wales, W.J. Preweaning Nutrition and Its Effects on the Growth, Immune Competence and Metabolic Characteristics of the Dairy Calf. Animals 2023, 13, 829. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Musco, N.; Tudisco, R.; Grossi, M.; Mastellone, V.; Morittu, V.M.; Pero, M.E.; Wanapat, M.; Trinchese, G.; Cavaliere, G.; Mollica, M.P.; et al. Effect of a high forage: Concentrate ratio on milk yield, blood parameters and oxidative status in lactating cows. Anim. Prod. Sci. 2020, 60, 1531–1538. [Google Scholar] [CrossRef]
- Du, Y.; Gao, Y.; Hu, M.; Hou, J.; Yang, L.; Wang, X.; Du, W.; Liu, J.; Xu, Q. Colonization and development of the gut microbiome in calves. J. Anim. Sci. Biotechnol. 2023, 14, 46. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Ingredient Composition | Content | Nutrient Level | Content |
---|---|---|---|
Corn | 40.54 | DM | 87.95 |
Soybean meal | 32.00 | CP | 22.17 |
Wheat bran | 5.80 | EE | 3.79 |
Cottonseed meal | 5.30 | Ash | 5.91 |
Puffed soybeans | 5.00 | ADF | 6.18 |
Whey powder | 4.00 | NDF | 12.23 |
Molasses | 4.00 | Ca | 0.91 |
CaCO3 | 1.60 | P | 0.59 |
Soybean oil | 0.80 | ||
NaCl | 0.60 | ||
CaHPO4 | 0.10 | ||
MgO | 0.10 | ||
Selenium yeast | 0.02 | ||
Premix | 0.14 | ||
Total | 100.00 |
Species at the Phylum Level | Group | p-Value | |||
---|---|---|---|---|---|
CON | OEO | YC | MIX | ||
p__Firmicutes | 69.36 ± 17.90 | 66.92 ± 9.38 | 71.6 ± 16.32 | 73.08 ± 18.18 | 0.7932 |
p__Actinobacteriota | 29.48 ± 18.40a | 29.32 ± 12.69a | 26.86 ± 16.42a | 4.852 ± 5.36b | 0.0127 |
p__Bacteroidota | 0.1877 ± 0.25 | 1.855 ± 3.98 | 0.4534 ± 0.266 | 16.1 ± 21.71 | 0.0916 |
p__Patescibacteria | 0.4485 ± 0.55bc | 1.057 ± 0.63b | 0.2978 ± 0.22bc | 3.452 ± 2.36a | 0.0024 |
p__Proteobacteria | 0.3545 ± 0.15 | 0.424 ± 0.40 | 0.5298 ± 0.32 | 1.952 ± 3.30 | 0.7181 |
p__Desulfobacterota | 0.03956 ± 0.04b | 0.1272 ± 0.18ab | 0.08768 ± 0.06b | 0.2967 ± 0.11a | 0.0182 |
p__Cyanobacteria | 0.08928 ± 0.07 | 0.1604 ± 0.29 | 0.1219 ± 0.09 | 0.02513 ± 0.02 | 0.0673 |
p__unclassified_k__norank_d__Bacteria | 0.03208 ± 0.03ab | 0.008554 ± 0.01b | 0.03154 ± 0.04ab | 0.124 ± 0.10a | 0.0362 |
p__Chloroflexi | 0.00695 ± 0.01 | 0.0695 ± 0.04 | 0.006415 ± 0.01 | 0.01497 ± 0.02 | 0.0933 |
p__Spirochaetota | 0.003208 ± 0.00b | 0.02727 ± 0.06b | 0.002673 ± 0.01b | 0.05774 ± 0.04a | 0.0393 |
Species at the Genus Level | Group | p-Value | |||
---|---|---|---|---|---|
CON | OEO | YC | MIX | ||
g__norank_f__Eubacterium_coprostanoligenes_group | 28.83 ± 16.12a | 19.55 ± 7.12a | 23.91 ± 8.51a | 5.547 ± 4.27b | 0.009 |
g__Olsenella | 20.95 ± 13.25a | 25.68 ± 13.00a | 19.88 ± 17.11a | 3.341 ± 4.64b | 0.021 |
g__Lachnospiraceae_NK3A20_group | 9.468 ± 10.81 | 13.35 ± 5.13 | 7.013 ± 5.18 | 16.02 ± 6.57 | 0.087 |
g__Erysipelotrichaceae_UCG-002 | 0.1171 ± 0.12ab | 2.396 ± 5.43ab | 0.0005346 ± 0.00c | 14.05 ± 21.88a | 0.011 |
g__Acetitomaculum | 0.7725 ± 0.71 | 1.533 ± 1.50 | 10.76 ± 14.71 | 3.011 ± 3.04 | 0.209 |
g__Ruminococcus_gauvreauii_group | 3.582 ± 3.85 | 5.13 ± 3.33 | 2.921 ± 1.41 | 1.38 ± 1.12 | 0.249 |
g__Bifidobacterium | 6.532 ± 5.36a | 1.45 ± 2.06ab | 3.344 ± 1.50ab | 0.6175 ± 0.97b | 0.007 |
g__norank_f__norank_o__Clostridia_UCG-014 | 1.134 ± 1.74 | 1.759 ± 0.67 | 4.979 ± 5.33 | 3.02 ± 2.13 | 0.209 |
g__Ruminococcus | 7.417 ± 18.01a | 1.053 ± 1.94ab | 0.0139 ± 0.01b | 2.247 ± 2.08ab | 0.002 |
g__Eubacterium_nodatum_group | 3.298 ± 2.70 | 3.073 ± 1.14 | 2.044 ± 2.01 | 1.601 ± 1.95 | 0.523 |
Microbial Function | Group | p-Value | |||
---|---|---|---|---|---|
CON | OEO | YC | MIX | ||
Translation | 3.865 ± 0.10a | 3.80 ± 0.03ab | 3.708 ± 0.05b | 3.782 ± 0.08ab | 0.018 |
Nucleotide metabolism | 2.769 ± 0.07b | 2.78 ± 0.04b | 2.735 ± 0.03b | 2.819 ± 0.04a | 0.033 |
Cellular community—prokaryotes | 2.25 ± 0.11ab | 2.19 ± 0.04ab | 2.263 ± 0.06a | 2.065 ± 0.13b | 0.019 |
Lipid metabolism | 1.733 ± 0.03b | 1.76 ± 0.02ab | 1.776 ± 0.04ab | 1.847 ± 0.04a | 0.002 |
Glycan biosynthesis and metabolism | 1.198 ± 0.05ab | 1.209 ± 0.09ab | 1.194 ± 0.06b | 1.384 ± 0.18a | 0.024 |
Metabolism of other amino acids | 1.152 ± 0.05ab | 1.103 ± 0.04b | 1.178 ± 0.08ab | 1.179 ± 0.07a | 0.029 |
Metabolism of terpenoids and polyketides | 0.954 ± 0.03ab | 0.9749 ± 0.01ab | 0.9398 ± 0.04b | 0.9981 ± 0.03a | 0.040 |
Drug resistance: antimicrobial | 0.7952 ± 0.02b | 0.7861 ± 0.05ab | 0.8238 ± 0.06ab | 0.9074 ± 0.04a | 0.009 |
Infectious disease: bacterial | 0.7248 ± 0.05a | 0.7143 ± 0.03ab | 0.6688 ± 0.02b | 0.7236 ± 0.03ab | 0.044 |
Xenobiotics biodegradation and metabolism | 0.6429 ± 0.08ab | 0.6314 ± 0.05b | 0.6496 ± 0.01ab | 0.7472 ± 0.11a | 0.032 |
Immune system | 0.3 ± 0.02ab | 0.3156 ± 0.00a | 0.2895 ± 0.01b | 0.3012 ± 0.01ab | 0.007 |
Drug resistance: antineoplastic | 0.2113 ± 0.01ab | 0.2168 ± 0.01ab | 0.2194 ± 0.00ab | 0.2493 ± 0.02a | 0.005 |
Nervous system | 0.2054 ± 0.02a | 0.2065 ± 0.01a | 0.2056 ± 0.01a | 0.1772 ± 0.02b | 0.009 |
Transcription | 0.1933 ± 0.01a | 0.1891 ± 0.00ab | 0.1837 ± 0.00ab | 0.1806 ± 0.01b | 0.001 |
Digestive system | 0.0916 ± 0.06a | 0.0392 ± 0.01ab | 0.0494 ± 0.03ab | 0.0374 ± 0.02b | 0.049 |
Infectious disease: parasitic | 0.0493 ± 0.01a | 0.0316 ± 0.00b | 0.0433 ± 0.01ab | 0.0406 ± 0.01ab | 0.011 |
Excretory system | 0.0019 ± 0.00ab | 0.0036 ± 0.00ab | 0.0042 ± 0.00a | 0.009 ± 0.01b | 0.015 |
Substance dependence | 0.0004 ± 0.00b | 0.0004 ± 0.00b | 0.0011 ± 0.00a | 0.0004 ± 0.00b | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Luo, Z.; Zhang, T.; Chen, H.; Yi, X.; Hu, J.; Shi, B.; An, Y.; Cui, C.; Wang, X. Effects of Oregano Essential Oil and/or Yeast Cultures on the Rumen Microbiota of Crossbred Simmental Calves. Animals 2024, 14, 3710. https://doi.org/10.3390/ani14243710
Liu T, Luo Z, Zhang T, Chen H, Yi X, Hu J, Shi B, An Y, Cui C, Wang X. Effects of Oregano Essential Oil and/or Yeast Cultures on the Rumen Microbiota of Crossbred Simmental Calves. Animals. 2024; 14(24):3710. https://doi.org/10.3390/ani14243710
Chicago/Turabian StyleLiu, Ting, Zhihao Luo, Tao Zhang, Huan Chen, Xuejiao Yi, Jiang Hu, Bingang Shi, Yuxi An, Changze Cui, and Xiangyan Wang. 2024. "Effects of Oregano Essential Oil and/or Yeast Cultures on the Rumen Microbiota of Crossbred Simmental Calves" Animals 14, no. 24: 3710. https://doi.org/10.3390/ani14243710
APA StyleLiu, T., Luo, Z., Zhang, T., Chen, H., Yi, X., Hu, J., Shi, B., An, Y., Cui, C., & Wang, X. (2024). Effects of Oregano Essential Oil and/or Yeast Cultures on the Rumen Microbiota of Crossbred Simmental Calves. Animals, 14(24), 3710. https://doi.org/10.3390/ani14243710