Dairy Goat Production Systems: A Comprehensive Analysis to Reframe Their Global Diversity
Simple Summary
Abstract
1. Introduction
2. Dairy Goat Production: Distribution and Trends
2.1. The Worldwide Dairy Goat Inventory
2.2. The Worldwide Milk Goat Production
2.3. The Worldwide Milk Goat Production Efficiency—Milk Produced Goat−1 Year−1
3. Dairy Goat Production: Main Production Systems in the World
4. Dairy Goat Production Systems: Changing Paradigms, Using a Different Approach
4.1. First Foundation: The Rainfall Level as the Cornerstone
4.2. Second Foundation: The Two Metasystems Approach
4.3. Metasystem I: Reduced Water Disposal (<200 up to 600 mm Annually) and Diminished Biotic and Economic Resources
4.3.1. Subsistence System or Transhumant (<200 mm)
4.3.2. Extensive System (200–300 mm)
4.3.3. Agro-Silvopastoral System (300–600 mm)
4.4. Metasystem II: Increased Water Disposal and Enlarged Biotic and Economic Resources
4.4.1. Semi-Extensive System (300–450 mm)
4.4.2. Semi-Intensive System (450–600 mm)
4.4.3. Intensive System with Variable Precipitation and Unrestricted Water Access
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of Climate Change on the Livestock Food Supply Chain; A Review of the Evidence. Glob. Food Secur. 2021, 28, 100488. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Wreford, A.; Topp, C.F. Impacts of Climate Change on Livestock and Possible Adaptations: A Case Study of the United Kingdom. Agric. Syst. 2020, 178, 102737. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Statistics Database; FAO: Rome, Italy, 2024; Available online: https://www.fao.org/faostat/en/#data (accessed on 6 October 2024).
- Ghori, S.S.; Tehseen, F.; Sana, Q.U. Discernment of Adulterants in Milk Samples from Some Local Dairy Farms of Hyderabad. Int. J. Pharm. Qual. Assur. 2021, 12, 48–50. [Google Scholar]
- Kumar, D.; Rai, D.; Porwal, P.; Kumar, S. Compositional Quality of Milk and its Contaminants on Physical and Chemical Concern: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1125–1132. [Google Scholar] [CrossRef]
- Li, S.; Delger, M.; Dave, A.; Singh, H.; Ye, A. Seasonal Variations in the Composition and Physicochemical Characteristics of Sheep and Goat Milks. Foods 2022, 11, 1737. [Google Scholar] [CrossRef] [PubMed]
- Emaziye, P.O.; Ikpoza, E.A.; Ebewore, S.O. Livestock Farmers’ Involvement in Goat Production in Aniocha North Local Government Area of Delta State, Nigeria. Int. J. Agric. Technol. 2021, 17, 1685–1698. Available online: https://www.thaiscience.info/Journals/Article/IJAT/10994645.pdf (accessed on 6 October 2024).
- d’Alexis, S.; Sauvant, D.; Boval, M. Mixed Grazing Systems of Sheep and Cattle to Improve Liveweight Gain: A Quantitative Review. J. Agric. Sci. 2014, 152, 655–666. [Google Scholar] [CrossRef]
- Mahieu, M.; Gauthier, V.; Arquet, R.; Calif, B.; Archimède, H.; Mandonnet, N. Feasibility of a “Leader-Follower” Grazing System Instead of Specialised Paddocks with Regard to Integrated Gastrointestinal Control in Small Ruminant Farming. Trop. Anim. Health Prod. 2015, 47, 773–778. [Google Scholar] [CrossRef]
- Mahieu, M.; Arquet, R. Exploring the Benefits and Limits of a Mixed Cattle-Small Ruminant Grazing System in the Antilles. Fourrages 2019, 238, 161–166. [Google Scholar]
- Pulina, G.; Milán, M.J.; Lavín, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Invited Review: Current Production Trends, Farm Structures, and Economics of the Dairy Sheep and Goat Sectors. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef]
- Isidro-Requejo, L.M.; Meza-Herrera, C.A.; Pastor-Lopez, F.J.; Maldonado, J.A.; Salinas-González, H. Physicochemical Characterization of Goat Milk Produced in the Comarca Lagunera, Mexico. Anim. Sci. J. 2019, 90, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Kováčová, M.; Výrostková, J.; Dudriková, E.; Zigo, F.; Semjon, B.; Regecová, I. Assessment of Quality and Safety of Farm Level Produced Cheeses from Sheep and Goat Milk. Appl. Sci. 2021, 11, 3196. [Google Scholar] [CrossRef]
- Nudda, A.; Correddu, F.; Cesarani, A.; Pulina, G.; Battacone, G. Functional Odd- and Branched-Chain Fatty Acid in Sheep and Goat Milk and Cheeses. Dairy 2021, 2, 79–89. [Google Scholar] [CrossRef]
- Riskó, T.C.; Csapó, Z. Goat Keeping and Goat Milk Products in Human Nutrition—Review. Appl. Stud. Agribus. Commer. 2019, 13, 24–36. [Google Scholar] [CrossRef]
- Godber, O.F.; Chentouf, M.; Wall, R. Sustainable Goat Production: Modelling Optimal Performance in Extensive Systems. Anim. Prod. Sci. 2020, 60, 843–851. [Google Scholar] [CrossRef]
- Sahoo, A. Chapter 6 Climate-smart Small Ruminant Production. In Impact of Climate Change on Livestock Health and Production; Nayak, G.D., Sardar, K.K., Das, B.C., Das, D.P., Eds.; New India Publishing Agency: New Delhi, India, 2021; pp. 53–60. [Google Scholar] [CrossRef]
- Silanikove, N.; Koluman, N. Impact of Climate Change on the Dairy Industry in Temperate Zones: Predications on the Overall Negative Impact and on the Positive Role of Dairy Goats in Adaptation to Earth Warming. Small Rumin. Res. 2015, 123, 27–34. [Google Scholar] [CrossRef]
- Pereira, G.V.; Cícero Cartaxo, L.C.; Facó, O.; Delmondes, B.M.A.; Ferraz, L.F.; Dubeuf, J.P. The Future of Small Ruminants in Brazil: Lessons from the Recent Period and Scenarios for the Next Decade. Small Rumin. Res. 2022, 209, 106651. [Google Scholar] [CrossRef]
- Dubeuf, J.P.; Aw-Hassan, A.; Chentouf, M.; Mena, Y.; Pacheco, F.; Boutonnet, J.P. The Mediterranean Sheep and Goat Sectors Between Constants and Changes over the Last Decade Future Challenges and Prospects. In The Value Chains of Mediterranean Sheep and Goat Products. Napoléone, M., Ben Salem, H., Boutonnet, J.P., López-Francos, A., Gabiña, D., Eds.; Organisation of the Industry, Marketing Strategies, Feeding and Production Systems; Options Méditerranéennes: Série A. Séminaires Méditerranéens. 2016, Volume 115, pp. 43–52. Available online: https://om.ciheam.org/om/pdf/a115/00007252.pdf (accessed on 6 October 2024).
- Morais, L.J.H.G.; Façanha, D.A.E.; Delgado, B.J.V.; Guilhermino, M.M.; Bermejo, L.A. Adaptive Assessment of Small Ruminants in Arid and Semi-arid Regions. Small Rumin. Res. 2021, 203, 106497. [Google Scholar] [CrossRef]
- Ruiz-Morales, F.A.; Castel-Genís, J.M.; Mena-Guerrero, Y. Current Status, Challenges and the Way Forward for Dairy Goat Production in Europe. Australas. J. Anim. Sci. 2019, 32, 1256. [Google Scholar] [CrossRef]
- Dubeuf, J.P.; Morales, F.D.A.R.; Guerrero, Y.M. Evolution of Goat Production Systems in the Mediterranean Basin: Between Ecological Intensification and Ecologically Intensive Production Systems. Small Rumin. Res. 2018, 163, 2–9. [Google Scholar] [CrossRef]
- Escareño, L.; Salinas-González, H.; Wurzinger, M.; Iñiguez, L.; Sölkner, J.; Meza-Herrera, C. Dairy Goat Production Systems: Status Quo, Perspectives and Challenges. Trop. Anim. Health Prod. 2012, 45, 17–34. [Google Scholar] [CrossRef]
- Singh, M.K.; Singh, S.K.; Chauhan, M.S. Exploring Potential of Goat Based Dairy Farming in India and way Forward. Indian J. Anim. Sci. 2023, 93, 243–250. [Google Scholar] [CrossRef]
- Oliveira, L.S.; de Oliveira Felisberto, N.R.; Nogueira, D.M.; Silva, A.F.; Biagioli, B.; Gonzalez-Esquivel, C.E.; de Almeida Teixeira, I.A.M. Typology of Dairy Goat Production Systems in a Semiarid Region of Brazil. Small Rumin. Res. 2022, 216, 106777. [Google Scholar] [CrossRef]
- Fantahun, T.; Alemayehu, K.; Abegaz, S. Characterization of Goat Production Systems and Trait Preferences of Goat Keepers in Bench Maji Zone, South Western Ethiopia. Afr. J. Agric. Res. 2016, 11, 2768–2774. [Google Scholar] [CrossRef]
- Tesfahun, B.; Kebede, K.; Effa, K. Traditional Goat Husbandry Practices Under Pastoral Systems in South Omo Zone, Southern Ethiopia. Trop. Anim. Health Prod. 2017, 49, 625–632. [Google Scholar] [CrossRef]
- Yemane, G.; Melesse, A.; Taye, M. Characterization of Indigenous Goat Population by Applying Morphometrical Traits and Structural Indices. J. Vet. Res. Adv. 2020, 2, 22–31. Available online: https://www.researchgate.net/publication/343230825_Characterization_of_indigenous_goat_populations_by_applying_morphometrical_traits_and_structural_indices (accessed on 7 October 2024).
- Haile, A.; Getachew, T.; Mirkena, T.; Duguma, G.; Gizaw, S.; Wurzinger, M.; Soelkner, J.; Mwai, O.; Dessie, T.; Abebe, A.; et al. Community-based Sheep Breeding Programs Generated Substantial Genetic Gains and Socioeconomic Benefits. Animal 2020, 14, 1362–1370. [Google Scholar] [CrossRef]
- Thomas, M.; Gopalakrishnan, R.; Venkatachalapathy, T.; Thazhathuveetil, A. Genome-wide Runs of Homozygosity in Indian Goat Breeds Reared under Small Holder Production System. Small Rumin. Res. 2023, 229, 107116. [Google Scholar] [CrossRef]
- Muluneh, T.; Awoke, W. Indigenous Goat Selection and Breeding Practices in Pastoral Areas of West Guji Zone, Southern Oromia. Adv. Anim. Sci. Theriogen. Genet. Breed. 2022, 10, 33–41. [Google Scholar]
- Ruiz, F.A.; Mena, Y.; Castel, J.M.; Guinamard, C.; Bossis, N.; Caramelle-Holtz, E.; Contu, M.; Sitzia, M.; Fois, N. Dairy Goat Grazing Systems in Mediterranean Regions: A Comparative Analysis in Spain, France and Italy. Small Rumin. Res. 2009, 85, 42–49. [Google Scholar] [CrossRef]
- Gelasakis, A.I.; Rose, G.; Giannakou, R.; Valergakis, G.E.; Theodoridis, A.; Fortomaris, P.; Arsenos, G. Typology and Characteristics of Dairy Goat Production Systems in Greece. Livest. Sci. 2017, 197, 22–29. [Google Scholar] [CrossRef]
- Morales-Jerrett, E.; Mena, Y.; Camúñez-Ruiz, J.A.; Fernández, J.; Mancilla-Leytón, J.M. Characterization of Dairy Goat Production Systems Using Autochthonous Breeds in Andalusia (Southern Spain): Classification and Efficiency Comparative Analysis. Small Rumin. Res. 2022, 213, 106743. [Google Scholar] [CrossRef]
- Navamniraj, K.N.; Sivasabari, K.; Indu, J.A.; Krishnan, D.; Anjali, M.R.; Akhil, P.R.; Pran, M.; Nainu, F.; Praveen, S.V.; Singh, P.; et al. Beneficial Impacts of Goat Milk on the Nutritional Status and General Well-Being of Human Beings: Anecdotal Evidence. J. Exp. Biol. Agric. Sci. 2023, 11, 1–15. [Google Scholar] [CrossRef]
- Mahendra, L.; Dilip, B. The Importance of Goats in the World. Prof. Agric. Work. J. 2021, 6, 9–21. Available online: https://tuspubs.tuskegee.edu/pawj/vol6/iss2/4 (accessed on 9 October 2024).
- Chniter, M.; Dhaoui, A.; Houidheg, A.; Atigui, M.; Hammadi, M. Socio-economic Aspects and Farming Practices of Goats in Southern Tunisia. Trop. Anim. Health Prod. 2024, 56, 220. [Google Scholar] [CrossRef]
- Chniter, M.; Dhaoui, A.; Ben-Nasr, J. Chapter 21 Economics and Profitability of Goat Breeding in the Maghreb Region. In Goat Science—Environment, Health and Economy Science; Kukovics, S., Ed.; Intech Open: London, UK, 2021; 13p. [Google Scholar] [CrossRef]
- Monteiro, A.; Costa, J.M.; Lima, M.J. Chapter 16 Goat System Productions: Advantages and Disadvantages to the Animal, Environment and Farmer. In Goat Science; Kukovics, S., Ed.; Intech Open: London, UK, 2018; pp. 351–366. [Google Scholar] [CrossRef]
- Mohini, M.; Malla, B.A.; Mondal, G. Small Ruminant Sector in India: Present Status, Feeding Systems and Greenhouse Gas Emissions. EC Vet. Sci. 2018, 3, 281–289. Available online: https://ecronicon.net/assets/ecve/pdf/ECVE-03-00040.pdf (accessed on 9 October 2024).
- Yildirir, M.; Koncagül, S.; Öner, Y.; Akin, A.O. Analysis for Prioritizing Risk Status and Sustainable Utilization of Cattle, Sheep, and Goat Breeds in Türkiye. Turk. J. Vet. Anim. Sci. 2023, 47, 1–9. [Google Scholar] [CrossRef]
- Meza-Herrera, C.A.; Navarrete-Molina, C.; Luna-García, L.A.; Pérez-Marín, C.; Altamirano-Cárdenas, J.R.; Macías-Cruz, U.; García-de la Peña, C.; Abad-Zavaleta, J. Small Ruminants and Sustainability in Latin America & the Caribbean: Regionalization, Main Production Systems, and a Combined Productive, Socio-Economic & Ecological Footprint Quantification. Small Rumin. Res. 2022, 211, 106676. [Google Scholar] [CrossRef]
- Navarrete-Molina, C.; Meza-Herrera, C.A.; Herrera-Machuca, M.A.; Macias-Cruz, U.; Veliz-Deras, F.G. Not All Ruminants Were Created Equal: Environmental and Socio-Economic Sustainability of Goats Under a Marginal-Extensive Production System. J. Clean. Prod. 2020, 255, 120237. [Google Scholar] [CrossRef]
- Ornelas-Villarreal, E.C.; Navarrete-Molina, C.; Meza-Herrera, C.A.; Herrera-Machuca, M.A.; Altamirano-Cardenas, J.R.; Macias-Cruz, U.; García-de la Peña, C.; Veliz-Deras, F.G. Goat Production and Sustainability in Latin America & the Caribbean: A Combined Productive, Socio-Economic & Ecological Footprint Approach. Small Rumin. Res. 2022, 211, 106677. [Google Scholar] [CrossRef]
- Mazinani, M.; Rude, B. Population, World Production and Quality of Sheep and Goat Products. Am. J. Anim. Vet. Sci. 2020, 15, 291–299. [Google Scholar] [CrossRef]
- Muñoz-Salinas, F.; Torres-Pacheco, I.; Duarte-Vázquez, M.A.; Silva-Jarquín, J.C. Implications of Nutrigenomics in the Feeding of Goats and its Impact in Functional Properties of Goat’s Milk: A Review. Asian J. Dairy Food Res. 2023, 42, 447–451. [Google Scholar] [CrossRef]
- Verruck, S.; Dantas, A.; Prudencio, E.S. Functionality of the Components from Goat’s Milk, Recent Advances for Functional Dairy Products Development and its Implications on Human Health. J. Funct. Foods 2019, 52, 243–257. [Google Scholar] [CrossRef]
- Saikia, D.; Hassani, M.I.; Walia, A. Goat Milk and its Nutraceutical Properties. Int. J. Appl. Res. 2022, 8, 119–122. [Google Scholar] [CrossRef]
- dos Santos, W.M.; Gomes, A.C.G.; de Caldas Nobre, M.S.; de Souza Pereira, Á.M.; dos Santos Pereira, E.V.; dos Santos, K.M.O.; Florentino, E.R.; Buriti, F.C.A. Goat Milk as a Natural Source of Bioactive Compounds and Strategies to Enhance the Amount of These Beneficial Components. Int. Dairy J. 2023, 137, 105515. [Google Scholar] [CrossRef]
- Manolache, A.M. Analysis of sheep and goat milk production by development regions and forms of property in the period 2010–2018. In Agrarian Economy and Rural Development—Realities and Perspectives for Romania, 11th ed.; International Symposium; The Research Institute for Agricultural Economy and Rural Development (ICEADR): Bucharest, Romania, 2020; pp. 352–356. Available online: https://www.econstor.eu/bitstream/10419/234413/1/ICEADR-2020-p352.pdf (accessed on 10 September 2024).
- Marius, L.N.; Shipandeni, M.N.T.; Togarepi, C. Review on the Status of Goat Production, Marketing, Challenges and Opportunities in Namibia. Trop. Anim. Health Prod. 2021, 53, 1–9. [Google Scholar] [CrossRef]
- Miller, B.A.; Lu, C.D. Current Status of Global Dairy Goat Production: An Overview. Australas. J. Anim. Sci. 2019, 32, 1219. [Google Scholar] [CrossRef]
- Sumarmono, J. Current Goat Milk Production, Characteristics, and Utilization in Indonesia. In International Conference on Environmental, Energy and Earth Science—IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1041, No. 1; p. 012082. [Google Scholar] [CrossRef]
- Monau, P.; Raphaka, K.; Zvinorova-Chimboza, P.; Gondwe, T. Sustainable Utilization of Indigenous Goats in Southern Africa. Diversity 2020, 12, 20. [Google Scholar] [CrossRef]
- Tilahun, H. Assessment on Rearing and Husbandry Practices of Indigenous Goats in North Shewa Zone, Amhara Region, Ethiopia. J. Appl. Anim. Res. 2023, 51, 242–255. [Google Scholar] [CrossRef]
- Dennett, C. Key Ingredients of the Mediterranean Diet: The Nutritious Sum of Delicious Parts. Today’s Dietit. 2016, 18, 28–33. Available online: https://www.todaysdietitian.com/newarchives/0516p28.shtml (accessed on 15 October 2024).
- Laouadi, M.; Tennah, S.; Kafidi, N.; Antoine-Moussiaux, N.; Moula, N. A Basic Characterization of Small-Holders’ Goat Production Systems in Laghouat Area, Algeria. Pastoralism 2018, 8, 24. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Gateway to Dairy Production and Products—Dairy Animals—Small Ruminants. Available online: https://www.fao.org/dairy-production-products/dairy/small-ruminants/en (accessed on 25 October 2024).
- Istituto Nazionale di Statistica (ISTAT). Agricoltura e Zootecnia. 2017. Available online: http://www.istat.it/it/ (accessed on 25 October 2024).
- Ellinikos Organismos Galaktos Ke Kreatos (ELOGAK). Greek Milk Board Statistics. 2017. Available online: http://www.elogak.gr (accessed on 25 October 2024).
- Scherf, B.D. (Ed.) World Watch List of Domestic Animal Diversity, 3rd ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2000; p. 726. [Google Scholar]
- Mason, I.L. Classification and Distribution of Goat Breeds. In Genetic Resources of Pig, Sheep and Goats; World Animal Science B8; Maijala, K., Ed.; Elsevier: Amsterdam, The Netherlands, 1981; pp. 405–411. [Google Scholar]
- Devendra, C.; Haenlein, G.F.W. Animals that Produce Dairy Foods—Goat Breeds. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 246–249. Available online: https://www.researchgate.net/publication/301787387_Encyclopedia_of_Dairy_Sciences_2nd_Edition (accessed on 28 October 2024).
- Chetroiu, R.; Călin, I.; Niculescu, C.G. Worldwide Trends and Orientations of Raising Goats. In Agrarian Economy and Rural Development—Realities and Perspectives for Romania; 4th Edition of the International Symposium, November 2013, Bucharest; The Research Institute for Agricultural Economy and Rural Development (ICEADR): Bucharest, Romania, 2013; pp. 100–106. Available online: https://hdl.handle.net/10419/111570 (accessed on 28 October 2024).
- Nayik, G.A.; Jagdale, Y.D.; Gaikwad, S.A.; Devkatte, A.N.; Dar, A.H.; Dezmirean, D.S.; Bobis, O.; Ranjha, M.M.A.N.; Ansari, M.J.; Hemeg, H.A.; et al. Recent Insights into Processing Approaches and Potential Health Benefits of Goat Milk and Its Products: A Review. Front. Nutr. 2021, 8, 789117. [Google Scholar] [CrossRef] [PubMed]
- Miroshina, T.; Chalova, N. Dairy Goat Breeding in Russia and the World. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2023; Volume 380, p. 01004. [Google Scholar] [CrossRef]
- Jembere, T.; Dessie, T.; Rischkowsky, B.; Kebede, K.; Okeyo, A.M.; Haile, A. Meta-analysis of Average Estimates of Genetic Parameters for Growth, Reproduction and Milk Production Traits in Goats. Small Rumin. Res. 2017, 153, 71–80. [Google Scholar] [CrossRef]
- Oleksandr Kyselov, O.; Mykhalko, O.; Bondarchuk, L.; Levchenko, I.; Prihodko, M.; Popsuy, V. Influence of the Season and Genotype of Goats on the Qualitative Composition of Their Milk. Sci. Pap. Ser. Manag. Econ. 2022, 22, 343–358. Available online: https://managementjournal.usamv.ro/pdf/vol.22_4/Art37.pdf (accessed on 30 October 2024).
- Nayik, G.A.; Jagdale, Y.D.; Gaikwad, S.A.; Devkatte, A.N.; Dar, A.H.; Ansari, M.J. Nutritional Profile, Processing and Potential Products: A Comparative Review of Goat Milk. Dairy 2022, 3, 622–647. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Ribeiro, S.D.A. Specialty Products Made from Goat Milk. Small Rumin. Res. 2010, 89, 225–233. [Google Scholar] [CrossRef]
- Park, Y. Chapter 12 Improving Goat Milk. In Improving the Safety and Quality of Milk; Woodhead Publishing Series in Food Science, Technology and Nutrition; Griffiths, M.W., Ed.; Woodhead Publishing: Cambridge, UK, 2010; pp. 304–346. ISBN 978-1-84569-806-5. [Google Scholar]
- Idamokoro, E.M. The Significance of Goat Milk in Enhancing Nutrition Security: A Scientiometric Evaluation of Research Studies from 1966 to 2020. Agric. Food Secur. 2023, 12, 34. [Google Scholar] [CrossRef]
- Jandyal, M.; Malav, O.P.; Singh, S. Goat Milk: Nutritional Value, Therapeutic Benefits and Market Trends. Vet Alumnus 2024, 46, 88–93. Available online: https://www.researchgate.net/profile/Ashwani-Kumar-54/publication/382242207_Vet_Alumnus_ISSN_2319_5762_June_2024_461/links/6693b34b3e0edb1e0fe14282/Vet-Alumnus-ISSN-2319-5762-June-2024-461.pdf (accessed on 30 October 2024).
- Assan, N. Goat—A Sustainable and Holistic Approach in Addressing Triple Challenges of Gender Inequality, Climate Change Effects, Food and Nutrition Insecurity in Rural Communities of Sub-Saharan Africa; Intech Open: London, UK, 2021; 446p. [Google Scholar] [CrossRef]
- Castel, J.M.; Mena, Y.; Ruiz, F.A.; Camúñez-Ruiz, J.; Sánchez-Rodríguez, M. Changes Occurring in Dairy Goat Production Systems in Less Favoured Areas of Spain. Small Rumin. Res. 2011, 96, 83–92. [Google Scholar] [CrossRef]
- Silveira, R.M.F.; da Silva, V.J.; Ferreira, J.; dos Santos Fontenelle, R.O.; Vega, W.H.O.; Sales, D.C.; Sales, A.P.; Castro, M.S.M.; Toro-Mujica, P.; de Vasconcelos, A.M. Diversity in Smallholder Dairy Production Systems in the Brazilian Semiarid Region: Farm Typologies and Characteristics of Raw Milk and Water Used in Milking. J. Arid Environ. 2022, 203, 104774. [Google Scholar] [CrossRef]
- Hossain, D.; Rahman, N.; Karim, M.R.; Bristi, S.Z.T.; Uddin, N.; Uddin, A.H.M.M. Climate Resilient Livestock Production System in Tropical and Subtropical Countries. In Climate-Resilient Agriculture, 1st ed.; Hasanuzzaman, M., Ed.; Springer: Cham, Switzerland, 2023; Volume I, pp. 927–1011. [Google Scholar] [CrossRef]
- Bernis-Fonteneau, A.; Jarvis, D.I.; Scherf, B.; Schütz, L.; Zhang, Y.; Attorre, F.; Collette, L. The Role of Crop, Livestock, and Farmed Aquatic Intraspecific Diversity in Maintaining Ecosystem Services. Diversity 2024, 16, 420. [Google Scholar] [CrossRef]
- Anim-Jnr, A.S.; Sasu, P.; Bosch, C.; Mabiki, F.P.; Frimpong, Y.O.; Emmambux, M.N.; Greathead, H.M.R. Sustainable Small Ruminant Production in Low- and Middle-Income African Countries: Harnessing the Potential of Agroecology. Sustainability 2023, 15, 15326. [Google Scholar] [CrossRef]
- Cavalcanti, M.B.; da Silva, I.d.C.G.; Lamarca, F.; de Castro, I.R.R. Research on Commercial Milk Formulas for Young Children: A Scoping Review. Matern. Child Nutr. 2024, 20, e13675. [Google Scholar] [CrossRef]
- Usman, M.; Nichol, J.E. A Spatio-Temporal Analysis of Rainfall and Drought Monitoring in the Tharparkar Region of Pakistan. Remote Sens. 2020, 12, 580. [Google Scholar] [CrossRef]
- United Nations. SDG Indicators Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development; United Nations: Rome, Italy, 2020; Available online: https://unstats.un.org/sdgs/indicators/Global-Indicator-Framework-after-2024-refinement-English.pdf (accessed on 30 November 2024).
- Yeo, Y.T.; Lim, C.M.; Huaco, A.I.V.; Chen, W.N. Food Circular Economy and Safety Considerations in Waste Management of Urban Manufacturing Side Streams. npj Sci. Food 2024, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Chapter 3: Desertification; IPCC: Rome, Italy, 2019; Available online: https://www.ipcc.ch/site/assets/uploads/2019/08/2d.-Chapter-3_FINAL.pdf (accessed on 2 December 2024).
- United Nations Convention to Combat Desertification (UNCCD). Preserving Our Common Ground. UNCCD 10 Years on; UNCCD: Bonn, Germany, 2004; Available online: https://catalogue.unccd.int/86_UNCCD_10%20years%20on%20eng.pdf (accessed on 2 December 2024).
- Azare, I.M.; Abdullahi, M.S.; Adebayo, A.A.; Dantata, I.J.; Duala, T. Deforestation, Desert Encroachment, Climate Change and Agricultural Production in the Sudano-Sahelian Region of Nigeria. J. Appl. Sci. Environ. Manag. 2020, 24, 127–132. Available online: https://www.ajol.info/index.php/jasem/article/view/193361/182486 (accessed on 2 December 2024). [CrossRef]
- Asempah, M.; Shisanya, C.A.; Schütt, B. Modeling of soil erosion risk in a typical tropical savannah landscape. Sci. Afr. 2024, 23, e02042. [Google Scholar] [CrossRef]
- Dregne, H.E. Land Degradation in the Drylands. Arid Land Res. Manag. 2002, 16, 99–132. [Google Scholar] [CrossRef]
- Moomen, A.W.; Dewan, A. Assessing the Spatial Relationships Between Mining and Land Degradation: Evidence from Ghana. Int. J. Mining Reclam. Environ. 2017, 31, 505–518. [Google Scholar] [CrossRef]
- Yin, C.; Zhao, W.; Pereira, P. Soil Conservation Service Underpins Sustainable Development Goals. Glob. Ecol. Conserv. 2022, 33, e01974. [Google Scholar] [CrossRef]
- Kwakernaak, C. (Ed.) Integrated Approach to Planning and Management of Land: Operationalization of Chapter 10 of UNCED’s Agenda 21. SC-DLO Report, 107. The Netherlands. 1995. Available online: https://edepot.wur.nl/363165 (accessed on 2 December 2024).
- Virmani, S.M. UNCED Agenda 21: The New Challenges for Soils Research. J. Indian Soc. Soil Sci. 1994, 42, 516–524. Available online: https://oar.icrisat.org/3339/1/JA_1798.pdf (accessed on 3 December 2024).
- Mohammed, D.R.; Mohammed, R.K. Climate Change’s Impacts on Drought in Upper Zab Basin, Iraq: A Case Study. Tikrit J. Eng. Sci. 2024, 31, 161–171. [Google Scholar] [CrossRef]
- Mohammed, R.; Scholz, M. Climate Change Scenarios for Impact Assessment: Lower Zab River Basin (Iraq and Iran). Atmosphere 2024, 15, 673. [Google Scholar] [CrossRef]
- Saraf, P.N.; Srivastava, J.; Munoz, F.; Charles, B.; Samal, P. How Can Dry Tropical Forests Respond to Climate Change? Predictions for Key Non-Timber Forest Product Species Show Different Trends in India. Environ. Monit. Assess. 2024, 196, 727. [Google Scholar] [CrossRef]
- Alves, A.; Sanchez, A.; Vojinovic, Z.; Seyoum, S.; Babel, M.; Brdjanovic, D. Evolutionary and Holistic Assessment of Green-Grey Infrastructure for CSO Reduction. Water 2016, 8, 402. [Google Scholar] [CrossRef]
- Bermejo, L.A.; Façanha, D.A.E.; Guerra, N.B.; Viera, J.J. Protected Designation of Origin as Driver of Change in Goat Production Systems: Beyond Added Value. Rev. FCA UNCuyo. 2021, 53, 196–206. Available online: https://revistas.uncu.edu.ar/ojs3/index.php/RFCA/article/download/3430/3338 (accessed on 3 December 2024). [CrossRef]
- Poudel, S.; Pent, G.; Fike, J. Silvopastures: Benefits, Past Efforts, Challenges, and Future Prospects in the United States. Agronomy 2024, 14, 1369. [Google Scholar] [CrossRef]
- Gninkplékpo, E.L.R.; Koura, B.I.; Lesse, P.; Toko, I.; Demblon, D.; Houinato, M.R.; Cabaraux, J.F. Small Ruminant Farmers’ Feeding Strategies to Cope with Climate Change Across Five Agroecological Zones of Benin, West Africa. Heliyon 2024, 10, e39834. [Google Scholar] [CrossRef] [PubMed]
- Kichamu, N.; Astuti, P.K.; Wanjala, G.; Strausz, P.; Bagi, Z.; Kusza, S. A Review on Indigenous Goats of East Africa: A Case for Conservation and Management. Biology 2024, 13, 419. [Google Scholar] [CrossRef]
- Chávez-Pérez, L.M.; Soriano-Robles, R.; Espinosa-Ortiz, V.E.; Miguel-Estrada, M.; Rendón-Rendón, M.C.; Jiménez-Jiménez, R.A. Does Small-Scale Livestock Production Use a High Technological Level to Survive? Evidence from Dairy Production in Northeast-ern Michoacán, Mexico. Animals 2021, 11, 2546. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Priyashantha, H.; Vidanarachchi, J.K.; Kiani, A.; Holman, B.W.B. Effects of Nutritional Factors on Fat Content, Fatty Acid Composition, and Sensorial Properties of Meat and Milk from Domesticated Ruminants: An Overview. Animals 2024, 14, 840. [Google Scholar] [CrossRef]
- Dean, G.; Francioni, M.; Toderi, M.; López-i-Gelats, F.; Trozzo, L.; Rivera-Ferre, M.G.; Franca, A.; Altana, D.M.; Karatassiou, M.; Parissi, Z.M.; et al. Nature’s Contribution to People Provided by Pastoral Systems Across European, African, and Middle East Mediterranean Countries: Trends, Approaches and Gaps. Reg. Environ. Change 2024, 24, 77. [Google Scholar] [CrossRef]
- European Parliament. Report on the Current Situation and Future Prospects for the Sheep and Goat Sectors in the EU (2017/2117(INI)). Committee on Agriculture and Rural Development—European Union. 2018. Available online: http://www.europarl.europa.eu/doceo/document/A-8-2018-0064_EN.pdf (accessed on 3 December 2024).
- Kukovics, S. (Ed.) Sustainable Goat Breeding and Goat Farming in Central and Eastern European Countries. In Proceedings of European Regional Conference on Goats; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; Available online: https://repository.ukim.mk/bitstream/20.500.12188/14583/1/a-i5437e.pdf (accessed on 3 December 2024).
- Mancilla-Leytón, J.M.; Morales-Jerrett, E.; Muñoz-Vallés, S.; Mena, Y. A Comparative Analysis of Carbon Footprint in the Andalusian Autochthonous Dairy Goat Production Systems. Animals 2023, 13, 2864. [Google Scholar] [CrossRef] [PubMed]
- Celozzi, S.; Mattiello, S.; Battini, M.; Bailo, G.; Bava, L.; Tamburini, A.; Valsecchi, I.; Zucali, M. Evaluation of the Environmental Sustainability of Goat’s Milk and Cheese Production Using the LCA Approach. Large Anim. Rev. 2020, 26, 293–298. [Google Scholar]
- Horrillo, A.; Gaspar, P.; Escribano, M. Organic Farming as a Strategy to Reduce Carbon Footprint in Dehesa Agroecosystems: A Case Study Comparing Different Livestock Products. Animals 2020, 10, 162. [Google Scholar] [CrossRef] [PubMed]
- Zucali, M.; Lovarelli, D.; Celozzi, S.; Bacenetti, J.; Sandrucci, A.; Bava, L. Management Options to Reduce the Environmental Impact of Dairy Goat Milk Production. Livest. Sci. 2020, 231, 103888. [Google Scholar] [CrossRef]
- Sintori, A.; Tzouramani, I.; Liontakis, A. Greenhouse Gas Emissions in Dairy Goat Farming Systems: Abatement Potential and Cost. Animals 2019, 9, 945. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Peña, R.; Mena, Y.; Batalla, I.; Mancilla-Leytón, J.M. Carbon Footprint of Dairy Goat Production Systems: A Comparison of Three Contrasting Grazing Levels in the Sierra de Grazalema Natural Park (Southern Spain). J. Environ. Manag. 2019, 232, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Pardo, G.; del Prado, A.; Fernandez-Alvarez, J.; Yanez-Ruiz, D.R.; Belanche, A. Influence of Precision Livestock Farming on the Environmental Performance of Intensive Dairy Goat Farms. J. Clean. Prod. 2022, 351, 131518. [Google Scholar] [CrossRef]
- Yáñez-Ruiz, D.R.; Martín-García, A.I. Chapter 2: Non-cow Milk Production: The Greenhouse-Gas Emissions and Climate Change. In Non-bovine Milk and Milk Products; Tsakalidou, E., Papadimitriou, K., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 15–38. [Google Scholar] [CrossRef]
- Pardo, G.; Yañez-Ruiz, D.; Martin-Garcia, I.; Arco, A.; Moral, R.; del Prado, A. Modelling the Impact on Greenhouse Gas Emissions of Using under Utilized Feed Resources in Dairy Goat Systems. Adv. Anim. Biosci. 2015, 6, 40–42. [Google Scholar] [CrossRef]
Based on | Systems | Region/Country [Ref] |
---|---|---|
Level of production and use of natural resources | Traditional (meat milk production); Intensive milk production; Permanently indoors; Pasture with different grazing times; Confined; Grazing; Continuous grazing; Seasonal grazing; Transhumance; Use of natural and/or cultivated pastures; Pastoral; and Organic | Europe [23,24,34,35,77] |
Characteristics of raw milk and water used in milking | Smallholder dairy farms: Conventional; Traditional; and Emerging | Brazilian semi-arid region [78] |
Characteristics of farms and management practices | Cluster 1. Large, semi-intensive, high producing and investing farms; Cluster 2. Semi-extensive, low-input, traditional farms; Cluster 3. Medium-sized, semi-intensive, low replacement rate and less grazing farms; and Cluster 4. Semi-extensive, low-input, traditional farms on expansion, producing heavy weight kids’ carcasses | Greece [35] |
Level of use of natural resources | Intensive; Semi-intensive; Extensive; Semi-extensive, Dual-purpose; Specialized; and Transhumant grazing-based | France, Greece, Italy, and Spain [12] |
Type of resource used | Extensive; Tethering system with grazing; Confined; Semi-intensive; and Intensive | East and South Asian region [25] |
Pastoral; Pastoral range grazing; Mixed; Kid selling; Village; Migratory; and Intensive | Central and West Asia and North Africa region [25] | |
Mixed; and low-input dairy goat | West African region [25] | |
Extensive; Free ranging; and Pastoralist | East and Central Africa [25] | |
Pastoral; Agro-pastoral; and Low/medium-input production | South African region [25] | |
Extensive; Semi-extensive; Semi-intensive; Daytime grazing and nighttime confinement with supplementation; Nomadic system; Transhumance production; Sedentary production; Intensive; Indoor system; Flock system; and Traditional | Europe continent [25] | |
Extensive or Traditional; Semi-extensive or Advanced; Intensive; Extensive system in rangelands; Extensive system where goats graze crop residues; and Intensive with use of grain and irrigated cut forages | American Continent [25] | |
Management practices | Backyard system (Extensive system); Smallholder goat production (Extensive system); Smallholder (Semi-intensive production system); Smallholder (Intensive production system); Medium-to-large flock on Extensive production system; Medium to large flock on Semi-intensive production system; and Large flock on Intensive production system | India [26] |
Technical and economic indicators | Cluster 1. Grazing systems with high feed supply; Cluster 2. Indoor systems without associated crops; Cluster 3. Pastoral systems; and Cluster 4. Indoor systems with associated crops | Andalusia (Southern Spain) [36] |
Analysis of typologies, standing out the importance of the variable farm size | Group I—Extensive systems with low input; Group II—Semi-intensive systems with high input; and Group III—Semi-intensive systems with moderate input | Northeast Brazil [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meza-Herrera, C.A.; Navarrete-Molina, C.; Macias-Cruz, U.; Arellano-Rodriguez, G.; De Santiago-Miramontes, A.; Sariñana-Navarrete, M.A.; Marin-Tinoco, R.I.; Perez-Marin, C.C. Dairy Goat Production Systems: A Comprehensive Analysis to Reframe Their Global Diversity. Animals 2024, 14, 3717. https://doi.org/10.3390/ani14243717
Meza-Herrera CA, Navarrete-Molina C, Macias-Cruz U, Arellano-Rodriguez G, De Santiago-Miramontes A, Sariñana-Navarrete MA, Marin-Tinoco RI, Perez-Marin CC. Dairy Goat Production Systems: A Comprehensive Analysis to Reframe Their Global Diversity. Animals. 2024; 14(24):3717. https://doi.org/10.3390/ani14243717
Chicago/Turabian StyleMeza-Herrera, Cesar A., Cayetano Navarrete-Molina, Ulises Macias-Cruz, Gerardo Arellano-Rodriguez, Angeles De Santiago-Miramontes, Maria A. Sariñana-Navarrete, Ruben I. Marin-Tinoco, and Carlos C. Perez-Marin. 2024. "Dairy Goat Production Systems: A Comprehensive Analysis to Reframe Their Global Diversity" Animals 14, no. 24: 3717. https://doi.org/10.3390/ani14243717
APA StyleMeza-Herrera, C. A., Navarrete-Molina, C., Macias-Cruz, U., Arellano-Rodriguez, G., De Santiago-Miramontes, A., Sariñana-Navarrete, M. A., Marin-Tinoco, R. I., & Perez-Marin, C. C. (2024). Dairy Goat Production Systems: A Comprehensive Analysis to Reframe Their Global Diversity. Animals, 14(24), 3717. https://doi.org/10.3390/ani14243717