The Effects of Different Zilpaterol Hydrochloride Feed Supplements and Extended Aging Periods on the Meat Quality of Feedlot Bulls
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Treatments
2.2. Experimental Design and Animals
2.3. Allocation of Experimental Treatments
2.4. Feeding and β-Agonist Feed Supplementation
2.5. Slaughter, Meat Sample Collection and Storage
2.6. Meat Quality Analyses
2.7. Statistical Analyses of Data
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. World Population Prospects 2019; Volume II: Demographic Profiles; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019. [Google Scholar]
- FAO. World Livestock: Transforming the Livestock Sector through the Sustainable Development Goals—In Brief; FAO: Rome, Italy, 2018; pp. 5–12. [Google Scholar]
- Webb, E.C.; Webb, E.M. Ethics of Meat Production and Its Relation to Perceived Meat Quality, Chapter 25. In New Aspects of Meat Quality, 2nd ed.; Purslow, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 9780323858793. [Google Scholar]
- Capper, J.L.; Hayes, D.J. The environmental and economic impact of removing growth-enhancing technologies from U.S. beef production. J. Anim. Sci. 2012, 90, 3527–3537. [Google Scholar] [CrossRef] [PubMed]
- DAFF. A Profile of the South African Beef Market Value Chain; DAFF: Pretoria, South Africa, 2019. [Google Scholar]
- Paul, B.K.; Butterbach-Bahl, K.; Notenbaert, A.; Nderi, A.N.; Ericksen, P. Sustainable livestock development in low- and middle-income countries: Shedding light on evidence-based solutions. Environ. Res. Lett. 2021, 16, 011001. [Google Scholar] [CrossRef]
- Caetano, M.; Goulard, R.S.; Silva, S.L.; Pflanzer, S.B.; Leme, P.R.; Dos Santos, A.C.R.; Lanna, D.P.D. Meat Quality of Nelore Young Bulls—Effects of Different Days on Feed and Zilpaterol Hydrochloride Supplementation. Animals 2021, 11, 2688. [Google Scholar] [CrossRef] [PubMed]
- Avendaño-Reyes, L.; Meraz-Murillo, F.J.; Pérez-Linares, C.; Figueroa-Saavedra, F.; Correa, A.; Álvarez-Valenzuela, F.D.; Guerra-Liera, J.E.; López-Rincón, G.; Macías-Cruz, U. Evaluation of the efficacy of Grofactor, a beta-adrenergic agonist based on zilpaterol hydrochloride, using feedlot finishing bulls. J. Anim. Sci. 2016, 94, 2954–2961. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.F.; Brichi, A.L.C.; Millen, D.D.; Goulart, R.S.; Pereira, J.C.; Estevam, D.D.; Perdigão, A.; Martins, C.L.; Arrigoni, M.D.B. Feedlot performance, carcass characteristics and meat quality of Nellore bulls and steers fed zilpaterol hydrochloride. Livest. Sci. 2019, 227, 166–174. [Google Scholar] [CrossRef]
- Webb, E.C.; Stock, C.; Morris, S.D. Comparison between the effects of zilpaterol hydrochloride and R-salbutamol fed during the finisher period on growth and carcass characteristics of feedlot cattle. S. Afr. J. Anim. Sci. 2023, 53, 615–625. [Google Scholar]
- Niño, A.M.; Granja, R.H.; Wanschel, A.C.; Salerno, A.G. The challenges of ractopamine use in meat production for export to European Union and Russia. J. Food Control 2017, 72, 289–292. [Google Scholar] [CrossRef]
- Webb, E.C.; Agbeniga, B. Timing and Duration of Low Voltage Electrical Stimulation on Selected Meat Quality Characteristics of Light and Heavy Cattle Carcasses. Anim. Prod. Sci. 2020, 60, 967–977. [Google Scholar] [CrossRef]
- Carpenter, C.E.; Cornforth, D.P.; Whittier, D. Consumer Preferences for Beef Color and Packaging Did Not Affect Eating Satisfaction. Meat Sci. 2001, 57, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, R.; Hunt, M.C.; Price, T.; Mafi, G.G. Chapter Five—Strategies to limit meat wastage: Focus on meat discoloration. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2021; Volume 95, pp. 183–201. [Google Scholar] [CrossRef]
- Agbeniga, B.; Webb, E.C. Color attributes and glycolytic energy metabolites of meat from light and heavy bovine feedlot carcasses stimulated with low voltage electricity. Meat Muscle Biol. 2021, 5, 1–16. [Google Scholar] [CrossRef]
- Hunt, M.C. Guidelines for Meat Color Evaluation. In Proceedings of the 44th Reciprocal Meat Conference, Manhattan, NY, USA, 9–12 June 1991; American Meat Science Association: Savoy, IL, USA, 1991; pp. 9–10. [Google Scholar]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Hope-Jones, M.; Strydom, P.E.; Frylinck, L.; Webb, E.C. The efficiency of electrical stimulation to counteract the negative effects of β-agonists on meat tenderness of feedlot cattle. Meat Sci. 2010, 86, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.C.; Tittor, A.W.; Kellermeier, J.D.; Alsup, E.; Hutcheson, J.P.; Montgomery, J.L.; Miller, M.F. Zilpaterol Hydrochloride Effects on Red Meat Yield and Quality. In Proceedings of the 61st Annual Reciprocal Meat Conference, Gainesville, FL, USA, 24 June 2008; pp. 1–11. [Google Scholar]
- Cônsolo, N.R.; Ferrari, V.B.; Mesquita, L.G.; Goulart, R.S.; Silva, L.F. Zilpaterol hydrochloride improves beef yield, changes palatability traits, and increases calpain-calpastatin gene expression in Nellore heifers. Meat Sci. 2016, 121, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Leheska, J.M.; Montgomery, J.L.; Krehbiel, C.R.; Yates, D.A.; Hutcheson, J.P.; Nichols, W.T.; Miller, M.F. Dietary zilpaterol hydrochloride. II. Carcass composition and meat palatability of beef cattle. J. Anim. Sci. 2009, 87, 1384–1393. [Google Scholar] [CrossRef] [PubMed]
- Hilton, G.G.; Montgomery, J.L.; Krehbiel, C.R.; Hutcheson, J.P.; Nichols, W.T.; Streeter, M.N.; Miller, M.F. Effects of feeding zilpaterol hydrochloride with and without monensin and tylosin on carcass cutability and meat palatability of beef steers. J. Anim. Sci. 2009, 87, 1394–1406. [Google Scholar] [CrossRef] [PubMed]
- Scramlin, S.M.; Platter, W.J.; Gomez, R.A.; Choat, W.T.; McKeith, F.K.; Killefer, J. Comparative effects of ractopamine hydrochloride and zilpaterol hydrochloride on growth performance, carcass traits, and longissimus tenderness of finishing steers. J. Anim. Sci. 2010, 88, 1823–1829. [Google Scholar] [CrossRef] [PubMed]
- Strydom, P.E.; Nel, E. The effect of the beta-agent, Zilpaterol, on selected meat quality characteristics. Intervet Study Rep. Zil. Qual. 1996, 2. [Google Scholar]
- Kellermeier, J.D.; Tittor, A.W.; Brooks, A.C.; Galyean, M.L.; Yates, D.A.; Hutcheson, J.P.; Nichols, W.T.; Streeter, M.N.; Johnson, B.J.; Miller, M.F. Effects of zilpaterol hydrochloride with or without an estrogen-trenbolone acetate terminal implant on carcass traits, retail cutout, tenderness, and muscle fiber diameter in finishing steers. J. Anim. Sci. 2009, 87, 3702–3711. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.C.; Erasmus, L.J. The effect of production system and management practices on the quality of meat products from ruminant livestock. S. Afr. J. Anim. Sci. 2013, 43, 413–423. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef] [PubMed]
Growth Characteristic | Control (CT) Mean (Std Error) | Zilpaterol (ZH) Mean (Std Error) | p = F |
---|---|---|---|
D0 mass (kg) | 397.97 (1.843) | 397.58 (1.303) | 0.86 |
Slaughter mass (kg) | 420.83 a (1.267) | 425.95 b (0.896) | 0.05 |
Cold carcass mass (kg) | 249.40 a (0.903) | 256.52 b (0.638) | 0.01 |
Carcass mass loss % | 2.43 a (0.091) | 2.74 b (0.065) | 0.01 |
Dressing % | 59.23 a (0.180) | 60.23 b (0.127) | 0.01 |
SC fat (mm) | 5.77 a (0.158) | 5.31 b (0.112) | 0.02 |
Meat Quality Variable | Control (CT) Mean (Std Error) (n = 162) | ZH-A Mean (Std Error) (n = 172) | ZH-B Mean (Std Error) (n = 166) | p = F |
---|---|---|---|---|
WBSF_N | 4.79 (0.110) a | 5.65 (0.105) b | 5.61 (0.121) b | 0.001 |
Colour L* | 40.15 (0.296) | 40.93 (0.283) | 40.72 (0.289) | 0.147 |
Colour a* | 15.30 (0.170) | 15.01 (0.163) | 15.12 (0.166) | 0.471 |
Colour b* | 4.99 (0.163) | 4.85 (0.156) | 5.03 (0.159) | 0.687 |
Hue° | 18.60 (0.524) | 18.30 (0.467) | 17.62 (0.477) | 0.567 |
Chroma | 16.18 (0.196) | 15.87 (0.188) | 16.02 (0.191) | 0.517 |
H2O-loss (%) | 7.59 (0.203) | 7.74 (0.194) | 7.89 (0.198) | 0.564 |
Cooking loss (%) | 23.57 (0.275) x | 22.67 (0.263) y | 22.97 (0.268) xy | 0.057 |
Meat Quality Variable | Control Treatment Mean (Std. Error) | ZH Treatment Mean (Std. Error) | |
---|---|---|---|
WBSF # (kg) | 7 | 6.62 (0.278) a | 7.12 (0.186) a |
14 | 5.57 (0.188) b,A | 6.43 (0.132) b,B | |
28 | 4.70 (0.188) c,A | 6.07 (0.130) b,B | |
56 | 3.80 (0.188) d,A | 4.50 (0.132) c,B | |
120 | 4.25 (0.191) cd,A | 4.77 (0.131) c,B | |
Colour L* | 7 | 39.26 (0.891) a | 40.15 (0.586) a |
14 | 40.72 (0.586) b | 41.43 (0.414) ab | |
28 | 42.29 (0.594) b | 42.67 (0.409) bc | |
56 | 42.80 (0.586) b | 43.62 (0.412) c | |
120 | 35.68 (0.594) c | 36.27 (0.409) d | |
Colour a* | 7 | 14.99 (0.512) a | 15.17 (0.337) ab |
14 | 16.22 (0.337) a | 16.47 (0.238) b | |
28 | 15.97 (0.342) ab | 15.57 (0.235) ab | |
56 | 16.75 (0.337) b | 15.63 (0.237) ab | |
120 | 12.58 (0.342) c | 12.49 (0.235) c | |
Colour b* | 7 | 3.13 (0.489) a | 3.86 (0.322) a |
14 | 5.70 (0.322) b | 5.48 (0.228) b | |
28 | 5.36 (0.326) bc | 5.13 (0.225) bc | |
56 | 6.39 (0.322) b | 5.68 (0.226) b | |
120 | 4.36 (0.326) ac | 4.52 (0.225) ac | |
Chroma | 7 | 15.38 (0.590) a | 15.77 (0.388) a |
14 | 17.32 (0.388) ab | 17.44 (0.274) b | |
28 | 16.91 (0.393) ab | 16.49 (0.271) ab | |
56 | 17.97 (0.388) b,A | 16.71 (0.273) ab,B | |
120 | 13.33 (0.393) c | 13.32 (0.271) c | |
Hue° | 7 | 11.29 (1.462) a | 13.17 (0.978) a |
14 | 20.10 (0.991) b,C | 17.87 (0.696) b,D | |
28 | 18.07 (0.991) b | 17.50 (0.687) b | |
56 | 20.49 (0.991) b | 19.49 (0.696) b | |
120 | 19.12 (1.004) b | 19.38 (0.691) b | |
H2O_loss (%) | 7 | 4.88 (0.609) a | 4.81 (0.400) a |
14 | 6.13 (0.400) ab | 6.73 (0.283) b | |
28 | 7.02 (0.406) b | 7.46 (0.279) b | |
56 | 10.69 (0.400) c | 10.86 (0.281) c | |
120 | 9.22 (0.406) c | 9.22 (0.279) d | |
Cooking loss (%) | 7 | 4.88 (0.826) a | 4.81 (0.543) a |
14 | 28.10 (0.543) b | 27.75 (0.384) b | |
28 | 30.57 (0.551) b | 29.85 (0.379) c | |
56 | 30.62 (0.543) b | 29.80 (0.381) c | |
120 | 22.79 (0.551) c | 21.89 (0.379) d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Webb, E.C.; Emmenis, R.v.; Cassens, A.M. The Effects of Different Zilpaterol Hydrochloride Feed Supplements and Extended Aging Periods on the Meat Quality of Feedlot Bulls. Animals 2024, 14, 361. https://doi.org/10.3390/ani14030361
Webb EC, Emmenis Rv, Cassens AM. The Effects of Different Zilpaterol Hydrochloride Feed Supplements and Extended Aging Periods on the Meat Quality of Feedlot Bulls. Animals. 2024; 14(3):361. https://doi.org/10.3390/ani14030361
Chicago/Turabian StyleWebb, Edward C., Rochelle van Emmenis, and Andrew M. Cassens. 2024. "The Effects of Different Zilpaterol Hydrochloride Feed Supplements and Extended Aging Periods on the Meat Quality of Feedlot Bulls" Animals 14, no. 3: 361. https://doi.org/10.3390/ani14030361
APA StyleWebb, E. C., Emmenis, R. v., & Cassens, A. M. (2024). The Effects of Different Zilpaterol Hydrochloride Feed Supplements and Extended Aging Periods on the Meat Quality of Feedlot Bulls. Animals, 14(3), 361. https://doi.org/10.3390/ani14030361