Enhancing the Production Performance and Nutrient Utilization of Laying Hens by Augmenting Energy, Phosphorous and Calcium Deficient Diets with Fungal Phytase (Trichoderma reesei) Supplementation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, Experimental Design, and Management
2.2. Indicators Determination and Data Collection
2.3. Statistical Analysis
3. Results
3.1. Production Performance of Laying Hens
3.2. Egg Quality Attributes of Laying Hens
3.3. Apparent Nutrient Availability of Nutrients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheryan, M.; Rackis, J.J. Phytic acid interactions in food systems. Crit. Rev. Food Sci. Nutr. 1980, 13, 297–335. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V. Phytates: Occurrence, bioavailability and implications in poultry nutrition. Poult. Avian Biol. Rev. 1995, 6, 125–143. [Google Scholar]
- Ravindran, V.; Selle, P.; Bryden, W. Effects of phytase supplementation, individually and in combination, with glycanase, on the nutritive value of wheat and barley. Poult. Sci. 1999, 78, 1588–1595. [Google Scholar] [CrossRef]
- Urbano, G.; Lopez-Jurado, M.; Aranda, P.; Vidal-Valverde, C.; Tenorio, E.; Porres, J. The role of phytic acid in legumes: Antinutrient or beneficial function? J. Physiol. Biochem. 2000, 56, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Mazzuco, H.; Bertechini, A.G. Critical points on egg production: Causes, importance and incidence of eggshell breakage and defects. Cienc. Agrotec. 2014, 38, 07–14. [Google Scholar] [CrossRef]
- Maenz, D.D.; Classen, H.L. Phytase activity in the small intestinal brush border membrane of the chicken. Poult. Sci. 1998, 77, 557–563. [Google Scholar] [CrossRef]
- Jalal, M.; Scheideler, S. Effect of supplementation of two different sources of phytase on egg production parameters in laying hens and nutrient digestiblity. Poult. Sci. 2001, 80, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Mandal, G.; Roy, A.; Patra, A. Effects of supplementation of manganese with or without phytase on growth performance, carcass traits, muscle and tibia composition, and immunity in broiler chickens. Livest. Sci. 2016, 191, 80–85. [Google Scholar] [CrossRef]
- Rutherfurd, S.; Chung, T.; Morel, P.; Moughan, P. Effect of microbial phytase on ileal digestibility of phytate phosphorus, total phosphorus, and amino acids in a low-phosphorus diet for broilers. Poult. Sci. 2004, 83, 61–68. [Google Scholar] [CrossRef]
- Newkirk, R.; Classen, H. The non-mineral nutritional impact of phytate in canola meal fed to broiler chicks. Anim. Feed. Sci.e Technol. 2001, 91, 115–128. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Alagawany, M.; Arif, M.; Emam, M.; Saeed, M.; Arain, M.A.; Siyal, F.A.; Patra, A.; Elnesr, S.S.; Khan, R.U. The uses of microbial phytase as a feed additive in poultry nutrition-a review. Ann. Anim. Sci. 2018, 18, 63. [Google Scholar] [CrossRef]
- Jondreville, C.; Lescoat, P.; Magnin, M.; Feuerstein, D.; Gruenberg, B.; Nys, Y. Sparing effect of microbial phytase on zinc supplementation in maize–soya-bean meal diets for chickens. Animal 2007, 1, 804–811. [Google Scholar] [CrossRef]
- Lalpanmawia, H.; Elangovan, A.; Sridhar, M.; Shet, D.; Ajith, S.; Pal, D. Efficacy of phytase on growth performance, nutrient utilization and bone mineralization in broiler chicken. Anim. Feed. Sci. Technol. 2014, 192, 81–89. [Google Scholar] [CrossRef]
- Mohammed, K.A.; Toson, M.; Hassanien, H.; Soliman, M.; El-Nagar, S.H. Effects of phytase supplementation on performance and egg quality of laying hens fed diets containing rice bran. Egypt. Poul. Sci. J. 2010, 30, 649–659. [Google Scholar]
- Cowieson, A.; Acamovic, T.; Bedford, M. Supplementation of corn–soy-based diets with an Eschericia coli-derived phytase: Effects on broiler chick performance and the digestibility of amino acids and metabolizability of minerals and energy. Poult. Sci. 2006, 85, 1389–1397. [Google Scholar] [CrossRef]
- Kim, J.H.; Pitargue, F.M.; Jung, H.; Han, G.P.; Choi, H.S.; Kil, D.Y. Effect of superdosing phytase on productive performance and egg quality in laying hens. Asian-Australas. J. Anim. Sci. 2017, 30, 994. [Google Scholar] [CrossRef] [PubMed]
- Dersjant-Li, Y.; Millán, C.; Casabuena, O.; Quiles, A.; Romero, L.F.; Gracia, M.I. Supplementation of Buttiauxella sp. 6-phytase to commercial laying hen diets with reduced nutrient density on productive performance and egg quality. J. Appl. Anim. Nutr. 2018, 6, e4. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Titgemeyer, E.C.; Armendariz, C.K.; Bindel, D.J. Evaluation of titanium dioxide as a digestibility marker for cattle. J. Anim. Sci. 2001, 79, 1059–1063. [Google Scholar] [CrossRef]
- Selle, P.H.; Ravindran, V. Microbial phytase in poultry nutrition. Anim. Feed. Sci. Technol. 2007, 135, 1–41. [Google Scholar] [CrossRef]
- Singh, P. Significance of phytic acid and supplemental phytase in chicken nutrition: A review. World’s Poul. Sci. J. 2008, 64, 553–580. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, D.; Piao, X.; Li, P.; Zhang, H.; Shi, C.; Yu, S. Effects of adding super dose phytase to the phosphorus-deficient diets of young pigs on growth performance, bone quality, minerals and amino acids digestibilities. Asian-Australas. J. Anim. Sci. 2014, 27, 237. [Google Scholar] [CrossRef]
- Remus, J. Poultry and environment reap the benefits of new-generation phytase. Feed. (Int. Feed. Prod. Appl. Nutr.) 2005, 9, 22–25. [Google Scholar]
- Hughes, A.; Dahiya, J.; Wyatt, C.; Classen, H. The efficacy of quantum phytase in a forty-week production trial using white leghorn laying hens fed corn-soybean meal-based diets. Poult. Sci. 2008, 87, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, K.; Jeroch, H. Efficacy of different levels of Escherichia coli phytase in hens fed maize-soyabean meal based diets with a decreased non-phytase phosphorus content. J. Anim. Feed. Sci. 2011, 2, 224–235. [Google Scholar] [CrossRef]
- Valaja, J.; Tuunainen, P.; Koivunen, E.; Kuhn, I. Phytase supplementation improved P retention of the laying hens fed barley-oats-soybean meal based diets. In Proceedings of the European Symposium on Poultry Nutrition, Potsdam, Germany, 26–29 August 2013; pp. 183–184. [Google Scholar]
- Um, J.; Paik, I. Effects of microbial phytase supplementation on egg production, eggshell quality, and mineral retention of laying hens fed different levels of phosphorus. Poult. Sci. 1999, 78, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Silversides, F.; Scott, T.; Korver, D.; Afsharmanesh, M.; Hruby, M. A study on the interaction of xylanase and phytase enzymes in wheat-based diets fed to commercial white and brown egg laying hens. Poult. Sci. 2006, 85, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Carlos, A.; Edwards, H., Jr. The effects of 1, 25-dihydroxycholecalciferol and phytase on the natural phytate phosphorus utilization by laying hens. Poult. Sci. 1998, 77, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.; Bedford, M.; Pace, S.; Miller, H. The effects of phytase and xylanase supplementation on performance and egg quality in laying hens. Br. Poult. Sci. 2018, 59, 554–561. [Google Scholar] [CrossRef]
- Żyła, K.; Mika, M.; Świątkiewicz, S.; Koreleski, J.; Piironen, J. Effects of phytase B on laying performance, eggshell quality and on phosphorus and calcium balance in laying hens fed phosphorus-deficient maize-soybean meal diets. Czech. J. Anim. Sci. 2011, 56, 9. [Google Scholar] [CrossRef]
- Gao, C.; Ji, C.; Zhang, J.; Zhao, L.; Ma, Q. Effect of a novel plant phytase on performance, egg quality, apparent ileal nutrient digestibility and bone mineralization of laying hens fed corn–soybean diets. Anim. Feed. Sci. Technol. 2013, 186, 101–105. [Google Scholar] [CrossRef]
- Ghosh, M.; Huynh, D.; Singh Sodhi, S.; Sharma, N.; Kim, J.H.; Kim, N.; Kumar Mongre, R.; Park, W.-P.; Shin, H.-S.; Ko, S. Impact of a Novel Phytase Derived from Aspergillus nidulans and Expressed in Transgenic Lemna minor on the Performance, Mineralization in Bone and Phosphorous Excretion in Laying Hens. Pak. Vet. J. 2015, 35, 360–364. [Google Scholar]
- Ravindran, V.; Selle, P.; Ravindran, G.; Morel, P.; Kies, A.; Bryden, W. Microbial phytase improves performance, apparent metabolizable energy, and ileal amino acid digestibility of broilers fed a lysine-deficient diet. Poult. Sci. 2001, 80, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Jalal, M.; Scheideler, S.; Wyatt, C. Effects of phytase supplementation on egg production parameters and amino acid digestibilities. Abstract. Poult. Sci. 1999, 78, 74. [Google Scholar]
- Ribeiro, V., Jr.; Salguero, S.; Gomes, G.; Barros, V.; Silva, D.; Barreto, S.; Rostagno, H.; Hannas, M.; Albino, L. Efficacy and phosphorus equivalency values of two bacterial phytases (Escherichia coli and Citrobacter braakii) allow the partial reduction of dicalcium phosphate added to the diets of broiler chickens from 1 to 21 days of age. Anim. Feed. Sci. Technol. 2016, 221, 226–233. [Google Scholar] [CrossRef]
- Vieira, S.; Anschau, D.; Serafini, N.; Kindlein, L.; Cowieson, A.; Sorbara, J. Phosphorus equivalency of a Citrobracter braakii phytase in broilers. J. Appl. Poul. Res. 2015, 24, 335–342. [Google Scholar] [CrossRef]
- Liebert, F.; Htoo, J.; Sünder, A. Performance and nutrient utilization of laying hens fed low-phosphorus corn-soybean and wheat-soybean diets supplemented with microbial phytase. Poult. Sci. 2005, 84, 1576–1583. [Google Scholar] [CrossRef]
- Liu, N.; Liu, G.; Li, F.; Sands, J.; Zhang, S.; Zheng, A.; Ru, Y. Efficacy of phytases on egg production and nutrient digestibility in layers fed reduced phosphorus diets. Poult. Sci. 2007, 86, 2337–2342. [Google Scholar] [CrossRef]
- Kornegay, E. Nutrient Management of Food Animals to Enhance and Protect the Environment; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Yi, Z.; Kornegay, E.; Denbow, D. Supplemental microbial phytase improves zinc utilization in broilers. Poult. Sci. 1996, 75, 540–546. [Google Scholar] [CrossRef]
- Sebastian, S.; Touchburn, S.; Chavez, E.; Lague, P. Apparent digestibility of protein and amino acids in broiler chickens fed a corn-soybean diet supplemented with microbial phytase. Poult. Sci. 1997, 76, 1760–1769. [Google Scholar] [CrossRef]
- White, E.; Bold, R.; Wealleans, A.; Dersjant-Li, Y.; Kwakernaak, S. Effect of a Buttiauxella phytase on nutrient digestibility and performance in laying hens fed a diet without supplemental inorganic phosphorus. Proceeding WPSA 2016, 12, 1–36. [Google Scholar]
- Scott, T.; Kampen, R.; Silversides, F. The effect of adding exogenous phytase to nutrient-reduced corn-and wheat-based diets on performance and egg quality of two strains of laying hens. Can. J. Anim. Sci. 2001, 81, 393–401. [Google Scholar] [CrossRef]
- Sreedhara, J.; Jayanaik, J.R.; Malathi, V.; Gopinath, C.; Prabhu, T.; Rao, S. Effect of phytase supplementation on fertility, hatchability and egg quality traits in swarnadhara breeders fed diet with different levels of non-phytate phosphorus. J. Ento. Zool. Stud. 2020, 8, 1835–1838. [Google Scholar]
Ingredients | Positive Control | Negative Control |
---|---|---|
Corn | 58.59 | 59.87 |
Soybean meal | 8.00 | 8.00 |
Rape seed meal | 8.60 | 8.00 |
Corn gluten meal | 7.00 | 7.00 |
Corn germ meal | 5.10 | 7.00 |
Mixed oil | 1.57 | - |
Limestone | 8.60 | 8.90 |
Calcium monophosphate | 1.34 | 0.02 |
L-lysine hydrochloride (75%) | 0.20 | 0.20 |
DL-methionine | - | 0.01 |
NaCl | 0.33 | 0.33 |
Sodium bicarbonate | 0.17 | 0.17 |
Choline chloride (50%) | 0.10 | 0.10 |
Premix 1 | 0.40 | 0.40 |
Calculated Nutritional Levels | ||
Metabolic energy, MJ/kg | 11.29 | 10.99 |
Crude protein, % | 16.50 | 16.50 |
Calcium, % | 3.51 | 3.25 |
Phosphorus, % | 0.60 | 0.38 |
Non-phytate phosphorus, % | 0.34 | 0.14 |
L-lysine, % | 0.75 | 0.75 |
DL-methionine, % | 0.34 | 0.34 |
TSAA, % | 0.65 | 0.65 |
Calculated Values of Diets | ||
Metabolic energy, MJ/kg | 11.31 | 10.97 |
Crude protein, % | 16.49 | 16.50 |
Calcium, % | 3.50 | 3.26 |
Phosphorus, % | 0.61 | 0.38 |
Treatment | BWG (g) | Laying Rate (%) | Egg Weight (g) | ADFI (g) | Egg Mass (g) | FCR (Feed/Egg) |
---|---|---|---|---|---|---|
PC | 142.52 a | 93.31 c | 56.52 a | 119.33 a | 52.74 ab | 2.263 a |
NC | 133.92 b | 88.43 d | 54.33 b | 110.06 c | 48.04 c | 2.291 a |
PHY 250 FTU/kg | 140.15 a | 92.86 c | 55.37 a | 110.47 c | 51.42 b | 2.149 b |
PHY 1000 FTU/kg | 138.55 a | 94.53 b | 55.75 a | 112.95 b | 52.70 a | 2.143 b |
PHY 2000 FTU/kg | 140.13 a | 96.36 a | 55.80 a | 114.50 b | 53.77 a | 2.129 b |
SEM | 4.45 | 1.46 | 1.30 | 2.23 | 1.18 | 0.041 |
p-value | 0.031 | 0.011 | 0.031 | 0.042 | 0.036 | 0.020 |
Treatment | Shell Color | Eggshell Strength (N) | Shell Thickness (mm) | Albumen Height (mm) | Yolk Color |
---|---|---|---|---|---|
PC | 23.32 | 54.84 | 0.36 | 3.94 | 5.94 b |
NC | 22.64 | 52.43 | 0.36 | 3.84 | 7.11 a |
PHY 250 FTU/kg | 24.02 | 53.16 | 0.36 | 3.99 | 7.33 a |
PHY 1000 FTU/kg | 23.58 | 53.43 | 0.36 | 3.96 | 7.19 a |
PHY 2000 FTU/kg | 23.78 | 52.74 | 0.35 | 3.99 | 7.80 a |
SEM | 1.58 | 2.97 | 0.01 | 0.25 | 0.35 |
p-value | 0.677 | 0.423 | 0.878 | 0.498 | 0.001 |
Treatment | DM | Energy | Nitrogen | P | Phytate P | Ca |
---|---|---|---|---|---|---|
PC | 76.93 b | 76.07 b | 73.26 ab | 49.73 c | 17.43 b | 58.62 b |
NC | 77.03 b | 75.68 b | 65.54 c | 39.54 d | 15.53 b | 53.33 c |
PHY 250 FTU/kg | 79.51 a | 78.94 a | 74.18a b | 53.38 b | 50.87 a | 63.32 a |
PHY 1000 FTU/kg | 79.83 a | 79.24 a | 75.99 a | 58.20 a | 48.74 a | 63.20 a |
PHY 2000 FTU/kg | 80.35 a | 79.25 a | 74.91 a | 58.87 a | 51.52 a | 61.86 a |
SEM | 6.71 | 5.53 | 6.28 | 4.29 | 5.15 | 3.45 |
p-value | 0.009 | 0.018 | 0.001 | 0.002 | 0.001 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirzado, S.A.; Liu, G.; Purba, M.A.; Cai, H. Enhancing the Production Performance and Nutrient Utilization of Laying Hens by Augmenting Energy, Phosphorous and Calcium Deficient Diets with Fungal Phytase (Trichoderma reesei) Supplementation. Animals 2024, 14, 376. https://doi.org/10.3390/ani14030376
Pirzado SA, Liu G, Purba MA, Cai H. Enhancing the Production Performance and Nutrient Utilization of Laying Hens by Augmenting Energy, Phosphorous and Calcium Deficient Diets with Fungal Phytase (Trichoderma reesei) Supplementation. Animals. 2024; 14(3):376. https://doi.org/10.3390/ani14030376
Chicago/Turabian StylePirzado, Shoaib Ahmed, Guohua Liu, Muhammad Adanan Purba, and Huiyi Cai. 2024. "Enhancing the Production Performance and Nutrient Utilization of Laying Hens by Augmenting Energy, Phosphorous and Calcium Deficient Diets with Fungal Phytase (Trichoderma reesei) Supplementation" Animals 14, no. 3: 376. https://doi.org/10.3390/ani14030376
APA StylePirzado, S. A., Liu, G., Purba, M. A., & Cai, H. (2024). Enhancing the Production Performance and Nutrient Utilization of Laying Hens by Augmenting Energy, Phosphorous and Calcium Deficient Diets with Fungal Phytase (Trichoderma reesei) Supplementation. Animals, 14(3), 376. https://doi.org/10.3390/ani14030376