Agreement between Clinical Assessment and Laboratory Diagnosis of Ringworm in Calves at Auction Markets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sampling Procedures
2.2. Microscopic Examination and Cultivation
2.3. DNA Extraction from Samples and Nested PCR
2.4. Phylogenetic Analysis of Dermatophyte Isolates
2.5. Statistical Analysis
3. Results
3.1. Clinical Assessment
3.2. Laboratory Diagnostic Results and Concordance between Laboratory Methods
3.3. Agreement between Laboratory Results and Clinical Assessment
3.4. Phylogenetic Relatedness among Dermatophyte Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weitzman, I.; Summerbell, R.C. The dermatophytes. Clin. Microbiol. Rev. 1995, 8, 240–259. [Google Scholar] [CrossRef] [PubMed]
- Chermette, R.; Ferreiro, L.; Guillot, J. Dermatophytoses in animals. Mycopathologia 2008, 166, 385–405. [Google Scholar] [CrossRef] [PubMed]
- Seyedmousavi, S.; Guillot, J.; Tolooe, A.; Verweij, P.E.; de Hoog, G.S. Neglected fungal zoonoses: Hidden threats to man and animals. Clin. Microbiol. Infect. 2015, 21, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Trościańczyk, A.; Zięba, P. Infection of Trichophyton verrucosum in cattle breeders, Poland: A 40-Year retrospective study on the genomic variability of strains. Mycoses 2018, 61, 681–690. [Google Scholar] [CrossRef]
- Havlickova, B.; Czaika, V.A.; Friedrich, M. Epidemiological trends in skin mycoses worldwide. Mycoses 2008, 51 (Suppl. 4), 2–15. [Google Scholar] [CrossRef]
- Aghamirian, M.R.; Ghiasian, S.A. Dermatophytes as a cause of epizoonoses in dairy cattle and humans in Iran: Epidemiological and clinical aspects. Mycoses 2001, 54, 52–56. [Google Scholar] [CrossRef]
- Cabañes, F.J.; Abarca, M.L.; Bragulat, M.R. Dermatophytes isolated from domestic animals in Barcelona, Spain. Mycopathologia 1997, 137, 107–113. [Google Scholar] [CrossRef]
- Arabatzis, M.; Bruijnesteijn van Coppenraet, L.E.; Kuijper, E.J.; de Hoog, G.S.; Lavrijsen, A.P.; Templeton, K.; van der Raaij-Helmer, E.M.; Velegraki, A.; Gräser, Y.; Summerbell, R.C. Diagnosis of common dermatophyte infections by a novel multiplex real-time polymerase chain reaction detection/identification scheme. Br. J. Dermatol. 2007, 157, 681–689. [Google Scholar] [CrossRef]
- Papini, R.; Nardoni, S.; Fanelli, A.; Mancianti, F. High infection rate of Trichophyton verrucosum in calves from Central Italy. Zoonoses Public Health 2009, 56, 59–64. [Google Scholar] [CrossRef]
- Agnetti, F.; Righi, C.; Scoccia, E.; Felici, A.; Crotti, S.; Moretta, I.; Moretti, A.; Maresca, C.; Troiani, L.; Papini, M. Trichophyton verrucosum infection in cattle farms of Umbria (Central Italy) and transmission to humans. Mycoses 2014, 57, 400–405. [Google Scholar] [CrossRef]
- Tartor, Y.H.; El-Neshwy, W.M.; Merwad, A.M.A.; Abo El-Maati, M.F.; Mohamed, R.E.; Dahshan, H.M.; Mahmoud, H.I. Ringworm in calves: Risk factors, improved molecular diagnosis, and therapeutic efficacy of an Aloe vera gel extract. BMC Vet. Res. 2020, 16, 421. [Google Scholar] [CrossRef]
- Lund, A.; Bratberg, A.M.; Næss, B.; Gudding, R. Control of bovine ringworm by vaccination in Norway. Vet. Immunol. Immunopathol. 2014, 158, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Łagowski, D.; Gnat, S.; Nowakiewicz, A.; Trościańczyk, A. Real-time PCR as an alternative technique for detection of dermatophytes in cattle herds. Animals 2021, 11, 1662. [Google Scholar] [CrossRef] [PubMed]
- Wawrzkiewicz, K.; Wawrzkiewicz, J. An inactivated vaccine against ringworm. Comp. Immunol. Microbiol. Infect. Dis. 1992, 15, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Dyląg, M.; Osińska, M.; Sawicki, M. Detection and identification of dermatophytes based on currently available methods—A comparative study. J. Appl. Microbiol. 2021, 130, 278–291. [Google Scholar] [CrossRef]
- Piri, F.; Mahmoudabadi, A.Z.; Ronagh, A.; Ahmadi, B.; Makimura, K.; Rezaei-Matehkolaei, A. Assessment of a pan-dermatophyte nested-PCR compared with conventional methods for direct detection and identification of dermatophytosis agents in animals. Mycoses 2018, 61, 837–844. [Google Scholar] [CrossRef]
- Spanamberg, A.; Ravazzolo, A.P.; Araujo, R.; Franceschi, N.; Ferreiro, L. Bovine ringworm—Detection of Trichophyton verrucosum by SYBR-Green real-time PCR. Med. Mycol. Case Rep. 2023, 39, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.K.; Johnson, E.M.; Philpot, C.M.; Warnock, D.W. The dermatophytes. In Identification of Pathogenic Fungi; PHLS: London, UK, 1996; pp. 26–68. [Google Scholar]
- Cafarchia, C.; Gasser, R.B.; Figueredo, L.A.; Weigl, S.; Danesi, P.; Capelli, G.; Otranto, D. An improved molecular diagnostic assay for canine and feline dermatophytosis. Med. Mycol. 2013, 51, 136–143. [Google Scholar] [CrossRef]
- Hubka, V.; Barrs, V.; Dudová, Z.; Sklenář, F.; Kubátová, A.; Matsuzawa, T.; Yaguchi, T.; Horie, Y.; Nováková, A.; Frisvad, J.C.; et al. Unravelling species boundaries in the Aspergillus viridinutans complex (section Fumigati): Opportunistic human and animal pathogens capable of interspecific hybridization. Persoonia 2018, 41, 142–174. [Google Scholar] [CrossRef]
- Čmoková, A.; Kolařík, M.; Dobiáš, R.; Hoyer, L.L.; Janouškovcová, H.; Kano, R.; Kuklová, I.; Lysková, P.; Machová, L.; Maier, T.; et al. Resolving the taxonomy of emerging zoonotic pathogens in the Trichophyton benhamiae complex. Fungal Divers. 2020, 104, 333–387. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistics. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Łagowski, D.; Gnat, S.; Nowakiewicz, A.; Osińska, M.; Zięba, P. Application of genotyping methods in the investigation of sources of dermatophytosis associated with vaccination in cattle. Ann. Appl. Biol. 2020, 177, 325–332. [Google Scholar] [CrossRef]
- Hameed, K.; Ch, F.R.; Nawaz, M.A.; Naqvi, S.M.S.; Gräser, Y.; Kupsch, C.; Pasquetti, M.; Rossi, L.; Molinar Min, A.R.; Tizzani, P.; et al. Trichophyton verrucosum infection in livestock in the Chitral district of Pakistan. J. Infect. Dev. Ctries. 2017, 11, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Spiliopoulou, A.; Bartzavali, C.; Jelastopulu, E.; Anastassiou, E.D.; Christofidou, M. Evaluation of a commercial PCR test for the diagnosis of dermatophyte nail infections. J. Med. Microbiol. 2015, 64, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Łagowski, D.; Gnat, S.; Nowakiewicz, A.; Osińska, M.; Trościańczyk, A.; Zięba, P. In search of the source of dermatophytosis: Epidemiological analysis of Trichophyton verrucosum infection in llamas and the breeder (case report). Zoonoses Public Health 2019, 66, 982–989. [Google Scholar] [CrossRef]
- Gnat, S.; Nowakiewicz, A.; Lagowski, D.; Czyk, A.T.; Zięba, P. Multiple-strain Trichophyton mentagrophytes infection in a silver fox (Vulpes vulpes) from a breeding farm. Med. Mycol. 2019, 57, 171–180. [Google Scholar] [CrossRef]
Samples | Microscopy | Culture | Nested PCR | Frequency n [%] (Diagnostic Profile) |
---|---|---|---|---|
all categories (n = 166) | - | - | - | 76 [45.8%] |
+ | - | - | 10 [6.0%] | |
+ | - | +(Tv/Tm) | 44 (32/12) [26.5 (19.3/7.2)%] | |
+ | +(Tv/Tm/Mc) | +(Tv/Tm/Mc) | 36 (27/8/1) [21.7 (16.3/4.8/0.6)%] | |
Frequency n [%] (diagnostic method) | 90 [54.2%] | 36 (27/8/1) [21.7 (16.3/4.8/0.6)%] | 80 (59/20/1) [48.2 (35.5/12.1/0.6)%] |
Clinical Category | Microscopy | Culture | Nested PCR | Frequency n [%] (Diagnostic Profile) |
---|---|---|---|---|
v (n = 47) | - | - | - | 2 [4.3%] |
+ | - | +(Tv/Tm) | 12 (11/1) [25.5 (23.4/2.1)%] | |
+ | +(Tv/Tm) | +(Tv/Tm) | 33 (25/8) [70.2 (53.2/17.0)%] | |
Frequency n [%] (diagnostic method) | 45 [95.7%] | 33 (25/8) [70.2 (53.2/17.0)%] | 45 (36/9) [95.7 (76.6/19.1)%] | |
l (n = 55) | - | - | - | 15 [27.3%] |
+ | - | - | 7 [12.7%] | |
+ | - | +(Tv/Tm) | 30 (19/11) [54.6 (34.6/20.0)%] | |
+ | +(Tv/Mc) | +(Tv/Mc) | 3 (2/1) [5.4 (3.6/1.8)%] | |
Frequency n [%] (diagnostic method) | 40 [72.7%] | 3 (2/1) [5.4 (3.6/1.8)%] | 33 (21/11/1) [60.0 (38.2/20.0/1.8)%] | |
u (n = 64) | - | - | - | 59 [92.2%] |
+ | - | - | 3 [4.7%] | |
+ | - | + (Tv) | 2 [3.1%] | |
Frequency n [%] (diagnostic method) | 5 [7.8%] | 0 | 2 [3.1%] |
Category | Clinical Assessment (n) | Positive Microscopy (n) | Positive Culture (n) | Positive Nested PCR (n) |
---|---|---|---|---|
v | 47 | 45 κ: 0.96, 0.90–1.00 | 33 κ: 0.70, 0.56–0.84 | 45 κ: 0.96, 0.90–1.00 |
l | 55 | 40 κ: 0.73, 0.60–0.85 | 3 κ: 0.06, 0,00–0.12 | 33 κ: 0.67, 0.61–0.74 |
u | 64 | 5 κ: 0.92, 0.86–0.99 | 0 κ: 1.00 | 2 κ: 0.97, 0.92–1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spergser, J.; Neuhuber, T.; Haupt, H.; Kaltenegger, G.; Wittek, T. Agreement between Clinical Assessment and Laboratory Diagnosis of Ringworm in Calves at Auction Markets. Animals 2024, 14, 390. https://doi.org/10.3390/ani14030390
Spergser J, Neuhuber T, Haupt H, Kaltenegger G, Wittek T. Agreement between Clinical Assessment and Laboratory Diagnosis of Ringworm in Calves at Auction Markets. Animals. 2024; 14(3):390. https://doi.org/10.3390/ani14030390
Chicago/Turabian StyleSpergser, Joachim, Thiemo Neuhuber, Herfried Haupt, Gerd Kaltenegger, and Thomas Wittek. 2024. "Agreement between Clinical Assessment and Laboratory Diagnosis of Ringworm in Calves at Auction Markets" Animals 14, no. 3: 390. https://doi.org/10.3390/ani14030390
APA StyleSpergser, J., Neuhuber, T., Haupt, H., Kaltenegger, G., & Wittek, T. (2024). Agreement between Clinical Assessment and Laboratory Diagnosis of Ringworm in Calves at Auction Markets. Animals, 14(3), 390. https://doi.org/10.3390/ani14030390