Importance of Selected Nutrients and Additives in the Feed of Pregnant Sows for the Survival of Newborn Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Exclusion Criteria
Information Sources, Search, and Selection
3. Results and Discussion
3.1. Effect of Feeding throughout Gestational Periods on Offspring
3.2. Diets Focused on Fatty Acid Supplementation
3.3. Diets Focused on Protein Supplementation
3.4. Diets Focused on Amino Acid Supplementation
3.5. Diets Focused on Dietary Fiber Supplementation
3.6. Nutritional Strategies for Primiparous and Multiparous Sows
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Research Council (NRC). Nutrient Requirements of Swine, 11th ed.; The National Academies Press: Washington, DC, USA, 2012; 400p, Available online: https://nap.nationalacademies.org/catalog/13298/nutrient-requirements-of-swine-eleventh-revised-edition (accessed on 4 January 2024).
- Kim, S.W.; Wu, G.; Baker, D.H. Amino acid nutrition of breeding sows during gestation and lactation. Pig News Inf. 2005, 26, 89N–99N. Available online: https://pubmed.ncbi.nlm.nih.gov/19098235/ (accessed on 20 November 2023).
- Campos, P.; Silva, B.; Donzele, J.; Oliveira, R.; Knol, E. Effects of sow nutrition during gestation on within-litter birthweight variation: A review. Animal 2012, 6, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Weaver, A.C.; Shen, Y.B.; Zhao, Y. Improving efficiency of sow productivity: Nutrition and health. J. Anim. Sci. Biotechno. 2013, 4, 26. Available online: http://www.jasbsci.com/content/4/1/26 (accessed on 20 November 2023). [CrossRef]
- McPherson, R.L.; Ji, F.; Wu, G.; Blanton, J.R.; Kim, S.W. Growth and compositional changes of fetal tissues in pigs. J. Anim. Sci. 2004, 82, 2534–2540. [Google Scholar] [CrossRef]
- Kim, S.W.; Hurley, W.L.; Wu, G.; Ji, F. Ideal amino acid balance for sows during gestation and lactation. J. Anim. Sci. 2009, 87, E123–E132. [Google Scholar] [CrossRef]
- De Vos, M.; Che, L.; Huygelen, V.; Willemen, S.; Michiels, J.; Van Cruchten, S.; Van Ginneken, C. Nutritional interventions to prevent and rear low-birthweight piglets. J. Anim. Physiol. Anim. Nutr. 2014, 98, 609–619. [Google Scholar] [CrossRef]
- Ferguson, E.M.; Slevin, J.; Edwards, S.A.; Hunter, M.G.; Ashworth, C.J. Effect of alterations in the quantity and composition of the pre-mating diet on embryo survival and foetal growth in the pig. Anim. Reprod. Sci. 2006, 96, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; McKenzie, J.E. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L. Precision Feeding Gestating Sows: Effects on Offspring Growth, Immune System Robustness, and Carcass and Meat Quality. Ph.D. Dissertation, University of Guelph, Guelph, ON, Canada, January 2021. Available online: https://atrium.lib.uoguelph.ca/server/api/core/bitstreams/94051345-0e96-4d0599ccc16b69c7b9a8/content (accessed on 20 November 2023).
- Hoving, L.L.; Soede, N.M.; Graat, E.A.; Feitsma, H.; Kemp, B. Reproductive performance of second parity sows: Relations with subsequent reproduction. Liv. Sci. 2011, 140, 124–130. [Google Scholar] [CrossRef]
- Blavi, L.; Solà-Oriol, D.; Llonch, P.; López-Vergé, S.; Martín-Orúe, S.M.; Pérez, J.F. Management and feeding strategies in early life to increase piglet performance and welfare around weaning: A review. Animals 2021, 11, 302. [Google Scholar] [CrossRef]
- Ampaire, A. Effects of Phase Feeding during Gestation on Gilt Performance, Offspring Quality and Robustness. Ph.D. Dissertation, South Dakota State University, Brookings, SD, USA, 2017. Available online: https://openprairie.sdstate.edu/cgi/viewcontent.cgi?article=2143&context=etd (accessed on 20 November 2023).
- Beaulieu, A.D.; Aalhus, J.L.; Williams, N.H.; Patience, J.F. Impact of piglet birth weight, birth order, and litter size on subsequent growth performance, carcass quality, muscle composition, and eating quality of pork. J. Anim. Sci. 2010, 88, 2767–2778. [Google Scholar] [CrossRef]
- Feyera, T.; Theil, P.K. Energy and lysine requirements and balances of sows during transition and lactation: A factorial approach. Livest. Sci. 2017, 201, 50–57. [Google Scholar] [CrossRef]
- Theil, P.K.; Jørgensen, H.; Jakobsen, K. Energy and protein metabolism in pregnant sows fed two levels of dietary protein. J. Anim. Physiol. Anim. Nutr. 2002, 86, 399–413. [Google Scholar] [CrossRef]
- Theil, P.K.; Krogh, U.; Bruun, T.S.; Feyera, T. Feeding the modern sow to sustain high productivity. Mol. Reprod. Dev. 2023, 90, 517–532. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Mou, D.; Hu, L.; Zhen, J.; Che, L.; Fang, Z.; Wu, D. Effects of maternal low-energy diet during gestation on intestinal morphology, disaccharidase activity, and immune response to lipopolysaccharide challenge in pig offspring. Nutrients 2017, 9, 1115. [Google Scholar] [CrossRef]
- Ji, F.; Hurley, W.L.; Kim, S.W. Characterization of mammary gland development in pregnant gilts. J. Anim. Sci. 2006, 84, 579–587. [Google Scholar] [CrossRef]
- Gonçalves, M.; Gourley, K.; Dritz, S.; Tokach, M.; Bello, N.; DeRouchey, J.; Goodband, R. Effects of amino acids and energy intake during late gestation of high-performing gilts and sows on litter and reproductive performance under commercial conditions. J. Anim. Sci. 2016, 94, 1993–2003. [Google Scholar] [CrossRef]
- Herpin, P.; Damon, M.; Le Dividich, J. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 2002, 78, 25–45. [Google Scholar] [CrossRef]
- Mallmann, A.L.; Oliveira, G.S.; Ulguim, R.R.; Mellagi, A.P.G.; Bernardi, M.L.; Orlando, U.A.; Bortolozzo, F.P. Impact of feed intake in early gestation on maternal growth and litter size according to body reserves at weaning of young parity sows. J. Anim. Sci. 2020, 98, skaa075. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.X.; Heo, S.; Jin, Z.; Yun, J.H.; Choi, J.Y.; Yoon, S.Y.; Chae, B. Effects of lysine intake during late gestation and lactation on blood metabolites, hormones, milk composition and reproductive performance in primiparous and multiparous sows. Anim. Reprod. Sci. 2009, 112, 199–214. [Google Scholar] [CrossRef]
- Amdi, C.; Giblin, L.; Ryan, T.; Stickland, N.C.; Lawlor, P.G. Maternal backfat depth in gestating sows has a greater influence on offspring growth and carcass lean yield than maternal feed allocation during gestation. Animal 2014, 8, 236–244. [Google Scholar] [CrossRef]
- Decaluwé, R.; Maes, D.; Declerck, I.; Cools, A.; Wuyts, B.; De Smet, S.; Janssens, G. Changes in back fat thickness during late gestation predict colostrum yield in sows. Animal 2013, 7, 1999–2007. [Google Scholar] [CrossRef] [PubMed]
- Molina-Montes, M.E.; Martín-Islán, Á.P. Ácidos grasos esenciales. Omega-3 y Omega-6. Offarm 2010, 29, 66–72. Available online: https://www.elsevier.es/es-revista-offarm-4-pdf-X0212047X10475135 (accessed on 20 November 2023).
- Vodolazska, D.; Lauridsen, C. Effects of dietary hemp seed oil to sows on fatty acid profiles, nutritional and immune status of piglets. J. Anim. Sci. Biotechnol. 2020, 11, 28. [Google Scholar] [CrossRef]
- Luo, W.; Xu, X.; Luo, Z.; Yao, J.; Zhang, J.; Xu, W.; Xu, J. Effect of fish oil supplementation in sow diet during late gestation and lactation period on litter characteristics, milk composition and fatty acid profile of sows and their offspring. Ital. J. Anim. Sci. 2020, 19, 8–17. [Google Scholar] [CrossRef]
- Catalan, J.; Moriguchi, T.; Slotnick, B.; Murthy, M.; Greiner, R.S.; Salem, N. Cognitive deficits in docosahexaenoic acid-deficient rats. Behav. Neurosci. 2002, 116, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Yaktine, A.L.; Nesheim, M.C. (Eds.) Seafood Choices: Balancing Benefits and Risks; National Academies Press: Washington, DC, USA, 2007; Available online: https://nap.nationalacademies.org/catalog/11762/seafood-choices-balancing-benefits-and-risks (accessed on 20 November 2023).
- Sampels, S.; Pickova, J.; Högberg, A.; Neil, M. Fatty acid transfer from sow to piglet differs for different polyunsaturated fatty acids (PUFA). Physiol. Res. 2011, 60, 113. [Google Scholar] [CrossRef] [PubMed]
- Quesnel, H.; Farmer, C. Nutritional and endocrine control of colostrogenesis in swine. Animal 2019, 13, s26–s34. [Google Scholar] [CrossRef]
- Smit, M.N.; Spencer, J.D.; Almeida, F.; Patterson, J.L.; Chiarini-Garcia, H.; Dyck, M.K.; Foxcroft, G.R. Consequences of a low litter birthweight phenotype for postnatal lean growth performance and neonatal testicular morphology in the pig. Animal 2013, 7, 1681. [Google Scholar] [CrossRef]
- Liu, H.; Wu, F.; Bai, L.L.; Chen, Y.F.; Lai, C.H.; Ren, L.Q.; Wang, F.L. Effect of dietary conjugated linoleic acid supplementation during late gestation on colostrum yield, fatty acid composition, and IgG concentrations in primiparous sows. Can. J. Anim. Sci. 2018, 98, 732–740. [Google Scholar] [CrossRef]
- Lavery, A.; Lawlor, P.G.; Miller, H.M.; Magowan, E. The effect of dietary oil type and energy intake in lactating sows on the fatty acid profile of colostrum and milk, and piglet growth to weaning. Animals 2019, 9, 1092. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cruz, M.R.; Tovar, A.R.; del Prado, M.; Torres, N. Molecular mechanisms of action and health benefits of polyunsaturated fatty acids. Rev. Investig. Clin. 2005, 57, 457–472. Available online: https://pubmed.ncbi.nlm.nih.gov/16187707/ (accessed on 20 November 2023).
- Rooke, J.A.; Sinclair, A.G.; Edwards, S.A.; Cordoba, R.; Pkiyach, S.; Penny, P.C.; Horgan, G.W. The effect of feeding salmon oil to sows throughout pregnancy on pre-weaning mortality of piglets. Anim. Sci. 2001, 73, 489–500. [Google Scholar] [CrossRef]
- Rooke, J.A.; Sinclair, A.G.; Edwards, S.A. Feeding tuna oil to the sow at different times during pregnancy has different effects on piglet long-chain polyunsaturated fatty acid composition at birth and subsequent growth. Brit. J. Nutr. 2001, 86, 21–30. [Google Scholar] [CrossRef]
- Laws, J.; Litten, J.C.; Laws, A.; Lean, I.J.; Dodds, P.F.; Clarke, L. Effect of type and timing of oil supplements to sows during pregnancy on the growth performance and endocrine profile of low and normal birthweight offspring. Brit. J. Nutr. 2009, 101, 240–249. [Google Scholar] [CrossRef]
- Laws, J.; Amusquivar, E.; Laws, A.; Herrera, E.; Lean, I.J.; Dodds, P.F.; Clarke, L. Supplementation of sow diets with oil during gestation: Sow body condition, milk yield and milk composition. Livest. Sci. 2009, 123, 88–96. [Google Scholar] [CrossRef]
- Metges, C.C.; Lang, I.S.; Hennig, U.; Brüssow, K.P.; Kanitz, E.; Tuchscherer, M.; Otten, W. Intrauterine growth retarded progeny of pregnant sows fed high protein: Low carbohydrate diet is related to metabolic energy deficit. PLoS ONE 2012, 7, e31390. [Google Scholar] [CrossRef]
- Mickiewicz, M.; Zabielski, R.; Grenier, B.; Le Normand, L.; Savary, G.; Holst, J.J.; Guilloteau, P. Structural and functional development of small intestine in intrauterine growth retarded porcine offspring born to gilts fed diets with differing protein ratios throughout pregnancy. J. Physiol. Pharmacol. 2012, 63, 225–239. Available online: https://www.jpp.krakow.pl/journal/archive/06_12/pdf/225_06_12_article.pdf (accessed on 20 November 2023). [PubMed]
- Rehfeldt, C.; Lefaucheur, L.; Block, J.; Stabenow, B.; Pfuhl, R.; Otten, W.; Kalbe, C. Limited and excess protein intake of pregnant gilts differently affects body composition and cellularity of skeletal muscle and subcutaneous adipose tissue of newborn and weanling piglets. Eur. J. Nutr. 2012, 51, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Bee, G. Gestational strategies affecting sow reproduction and piglet birth weight. In Proceedings of the 11th International Symposium Modern Trends in Livestock Production, Belgrade, Serbia, 11–13 October 2017; pp. 121–145. Available online: https://scholar.google.com.mx/citations?view_op=view_citation&hl=es&user=aoSSgDQAAAAJ&citation_for_view=aoSSgDQAAAAJ:u-x6o8ySG0sC (accessed on 20 November 2023).
- Kucia, M.; Langhammer, M.; Görs, S.; Albrecht, E.; Hammon, H.M.; Nürnberg, G.; Metges, C.C. High-protein diet during gestation and lactation affects mammary gland mRNA abundance, milk composition and pre-weaning litter growth in mice. Animal 2011, 5, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Rehfeldt, C.; Lang, I.S.; Görs, S.; Hennig, U.; Kalbe, C.; Stabenow, B.; Otten, W. Limited and excess dietary protein during gestation affects growth and compositional traits in gilts and impairs offspring fetal growth. J. Anim. Sci. 2011, 89, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Gao, G.; Song, H.; Cai, D.; Yang, X.; Zhao, R. Low-protein diet fed to crossbred sows during pregnancy and lactation enhances myostatin gene expression through epigenetic regulation in skeletal muscle of weaning piglets. Eur. J. Nutr. 2015, 55, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.H.; Jin, Y.H.; Jeong, J.H.; Hong, J.S.; Chung, W.L.; Kim, Y.Y. Effects of dietary energy and protein levels on reproductive performance in gestating sows and growth of their progeny. JAST 2019, 61, 154. [Google Scholar] [CrossRef]
- Eskildsen, M.; Krogh, U.; Sørensen, M.T.; Kongsted, A.G.; Theil, P.K. Effect of reduced dietary protein level on energy metabolism, sow body composition and metabolites in plasma, milk and urine from gestating and lactating organic sows during temperate winter conditions. Livest. Sci. 2020, 240, 104088. [Google Scholar] [CrossRef]
- Yang, M.; Hua, L.; Mao, Z.; Lin, Y.; Xu, S.; Li, J.; Huang, J. Effects of dietary fiber, crude protein level, and gestation stage on the nitrogen utilization of multiparous gestating sows. Animals 2022, 12, 1543. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jin, X.; Kim, C.; Pan, N.; Kim, Y.Y. Effects of different levels of dietary crude protein on the physiological response, reproductive performance, blood profiles, milk composition and odor emission in gestating sows. Anim. Biosci. 2023, 36, 1263–1273. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Cong, R.; Li, R.; Yang, X.; Sun, Q.; Parvizi, N.; Zhao, R. Maternal low-protein diet induces gender-dependent changes in epigenetic regulation of the glucose-6-phosphatase gene in newborn piglet liver. J. Nutr. 2012, 142, 1659–1665. [Google Scholar] [CrossRef] [PubMed]
- Pond, W.G.; Maurer, R.R.; Klindt, J. Fetal organ response to maternal protein deprivation during pregnancy in swine. J. Nutr. 1991, 121, 504–509. [Google Scholar] [CrossRef]
- Wu, G.; Ott, T.; Bazer, F.W. Maternal dietary protein deficiency decreases amino acid concentrations in fetal plasma and allantoic fluid of pigs. J. Nutr. 1998, 128, 894–902. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Satterfield, M.C.; Li, X.; Wang, X.; Johnson, G.A.; Wu, Z. Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino. Acids. 2013, 45, 241–256. [Google Scholar] [CrossRef]
- Herring, C.M.; Bazer, F.W.; Johnson, G.A.; Wu, G. Impacts of maternal dietary protein intake on fetal survival, growth, and development. Exp. Biol. Med. 2018, 243, 525–533. [Google Scholar] [CrossRef]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids. 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Elango, R.; Ball, R.O. Protein and amino acid requirements during pregnancy. Adv. Nutr. 2016, 7, 839S–844S. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Functional amino acids in growth, reproduction, and health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Azad, M.B.; Gibson, S.B. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Diff. 2009, 16, 1040–1052. [Google Scholar] [CrossRef]
- Xu, K.; Liu, H.; Bai, M.; Gao, J.; Wu, X.; Yin, Y. Redox properties of tryptophan metabolism and the concept of tryptophan use in pregnancy. Int. J. Mol. Sci. 2017, 18, 1595. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Murtaza, G.; Metwally, E.; Yang, H.; Kalhoro, M.S.; Yin, Y. Role of dietary amino acids and nutrient sensing system in pregnancy associated disorders. Front. Pharmacol. 2020, 11, 586979. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Chen, S.; Zhong, J.; Teng, K.; Yin, Y. Crosstalk between tryptophan metabolism and cardiovascular disease, mechanisms, and therapeutic implications. Oxid. Med. Cell Longev. 2017, e2017, 1602074. [Google Scholar] [CrossRef]
- Rogero, M.M.; Borelli, P.; Fock, R.A.; Borges, M.C.; Vinolo, M.A.R.; Curi, R.; Tirapegui, J. Effects of glutamine on the nuclear factor-kappaB signaling pathway of murine peritoneal macrophages. Amino Acids. 2010, 39, 435–441. [Google Scholar] [CrossRef]
- Teodoro, G.F.R.; Vianna, D.; Torres-Leal, F.L.; Pantaleao, L.C.; Matos-Neto, E.M.; Donato, J., Jr.; Tirapegui, J. Leucine is essential for attenuating fetal growth restriction caused by a protein-restricted diet in rats. J. Nutr. 2012, 142, 924–930. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, X.; Ren, M.; Mao, X.; Qiao, S. Novel metabolic and physiological functions of branched chain amino acids: A review. J. Anim. Sci. Biotechnol. 2017, 8, 10. [Google Scholar] [CrossRef]
- Che, L.; Yang, P.; Fang, Z.; Lin, Y.; Wu, D. Effects of dietary arginine supplementation on reproductive performance and immunity of sows. Czech J. Anim. Sci. 2013, 58, 167–175. [Google Scholar] [CrossRef]
- Vallet, J.L.; Miles, J.R.; Freking, B.A. Development of the pig placenta. Soc. Reprod. Fertil. Suppl. 2009, 66, 265–279. Available online: https://pubmed.ncbi.nlm.nih.gov/19848293/ (accessed on 21 November 2023). [CrossRef] [PubMed]
- Nuntapaitoon, M.; Muns, R.; Theil, P.K.; Tummaruk, P. L-arginine supplementation in sow diet during late gestation decrease stillborn piglet, increase piglet birthweight and increase immunoglobulin G concentration in colostrum. Theriogenology 2018, 121, 27–34. [Google Scholar] [CrossRef]
- Mateo, R.D.; Wu, G.; Moon, H.K.; Carroll, J.A.; Kim, S.W. Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J. Anim. Sci. 2008, 86, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Aymerich, P.; Soldevila, C.; Bonet, J.; Gasa, J.; Coma, J.; Solà-Oriol, D. Increasing dietary lysine impacts differently growth performance of growing pigs sorted by body weight. Animals 2020, 10, 1032. [Google Scholar] [CrossRef] [PubMed]
- Hojgaard, C.K.; Bruun, T.S.; Theil, P.K. Optimal lysine in diets for high-yielding lactating sows. J. Anim. Sci. 2019, 97, 4268–4281. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, Y.; Xia, X.; Wang, C.; Wei, H.; Peng, J. Effects of dietary lysine levels on production performance and milk composition of high-producing sows during lactation. Animals 2020, 10, 1947. [Google Scholar] [CrossRef]
- Hong, J.; Fang, L.H.; Kim, Y.Y. Effects of dietary energy and lysine levels on physiological responses, reproductive performance, blood profiles, and milk composition in primiparous sows. JAST 2020, 62, 334. [Google Scholar] [CrossRef]
- Farmer, C.; Gillies, C.; Johannsen, J.C.; Hovey, R.C.; Huber, L.A. Dietary supplementation with lysine (protein) in late pregnancy does not enhance mammary development in multiparous sows. J. Anim. Sci. 2023, 101, skad385. [Google Scholar] [CrossRef]
- Jo, H.; Kim, B.G. Standardized ileal digestible lysine requirement of pregnant sows under commercial conditions. Anim. Biosci. 2023, 36, 1880–1888. [Google Scholar] [CrossRef]
- Stewart, V.; Buis, R.Q.; Christensen, B.; Hansen, L.L.; de Lange, C.F.; Mandell, I.B.; Huber, L.A. The effects of precisely meeting estimated daily energy and lysine requirements for gestating sows over three consecutive pregnancies on sow reproductive and lactation performance. Transl. Anim. Sci. 2021, 5, txab226. [Google Scholar] [CrossRef]
- Thomas, L.L.; Herd, L.K.; Goodband, R.D.; Tokach, M.D.; Woodworth, J.C.; DeRouchey, J.M.; Jones, D.B. Effects of increasing standardized ileal digestible lysine during gestation on reproductive performance of gilts and sows. Animal 2021, 15, 100221. [Google Scholar] [CrossRef]
- Jarrett, S.; Ashworth, C.J. The role of dietary fibre in pig production, with a particular emphasis on reproduction. J. Anim. Sci. Biotechnol. 2018, 9, 59. [Google Scholar] [CrossRef]
- Owusu-Asiedu, A.; Patience, J.; Laarveld, B.; Van Kessel, A.; Simmins, P.; Zijlstra, R. Effects of guar gum and cellulose on digesta passage rate, ileal microbial populations, energy and protein digestibility, and performance of grower pigs. J. Anim. Sci. 2006, 84, 843–852. [Google Scholar] [CrossRef]
- Lindberg, J.E. Fiber effects in nutrition and gut health in pigs. J. Anim. Sci. Biotechnol. 2014, 5, 15. [Google Scholar] [CrossRef]
- Bindelle, J.; Leterme, P.; Buldgen, A. Nutritional and environmental consequences of dietary fibre in pig nutrition: A review. Biotechnol. Agron. Soc. Environ. 2008, 12, 69–80. Available online: https://popups.uliege.be/17804507/index.php?id=17245&file=1&pid=2179 (accessed on 21 November 2023).
- Shang, Q.; Liu, H.; Liu, S.; He, T.; Piao, X. Effects of dietary fiber sources during late gestation and lactation on sow performance, milk quality, and intestinal health in piglets. J. Anim. Sci. 2019, 97, 4922–4933. [Google Scholar] [CrossRef] [PubMed]
- Feyera, T.; Højgaard, C.K.; Vinther, J.; Bruun, T.S.; Theil, P.K. Dietary supplement rich in fiber fed to late gestating sows during transition reduces rate of stillborn piglets. J. Anim. Sci. 2017, 95, 5430–5438. [Google Scholar] [CrossRef] [PubMed]
- Serena, A.; Jørgensen, H.; Bach Knudsen, K.E. Absorption of carbohydrate-derived nutrients in sows as influenced by types and contents of dietary fiber. J. Anim. Sci. 2009, 87, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Theil, P.K.; Lauridsen, C.; Quesnel, H. Neonatal piglet survival: Impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal 2014, 8, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Feng, B.; Xuan, Y.; Che, L.; Fang, Z.; Lin, Y.; Wu, D. Inclusion of purified dietary fiber during gestation improved the reproductive performance of sows. J. Anim. Sci. Biotechnol. 2020, 11, 47. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Liu, H.; Yang, Y.; He, J.; Cao, M.; Wu, D. Effects of the ratio of insoluble fiber to soluble fiber in gestation diets on sow performance and offspring intestinal development. Animals 2019, 9, 422. [Google Scholar] [CrossRef]
- Tian, M.; Chen, J.; Liu, J.; Chen, F.; Guan, W.; Zhang, S. Dietary fiber and microbiota interaction regulates sow metabolism and reproductive performance. Anim. Nutr. 2020, 6, 397–403. [Google Scholar] [CrossRef]
- Loisel, F.; Farmer, C.; Ramaekers, P.; Quesnel, H. Effects of high fiber intake during late pregnancy on sow physiology, colostrum production, and piglet performance. J. Anim. Sci. 2013, 91, 5269–5279. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Xiong, X.; Yang, H.; Wang, M.; He, Y.; Liu, Y.; Yin, Y. Effect of dietary soy oil, glucose, and glutamine on growth performance, amino acid profile, blood profile, immunity, and antioxidant capacity in weaned piglets. Sci. China Life Sci. 2018, 61, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Fernández, L.; Langa, S.; Martín, V.; Maldonado, A.; Jiménez, E.; Martín, R.; Rodríguez, J.M. The human milk microbiota: Origin and potential roles in health and disease. Pharmacol. Res. 2013, 69, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.M. The origin of human milk bacteria: Is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv. Nutr. 2014, 5, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Avershina, E.; Angell, I.L.; Simpson, M.; Storrø, O.; Øien, T.; Johnsen, R.; Rudi, K. Low maternal microbiota sharing across gut, breast milk and vagina, as revealed by 16S rRNA gene and reduced metagenomic sequencing. Genes 2018, 9, 231. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Mi, J.; Lv, N.; Gao, J.; Cheng, J.; Wu, R.; Liao, X. Lactation stage-dependency of the sow milk microbiota. Front. Microbiol. 2018, 9, 945. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Tang, Y.; Huang, Y. Gut health: The results of microbial and mucosal immune interactions in pigs. Anim. Nutr. 2021, 7, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Song, R.; Zhou, J.; Jia, Y.; Lu, J. Fermented Bamboo Fiber Improves Productive Performance by Regulating Gut Microbiota and Inhibiting Chronic Inflammation of Sows and Piglets during Late Gestation and Lactation. Microbiol. Spectr. 2023, 11, e04084-22. [Google Scholar] [CrossRef]
- Leal, D.F.; Muro, B.B.; Nichi, M.; Almond, G.W.; Viana, C.H.; Vioti, G.; Garbossa, C.A. Effects of post-insemination energy content of feed on embryonic survival in pigs: A systematic review. Anim. Reprod. Sci. 2019, 205, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Athorn, R.Z.; Stott, P.; Bouwman, E.G.; Chen, T.Y.; Kennaway, D.J.; Langendijk, P. Effect of feeding level on luteal function and progesterone concentration in the vena cava during early pregnancy in gilts. Reprod. Fertil. Dev. 2013, 25, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Hoving, L.L.; Soede, N.M.; Graat, E.A.M.; Feitsma, H.; Kemp, B. Effect of live weight development and reproduction in first parity on reproductive performance of second parity sows. Anim. Reprod. Sci. 2010, 122, 82–89. [Google Scholar] [CrossRef]
- Mallmann, A.L.; Camilotti, E.; Fagundes, D.P.; Vier, C.E.; Mellagi, A.P.G.; Ulguim, R.R.; Bortolozzo, F.P. Impact of feed intake during late gestation on piglet birthweight and reproductive performance: A dose-response study performed in gilts. J. Anim. Sci. 2019, 97, 1262–1272. [Google Scholar] [CrossRef]
- Pedersen, T.F.; Van Vliet, S.; Bruun, T.S.; Theil, P.K. Feeding sows during the transition period—Is a gestation diet, a simple transition diet, or a lactation diet the best choice? Transl. Anim. Sci. 2020, 4, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Feyera, T.; Zhou, P.; Nuntapaitoon, M.; Sørensen, K.U.; Krogh, U.; Bruun, T.S.; Theil, P.K. Mammary metabolism and colostrogenesis in sows during late gestation and the colostral period. J. Anim. Sci. 2019, 97, 231–245. [Google Scholar] [CrossRef]
- Koketsu, Y.; Iida, R. Sow housing associated with reproductive performance in breeding herds. Mol. Reprod. Dev. 2017, 84, 979–986. [Google Scholar] [CrossRef]
- Gianluppi, R.D.F.; Lucca, M.S.; Mellagi, A.P.G.; Bernardi, M.L.; Orlando, U.A.D.; Ulguim, R.R.; Bortolozzo, F.P. Effects of different amounts and type of diet during weaning-to-estrus interval on reproductive performance of primiparous and multiparous sows. Animal 2020, 14, 1906–1915. [Google Scholar] [CrossRef]
- Gaillard, C.; Quiniou, N.; Gauthier, R.; Cloutier, L.; Dourmad, J.Y. Evaluation of a decision support system for precision feeding of gestating sows. J. Anim. Sci. 2020, 98, skaa255. [Google Scholar] [CrossRef]
- Gaillard, C.; Gauthier, R.; Cloutier, L.; Dourmad, J.Y. Exploration of individual variability to better predict the nutrient requirements of gestating sows. J. Anim. Sci. 2019, 97, 4934–4945. [Google Scholar] [CrossRef]
- Gaillard, C.; Durand, M.; Largouët, C.; Dourmad, J.Y.; Tallet, C. Effects of the environment and animal behavior on nutrient requirements for gestating sows: Future improvements in precision feeding. Anim. Feed Sci. Technol. 2021, 279, 115034. [Google Scholar] [CrossRef]
- Gaillard, C.; Dourmad, J.Y. Application of a precision feeding strategy for gestating sows. Anim. Feed Sci. Technol. 2022, 287, 115280. [Google Scholar] [CrossRef]
- Gauthier, R.; Largouët, C.; Rozé, L.; Dourmad, J.Y. Online forecasting of daily feed intake in lactating sows supported by offline time-series clustering, for precision livestock farming. Comput. Electron. Agric. 2021, 188, 106329. [Google Scholar] [CrossRef]
Animals | Experimental Design | Results | Conclusion | References |
---|---|---|---|---|
59 multiparous sows (Yorkshire × Landrace) with bodyweights (BW) around 241.67 ± 8.86 kg | (1) two levels of dietary metabolizable energy (ME) density were provided (13.40 or 13.82 MJ/kg); 2) three dietary protein levels were provided from day 35 of gestation (crude protein = CP: 10.5, 12, 13.5%). | Backfat thickness in lactating sows decreased and the % of CP increased (p = 0.03). CP level in the diet had a negative effect on colostrum quality: % casein: p = 0.03; % protein: p = 0.04; % lactose: p = 0.06; total solids: p = 0.03; lean solids: p = 0.03, all decreased. | Backfat thickness and colostrum quality decreased as the CP level in the diet increased (10.5–13.5%). A diet for gestating sows containing 13.82 MJ/kg ME and 10.5% CP may improve reproductive and litter performance, and colostrum quality. | [48] |
47 Landrace × Yorkshire gilts; 190 kg at insemination | Gilts were fed one of two iso-energetic compound feeds in which dietary protein differed by 12%. | Milk yield peaked at 12.9 kg/d around day 20. Sows fed the low protein compound feed had a lower milk yield from day 20 to day 40 than controls (8.0 vs. 10.3 kg/d; p < 0.05). | Sows on a low-protein diet had decreased milk production at the end of lactation, so it seems problematic to reduce the protein content of the lactation diet in winter, especially in gilts with limited gastric capacity. | [49] |
32 Landrace × Yorkshire sows at parity two, with a similar mean bodyweight of 164.2 kg | One diet had normal crude protein (CP = 13.3%), the other had a low CP of 10.1%. | Sows receiving low levels of CP had higher serum levels of Lys and Thr and lower levels of Try, Ile, and Val (p < 0.05), but no effect on the serum levels of other AAs were found (p > 0.05). | Maternal protein deposition was decreased by a low CP. | [50] |
72 F1 multiparous sows (Yorkshire × Landrace) with an average BW of 218.69 kg | Experimental diets with different CP levels, as follows: (i) CP11 containing 11% CP; (ii) CP12, 12% CP; (iii) CP13, 13% CP; (iv) CP14, 14% CP; (v) CP15, 15% CP; and (vi) CP16, 16% CP. | Increasing CP levels in the gestation diet caused a significant increase in creatinine at days 35 and 110 of gestation (linear, p = 0.01; linear, p = 0.01). | Reducing dietary CP levels from 16 to 11% in a gestation diet did not have detrimental effects on the sows’ body condition or piglet performance. | [51] |
Animals | Experimental Design | Results | Conclusion | References |
---|---|---|---|---|
48 gilts (Yorkshire × Landrace), with an initial bodyweight of 168.1 ± 9.71 kg at day 35 of gestation | The first factor was metabolizable energy levels in the diet (3.265 or 3.365 kcal of ME/kg); the second was dietary lysine levels: gestation—0.55, 0.65, 0.75, and 0.85%. (total methionine 0.23%; threonine, 0.48%; tryptophan, 0.13%); Lactation—0.70, 0.85, 1, 1.15% (total methionine 0.25%; threonine 0.62%; tryptophan 0.18%). | The sows fed 3.365 kcal of EM/kg showed a tendency to present greater weight gain (p = 0.07). Their piglets had a higher tendency to exhibit greater weight at day 21 of lactation (p = 0.08). Plasma urine nitrogen levels increased as the level of lysine in the diet was raised on day 110 of gestation (p = 0.03). | Supplementation with lysine at 0.75% during gestation, and at 1% for lactation, with 3.365 kcal of EM/kg in primiparous sows can improve their performance and the growth of their offspring. | [74] |
33 Yorkshire × Landrace multiparous sows (parities 2 and 3) | From day 90 to 110 of gestation, the sows were divided into 2 groups: control (n = 17) (2.6 kg/d that provided 14.8 g/d of SID Lys), and digestible ileal Lys (SID) at 40% (n = 16) (20.8 g/d of SID Lys, administered in soy flour). | The diets did not cause changes in the body fat or body weight of the sows in the late gestation period (p > 0.10), or changes in mammary tissue (p > 0.10). | Ingesting Lys above levels currently recommended by the NRC did not improve mammary development, so it is not necessary to use two phases to provide additional Lys protein to sows during this period. | [75] |
On day 42 of gestation, 200 multiparous sows (parity = 5.1 ± 2.0) were randomly allocated to five dietary treatment groups | Experimental diets: (1) SID Lys for the mid-gestation period (days 42 to 76-indispensable amino acids). (2) SID Lys for the late gestation period (days 77 to 103-indispensable amino acids. | Total liveborn piglets per litter increased lineally and quadratically (p < 0.001) as the level of SID Lys in the diet increased. | Supplementation with SID Lys at 11.1 and 16.1 g/d (1.36 and 1.79 g/Mcal of metabolizable energy; 0.4% and 0.58%) for the middle and final periods of gestation, can increase the number of liveborn piglets per litter. | [76] |
105 sows in their initial reproductive cycle (1.4 ± 0.5) were assigned randomly to either a precision program (PF; n = 50) or a control group (CON; n = 55) | The PF sows received two isocaloric diets (2518 kcal/kg NE; 0.80% and 0.20% standardized ileal digestible Lys [SID], respectively), while the CON sows received a diet with 0.56% SID Lys. | The sows that received the PF program had greater weight gain from day 38 to 72 (614 vs. 518 g/d; p < 0.05) and from day 73 to 108 (719 vs. 618 g/d; p = 0.063) of gestation, with greater gain in back thickness between days 63 and 110 (0.7 vs. −1.1 ± 1.6 mm; p < 0.05). | Using programs that include daily requirements of energy and Lys in sows during gestation helped reduce the use of feed during lactation without affecting their reproductive performance. | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islas-Fabila, P.; Roldán-Santiago, P.; de la Cruz-Cruz, L.A.; Limón-Morales, O.; Dutro-Aceves, A.; Orozco-Gregorio, H.; Bonilla-Jaime, H. Importance of Selected Nutrients and Additives in the Feed of Pregnant Sows for the Survival of Newborn Piglets. Animals 2024, 14, 418. https://doi.org/10.3390/ani14030418
Islas-Fabila P, Roldán-Santiago P, de la Cruz-Cruz LA, Limón-Morales O, Dutro-Aceves A, Orozco-Gregorio H, Bonilla-Jaime H. Importance of Selected Nutrients and Additives in the Feed of Pregnant Sows for the Survival of Newborn Piglets. Animals. 2024; 14(3):418. https://doi.org/10.3390/ani14030418
Chicago/Turabian StyleIslas-Fabila, Paloma, Patricia Roldán-Santiago, Luis Alberto de la Cruz-Cruz, Ofelia Limón-Morales, Anna Dutro-Aceves, Héctor Orozco-Gregorio, and Herlinda Bonilla-Jaime. 2024. "Importance of Selected Nutrients and Additives in the Feed of Pregnant Sows for the Survival of Newborn Piglets" Animals 14, no. 3: 418. https://doi.org/10.3390/ani14030418
APA StyleIslas-Fabila, P., Roldán-Santiago, P., de la Cruz-Cruz, L. A., Limón-Morales, O., Dutro-Aceves, A., Orozco-Gregorio, H., & Bonilla-Jaime, H. (2024). Importance of Selected Nutrients and Additives in the Feed of Pregnant Sows for the Survival of Newborn Piglets. Animals, 14(3), 418. https://doi.org/10.3390/ani14030418