Development of Porcine Accessory Sex Glands
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Experiments
2.2. Experimental Designs
2.3. Experimental Procedures
2.3.1. Stromal, Glandular, and Luminal Area Proportions in Seminal Vesicles and Prostate
2.3.2. Immunohistochemistry
2.3.3. Labeling Analysis
2.3.4. qPCR
2.4. Statistics
3. Results
3.1. Growth and Development in Response to Reduced Endogenous Estrogens
3.2. Immunohistochemical Labeling
3.3. Response to Estrogen Receptor and Androgen Receptor Blockade
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Izumi, K.; Mizokami, A.; Lin, W.J.; Lai, K.P.; Chang, C. Androgen receptor roles in the development of benign prostate hyperplasia. Am. J. Pathol. 2013, 182, 1942–1949. [Google Scholar] [CrossRef] [PubMed]
- Di Donato, M.; Giovannelli, P.; Cernera, G.; Di Santi, A.; Marino, I.; Bilancio, A.; Galasso, G.; Auricchio, F.; Migliaccio, A.; Castoria, G. Non-genomic androgen action regulates proliferative/migratory signaling in stromal cells. Front. Endocrinol. 2014, 5, 225. [Google Scholar] [CrossRef] [PubMed]
- Abella, D.F.; Da Costa, M.; Guerin, Y.; Dacheux, J.L. Fertility of undiluted ram epididymal spermatozoa stored for several days at 4 °C. Animal 2015, 9, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Berger, T.; McCarthy, M.; Pearl, C.A.; At-Taras, E.; Roser, J.F.; Conley, A. Reducing endogenous estrogens during the neonatal and juvenile periods affects reproductive tract development and sperm production in postpuberal boars. Anim. Reprod. Sci. 2008, 109, 218–235. [Google Scholar] [CrossRef] [PubMed]
- Rickard, J.P.; Pini, T.; Soleilhavoup, C.; Cognie, J.; Bathgate, R.; Lynch, G.W.; Evans, G.; Maxwell, W.M.; Druart, X.; de Graaf, S.P. Seminal plasma aids the survival and cervical transit of epididymal ram spermatozoa. Reproduction 2014, 148, 469–478. [Google Scholar] [CrossRef]
- Amann, R.P.; Griel, L.C., Jr. Fertility of bovine spermatozoa from rete testis, cauda epididymidis, and ejaculated semen. J. Dairy Sci. 1974, 57, 212–219. [Google Scholar] [CrossRef]
- Cummins, J.M.; Orgebin-Crist, M.C. Investigations into the fertility of epididymal spermatozoa. Biol. Reprod. 1971, 5, 13–19. [Google Scholar] [CrossRef]
- Igboeli, G.; Foote, R.H. Maturation changes in bull epididymal spermatozoa. J. Dairy Sci. 1968, 51, 1703–1705. [Google Scholar] [CrossRef]
- Orgebin-Crist, M.C. Maturation of spermatozoa in the rabbit epididymis: Delayed fertilization in does inseminated with epididymal spermatozoa. J. Reprod. Fertil. 1968, 16, 29–33. [Google Scholar] [CrossRef]
- Blandau, R.J.; Rumery, R.E. The relationship of swimming movements of epididymal spermatozoa to their fertilizing capacity. Fertil. Steril. 1964, 15, 571–579. [Google Scholar] [CrossRef]
- Orgebin-Crist, M.C. Maturation of spermatozoa in the rabbit epididymis: Fertilizing ability and embryonic mortality in does inseminated with epididymal spermatozoa. Ann. Biol. Anim. Biochim. Biophys. 1967, 7, 373–389. [Google Scholar] [CrossRef]
- Young, W.C. A study of the function of the epididymis III. Functional changes undergone by spermatozoa during their passage through the epididymis and vas deferens in the guinea-pig. J. Exp. Biol. 1931, 8, 151–162. [Google Scholar] [CrossRef]
- Cukierski, M.A.; Sina, J.L.; Prahalada, S.; Robertson, R.T. Effects of seminal vesicle and coagulating gland ablation on fertility in rats. Reprod. Toxicol. 1991, 5, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.F.; Chow, P.H.; Wong, T.M. The role of the seminal vesicles, coagulating glands and prostate glands on the fertility and fecundity of mice. J. Reprod. Fertil. 1979, 56, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Lawlah, J.W. Studies on the physiology of the accessory glands of reproduction of the male guinea pig. Anat. Rec. 1930, 45, 163–175. [Google Scholar] [CrossRef]
- Henry, F.; Eder, S.; Reynaud, K.; Schon, J.; Wibbelt, G.; Fontbonne, A.; Muller, K. Seminal fluid promotes in vitro sperm-oviduct binding in the domestic cat (Felis catus). Theriogenology 2015, 83, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Poon, H.K.; Lee, K.H.; Wong, C.L.; O, W.S.; Chow, P.H. Absence of paternal accessory sex gland secretions disturbs epigenetic reprogramming and expression of Igf2 and Dlk1 in golden hamster embryos. Theriogenology 2009, 71, 1367–1380. [Google Scholar] [CrossRef]
- Robertson, S.A. Seminal fluid signaling in the female reproductive tract: Lessons from rodents and pigs. J. Anim. Sci. 2007, 85, E36–E44. [Google Scholar] [CrossRef]
- Ortiz, W.G.; Rizo, J.A.; Carvalheira, L.R.; Ahmed, B.M.S.; Estrada-Cortes, E.; Harstine, B.R.; Bromfield, J.J.; Hansen, P.J. Effects of intrauterine infusion of seminal plasma at artificial insemination on fertility of lactating Holstein cows. J. Dairy Sci. 2019, 102, 6587–6594. [Google Scholar] [CrossRef]
- Murray, F.A.; Grifo, A.P., Jr.; Parker, C.F. Increased litter size in gilts by intrauterine infusion of seminal and sperm antigens before breeding. J. Anim. Sci. 1983, 56, 895–900. [Google Scholar] [CrossRef]
- Bromfield, J.J. Review: The potential of seminal fluid mediated paternal-maternal communication to optimise pregnancy success. Animal 2018, 12, s104–s109. [Google Scholar] [CrossRef]
- Rodriguez-Martinez, H.; Martinez, E.A.; Calvete, J.J.; Pena Vega, F.J.; Roca, J. Seminal Plasma: Relevant for Fertility? Int. J. Mol. Sci. 2021, 22, 4368. [Google Scholar] [CrossRef]
- Barker, D.J.; Hales, C.N.; Fall, C.H.; Osmond, C.; Phipps, K.; Clark, P.M. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): Relation to reduced fetal growth. Diabetologia 1993, 36, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Chung, L.W.; Ferland-Raymond, G. Differences among rat sex accessory glands in their neonatal androgen dependency. Endocrinology 1975, 97, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Naslund, M.J.; Coffey, D.S. The differential effects of neonatal androgen, estrogen and progesterone on adult rat prostate growth. J. Urol. 1986, 136, 1136–1140. [Google Scholar] [CrossRef] [PubMed]
- Price, D.; Ortiz, E. The relation of age to reactivity in the reproductive system of the rat. Endocrinology 1944, 34, 215–239. [Google Scholar] [CrossRef]
- Price, D. Normal development of the prostate and seminal vesicles of the rat with a study of experimental postnatal modifications. Am. J. Anat. 1936, 60, 79–125. [Google Scholar] [CrossRef]
- Lung, B.; Cunha, G.R. Development of seminal vesicles and coagulating glands in neonatal mice. I. The morphogenetic effects of various hormonal conditions. Anat. Rec. 1981, 199, 73–88. [Google Scholar] [CrossRef]
- Prins, G.S. Neonatal estrogen exposure induces lobe-specific alterations in adult rat prostate androgen receptor expression. Endocrinology 1992, 130, 3703–3714. [Google Scholar] [CrossRef]
- Krege, J.H.; Hodgin, J.B.; Couse, J.F.; Enmark, E.; Warner, M.; Mahler, J.F.; Sar, M.; Korach, K.S.; Gustafsson, J.A.; Smithies, O. Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc. Natl. Acad. Sci. USA 1998, 95, 15677–15682. [Google Scholar] [CrossRef]
- Couse, J.F.; Korach, K.S. Estrogen receptor null mice: What have we learned and where will they lead us? Endocr. Rev. 1999, 20, 358–417. [Google Scholar] [CrossRef] [PubMed]
- Bianco, J.J.; McPherson, S.J.; Wang, H.; Prins, G.S.; Risbridger, G.P. Transient neonatal estrogen exposure to estrogen-deficient mice (aromatase knockout) reduces prostate weight and induces inflammation in late life. Am. J. Pathol. 2006, 168, 1869–1878. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.R.; Graves, K.H.; Parlow, A.F.; Simpson, E.R. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc. Natl. Acad. Sci. USA 1998, 95, 6965–6970. [Google Scholar] [CrossRef]
- McPherson, S.J.; Wang, H.; Jones, M.E.; Pedersen, J.; Iismaa, T.P.; Wreford, N.; Simpson, E.R.; Risbridger, G.P. Elevated androgens and prolactin in aromatase-deficient mice cause enlargement, but not malignancy, of the prostate gland. Endocrinology 2001, 142, 2458–2467. [Google Scholar] [CrossRef] [PubMed]
- Berger, T.; Conley, A.J. Reducing endogenous estrogen during prepuberal life does not affect boar libido or sperm fertilizing potential. Theriogenology 2014, 82, 627–635. [Google Scholar] [CrossRef] [PubMed]
- At-Taras, E.E.; Conley, A.J.; Berger, T.; Roser, J.F. Reducing estrogen synthesis does not affect gonadotropin secretion in the developing boar. Biol. Reprod. 2006, 74, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenberger, F.; Toole, G.S.; Christie, H.L.; Raeside, J.I. Plasma levels of several androgens and estrogens from birth to puberty in male domestic pigs. Acta Endocrinol. 1993, 128, 173–177. [Google Scholar] [CrossRef]
- Colenbrander, B.; de Jong, F.H.; Wensing, C.J. Changes in serum testosterone concentrations in the male pig during development. J. Reprod. Fertil. 1978, 53, 377–380. [Google Scholar] [CrossRef]
- Berger, T.; Conley, A.J.; Van Klompenberg, M.; Roser, J.F.; Hovey, R.C. Increased testicular Sertoli cell population induced by an estrogen receptor antagonist. Mol. Cell. Endocrinol. 2013, 366, 53–58. [Google Scholar] [CrossRef]
- Berger, T.; Kentfield, L.; Roser, J.F.; Conley, A. Stimulation of Sertoli cell proliferation: Defining the response interval to an inhibitor of estrogen synthesis in the boar. Reproduction 2012, 143, 523–529. [Google Scholar] [CrossRef]
- Berger, T.; Conley, A. Reduced endogenous estrogen and hemicastration interact synergistically to increase porcine sertoli cell proliferation. Biol. Reprod. 2014, 90, 114. [Google Scholar] [CrossRef] [PubMed]
- Tarleton, B.J.; Wiley, A.A.; Bartol, F.F. Endometrial development and adenogenesis in the neonatal pig: Effects of estradiol valerate and the antiestrogen ICI 182,780. Biol. Reprod. 1999, 61, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Legacki, E.; Conley, A.J.; Nitta-Oda, B.J.; Berger, T. Porcine sertoli cell proliferation after androgen receptor inactivation. Biol. Reprod. 2015, 92, 93. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, R.; Pearl, C.A.; At-Taras, E.; Roser, J.F.; Berger, T. Ontogeny of androgen and estrogen receptor expression in porcine testis: Effect of reducing testicular estrogen synthesis. Anim. Reprod. Sci. 2007, 102, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Katleba, K.D.; Legacki, E.L.; Conley, A.J.; Berger, T. Steroid regulation of early postnatal development in the corpus epididymidis of pigs. J. Endocrinol. 2015, 225, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Katleba, K.; Legacki, E.; Berger, T. Expression of CSF1, AR, and SRD5A2 during Postnatal Development of the Boar Reproductive Tract. Animals 2022, 12, 2167. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.; Messe, N.; Bergmann, M.; Lekhkota, O.; Claus, R. Effects of estradiol infusion in GnRH immunized boars on spermatogenesis. J. Androl. 2006, 27, 880–889. [Google Scholar] [CrossRef]
- Booth, W.D. A study of some major testicular steroids in the pig in relation to their effect on the development of male characteristics in the prepubertally castrated boar. J. Reprod. Fertil. 1980, 59, 155–162. [Google Scholar] [CrossRef]
- Parrott, R.F.; Booth, W.D. Behavioural and morphological effects of 5 alpha-dihydrotestosterone and oestradiol-17 beta in the prepubertally castrated boar. J. Reprod. Fertil. 1984, 71, 453–461. [Google Scholar] [CrossRef]
- Joshi, H.S.; Raeside, J.I. Synergistic effects of testosterone and oestrogens on accessory sex glands and sexual behaviour of the boar. J. Reprod. Fertil. 1973, 33, 411–423. [Google Scholar] [CrossRef]
- Vom Saal, F.S.; Timms, B.G.; Montano, M.M.; Palanza, P.; Thayer, K.A.; Nagel, S.C.; Dhar, M.D.; Ganjam, V.K.; Parmigiani, S.; Welshons, W.V. Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proc. Natl. Acad. Sci. USA 1997, 94, 2056–2061. [Google Scholar] [CrossRef] [PubMed]
- Cunha, G.R.; Ricke, W.A. A historical perspective on the role of stroma in the pathogenesis of benign prostatic hyperplasia. Differentiation 2011, 82, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Cunha, G.R. Age-dependent loss of sensitivity of female urogenital sinus to androgenic conditions as a function of the epithelia-stromal interaction in mice. Endocrinology 1975, 97, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Rago, V.; Romeo, F.; Giordano, F.; Ferraro, A.; Carpino, A. Identification of the G protein-coupled estrogen receptor (GPER) in human prostate: Expression site of the estrogen receptor in the benign and neoplastic gland. Andrology 2016, 4, 121–127. [Google Scholar] [CrossRef]
- Smeulders, N.; Woolf, A.S.; Wilcox, D.T. Smooth muscle differentiation and cell turnover in mouse detrusor development. J. Urol. 2002, 167, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Eddinger, T.J.; Murphy, R.A. Developmental changes in actin and myosin heavy chain isoform expression in smooth muscle. Arch. Biochem. Biophys. 1991, 284, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.A.; Cunha, G.R. Prostatic growth and development are regulated by FGF10. Development 1999, 126, 3693–3701. [Google Scholar] [CrossRef]
- Aitken, R.N. Observations on the development of the seminal vesicles, prostate and bulbourethral glands in the ram. J. Anat. 1959, 93, 43–51. [Google Scholar]
- Mann, T.; Lutwak-Mann, C. Secretory function of the prostate, seminal vesicle, Cowper’s gland and other accessory organs of reproduction. In Male Reproductive Function and Semen; Springer: London, UK, 1981; pp. 171–193. [Google Scholar]
- Oliveira, D.S.; Dzinic, S.; Bonfil, A.I.; Saliganan, A.D.; Sheng, S.; Bonfil, R.D. The mouse prostate: A basic anatomical and histological guideline. Bosn. J. Basic Med. Sci. 2016, 16, 8–13. [Google Scholar] [CrossRef]
- Huang, Z.; Hurley, P.J.; Simons, B.W.; Marchionni, L.; Berman, D.M.; Ross, A.E.; Schaeffer, E.M. Sox9 is required for prostate development and prostate cancer initiation. Oncotarget 2012, 3, 651–663. [Google Scholar] [CrossRef]
- Thomsen, M.K.; Francis, J.C.; Swain, A. The role of Sox9 in prostate development. Differentiation 2008, 76, 728–735. [Google Scholar] [CrossRef]
Treatment | Animal Age at Treatment | Age at Tissue Collection | Replicates |
---|---|---|---|
Letrozole/Vehicle | 1 day | 1.3 weeks (9 days) | 5 |
Letrozole/Vehicle 2 | 1 week | 2 weeks | 4 |
Letrozole/Vehicle 2 | 1–2 weeks | 3 weeks | 4 |
Letrozole/Vehicle 2 | 1–4 weeks | 5 weeks | 4 |
Letrozole/Vehicle | 1–5 weeks | 6.5 weeks | 5 |
Letrozole/Vehicle | 1–6 weeks | 11 weeks | 5 |
Letrozole/Vehicle 3 | 1–5 weeks | 6 weeks | 5 |
Letrozole/Vehicle 3 | 1–6 weeks | 20 weeks | 5 |
Letrozole/Vehicle 3 | 1–6 weeks | 40 weeks | 5 |
Letrozole/Vehicle 4 | 11–15 weeks | 16 weeks | 5 |
Letrozole/Vehicle 4 | 11–16 weeks | 20 weeks | 5 |
Letrozole/Vehicle 4 | 11–16 weeks | 40 weeks | 5 |
Fulvestrant/Letrozole/Vehicle | 1–6.5/1–5 weeks | 6.5 weeks | 5 |
Flutamide/Vehicle | 1–6.5 weeks | 6.5 weeks | 5 |
Antigen | Antibody Source 1 | Catalog No. | Antibody Dilution | Time, Temperature, and Buffer for Primary Antibody 2 | Chromagen 3 | Reference |
---|---|---|---|---|---|---|
SOX9 | Spring Biosciences | E13470 | 1:100 | Overnight, 4 °C, PBST | NovaRed® | |
FGF10 | Abgent | AP7975b | 1:50 | 1 h, RT, PBS | NovaRed® | |
ACTA2 | Spring Biosciences | E2460 | 1:150 | 20 min, RT, PBST | AEC | |
ESR2 | AbD Serotec | MCA1974S | 1:40 | Overnight, 4 °C, TBS | DAB | [4,44] |
ESR1 | Santa Cruz Biotechnology | SC-542 | 1:250 | Overnight, 4 °C, PBS | AEC | [4,44] |
AR | Santa Cruz Biotechnology | SC-816 | 1:1000 | Overnight, 4 °C, PBS | AEC | [4,44] |
GPER | Aviva Systems Biology | ARP62244 | 1:100 | Overnight, 4 °C, TBS | ImmPACT Red® | [45] |
Seminal Vesicle wt. (g) 1 | Prostate wt. (g) 1 | Bulbourethral Gland wt. (g) 1 | |
---|---|---|---|
Letrozole treatment | 62.6 | 4.4 | 64.2 |
Vehicle treatment | 55.3 | 4.5 | 59.1 |
SEM | 16.6 | 0.7 | 4.9 |
Seminal Vesicle wt. (g) 1 | Prostate wt. (g) 1 | Bulbourethral Gland wt. (g) 1 | |
---|---|---|---|
Flutamide treatment | 1.5 | 0.36 | 2.0 |
Vehicle treatment | 1.7 | 0.31 | 1.9 |
SEM | 0.3 | 0.04 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berger, T.; Guerrero, V.; Boeldt, R.; Legacki, E.; Roberts, M.; Conley, A.J. Development of Porcine Accessory Sex Glands. Animals 2024, 14, 462. https://doi.org/10.3390/ani14030462
Berger T, Guerrero V, Boeldt R, Legacki E, Roberts M, Conley AJ. Development of Porcine Accessory Sex Glands. Animals. 2024; 14(3):462. https://doi.org/10.3390/ani14030462
Chicago/Turabian StyleBerger, Trish, Valerie Guerrero, Rosalina Boeldt, Erin Legacki, Megan Roberts, and Alan J. Conley. 2024. "Development of Porcine Accessory Sex Glands" Animals 14, no. 3: 462. https://doi.org/10.3390/ani14030462
APA StyleBerger, T., Guerrero, V., Boeldt, R., Legacki, E., Roberts, M., & Conley, A. J. (2024). Development of Porcine Accessory Sex Glands. Animals, 14(3), 462. https://doi.org/10.3390/ani14030462