Flight toward Sustainability in Poultry Nutrition with Black Soldier Fly Larvae
Abstract
:Simple Summary
Abstract
1. Introduction
2. Overview of the Black Soldier Fly (BSF): Distribution, Biology, and Utilization
3. Biochemical Profile of BSF Larvae
4. Digestibility and Bioavailability of Nutrients from BSFL
4.1. Protein Digestibility
4.2. Fat Bioavailability
4.3. Mineral Uptake
4.4. Chitin as a Fiber Source
4.5. Factors Influencing Nutrient Utilization
5. Performance Parameters in Poultry Fed with BSFL
5.1. Growth Performance
5.2. Meat Quality and Color
6. Health Benefits of BSFL in Poultry Nutrition
6.1. Immunity and Blood Biochemistry
6.2. Gastrointestinal Health and Microbiota
7. Economic Analysis of Using BSFL in Poultry Feeding
8. Future Directions in Research and Development
8.1. Nutritional Optimization
8.2. Impact on Poultry Health and Product Quality
8.3. Sustainable Production and Processing Methods
8.4. Environmental Impact Assessment
8.5. Consumer Acceptance and Regulatory Considerations
8.6. Long-Term Health Studies
8.7. Optimizing BSFL Use in Feed Formulation and Processing for Economic Viability
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- OECD; Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook (Edition 2022). 2022. Available online: https://www.oecd-ilibrary.org/content/data/13d66b76-en (accessed on 29 June 2022).
- Adeniji, A.A. Effect of replacing groundnut cake with maggot meal in the diet of broilers. Int. J. Poult. Sci. 2007, 6, 822–825. [Google Scholar] [CrossRef]
- Digiacomo, K. Black soldier fly larvae protein production in Australia. Anim. Front. 2023, 13, 8–15. [Google Scholar] [CrossRef]
- Sankara, F.; Sankara, F.; Pousga, S.; Coulibaly, K.; Nacoulma, J.P.; Ilboudo, Z.; Ouédraogo, I.; Somda, I.; Kenis, M. Optimization of Production Methods for Black Soldier Fly Larvae (Hermetia illucens L.) in Burkina Faso. Insects 2023, 14, 776. [Google Scholar] [CrossRef] [PubMed]
- Dzepe, D.; Kuietche, H.M.; Magatsing, O.; Meutchieye, F.; Nana, P.; Tchuinkam, T.; Djouaka, R. From agricultural waste to chicken feed using insect-based technology. J. Basic Appl. Zool. 2023, 84, 18. [Google Scholar] [CrossRef]
- Ee, K.Y.; Lam, M.Q.; Mah, J.K.; Merican, A. Black soldier fly (Hermetia illucens L.) larvae in degrading agricultural waste as a sustainable protein production: Feedstock modification and challenges. Int. J. Trop. Insect Sci. 2022, 42, 3847–3854. [Google Scholar] [CrossRef]
- Lu, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; Thongpea, S.; Paengkoum, S.; Purba, R.A.P.; et al. Nutritional composition of black soldier fly larvae (Hermetia illucens L.) and its potential uses as alternative protein sources in animal diets: A review. Insects 2022, 13, 831. [Google Scholar] [CrossRef]
- Pazmiño-Palomino, A.; Reyes-Puig, C.; Del Hierro, A.G. How could climate change influence the distribution of the black soldier fly, Hermetiaillucens (Linnaeus)(Diptera, Stratiomyidae)? Biodivers. Data J. 2022, 10, e90146. [Google Scholar]
- Kaya, C.; Generalovic, T.N.; Ståhls, G.; Hauser, M.; Samayoa, A.C.; Nunes-Silva, C.G.; Roxburgh, H.; Wohlfahrt, J.; Ewusie, E.A.; Kenis, M.; et al. Global population genetic structure and demographic trajectories of the black soldier fly, Hermetia illucens. BMC Biol. 2021, 19, 94. [Google Scholar] [CrossRef]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Newton, G.L.; Sheppard, D.C.; Watson, D.W.; Burtle, G.J.; Dove, C.R.; Tomberlin, J.K.; Thelen, E.E. The black soldier fly, Hermetia illucens, as a manure management/resource recovery tool. In Proceedings of the Symposium on the State of the Science of Animal Manure and Waste Management, San Antonio, TX, USA, 5–7 January 2005; Volume 1, p. 57. [Google Scholar]
- St-Hilaire, S.; Sheppard, C.; Tomberlin, J.K.; Irving, S.; Newton, L.; McGuire, M.A.; Mosley, E.E.; Hardy, R.W.; Sealey, W. Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. J. World Aquac. Soc. 2007, 38, 59–67. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed—A review. J. Insects Food Feed 2017, 3, 105–120. [Google Scholar] [CrossRef]
- Ishak, S.; Kamari, A. Biodiesel from black soldier fly larvae grown on restaurant kitchen waste. Environ. Chem. Lett. 2019, 17, 1143–1150. [Google Scholar] [CrossRef]
- Fajar, A. Penggunaan Eceng Gondok dan Limbah Buah Terfermentasi Sebagai Media Tumbuh BSF (Blak Soldier Fly) Terhadap Kualitas Tepung Maggot BSF; Skripsi Fakultas Peternakan Universitas Islam Lamongan: Jawa Timur, Indonesia, 2020. [Google Scholar]
- Scala, A.; Cammack, J.A.; Salvia, R.; Scieuzo, C.; Franco, A.; Bufo, S.A.; Tomberlin, J.K.; Falabella, P. Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale. Sci. Rep. 2020, 10, 19448. [Google Scholar] [CrossRef]
- Kawasaki, K.; Hashimoto, Y.; Hori, A.; Kawasaki, T.; Hirayasu, H.; Iwase, S.I.; Hashizume, A.; Ido, A.; Miura, C.; Miura, T.; et al. Evaluation of black soldier fly (Hermetia illucens) larvae and pre-pupae raised on household organic waste, as potential ingredients for poultry feed. Animals 2019, 9, 98. [Google Scholar] [CrossRef]
- Brede, A.; Wecke, C.; Liebert, F. Does the optimal dietary methionine to cysteine ratio in diets for growing chickens respond to high inclusion rates of insect meal from Hermetia illucens? Animals 2018, 8, 187. [Google Scholar] [CrossRef]
- Cullere, M.; Schiavone, A.; Dabbou, S.; Gasco, L.; Dalle Zotte, A. Meat quality and sensory traits of finisher broiler chickens fed with black soldier fly (Hermetia illucens L.) larvae fat as alternative fat source. Animals 2019, 9, 140. [Google Scholar] [CrossRef]
- Dabbou, S.; Gai, F.; Biasato, I.; Capucchio, M.T.; Biasibetti, E.; Dezzutto, D.; Meneguz, M.; Plachà, I.; Gasco, L.; Schiavone, A. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2018, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, Y.M.; Park, Y.K.; Yang, Y.C.; Jung, B.G.; Lee, B.J. Black soldier fly (Hermetia illucens) larvae enhances immune activities and increases survivability of broiler chicks against experimental infection of Salmonella Gallinarum. J. Vet. Med. Sci. 2018, 80, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Mbhele, F.G.; Mnisi, C.M.; Mlambo, V. A nutritional evaluation of insect meal as a sustainable protein source for jumbo quails: Physiological and meat quality responses. Sustainability 2019, 11, 6592. [Google Scholar] [CrossRef]
- Xiao, X.; Jin, P.; Zheng, L.; Cai, M.; Yu, Z.; Yu, J.; Zhang, J. Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco). Aquac. Res. 2018, 49, 1569–1577. [Google Scholar] [CrossRef]
- Fawole, F.J.; Adeoye, A.A.; Tiamiyu, L.O.; Ajala, K.I.; Obadara, S.O.; Ganiyu, I.O. Substituting fishmeal with Hermetia illucens in the diets of African catfish (Clarias gariepinus): Effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. Aquaculture 2020, 518, 734849. [Google Scholar] [CrossRef]
- Bruni, L.; Belghit, I.; Lock, E.J.; Secci, G.; Taiti, C.; Parisi, G. Total replacement of dietary fish meal with black soldier fly (Hermetia illucens) larvae does not impair physical, chemical or volatile composition of farmed Atlantic salmon (Salmo salar L.). J. Sci. Food Agric. 2020, 100, 1038–1047. [Google Scholar] [CrossRef] [PubMed]
- Terova, G.; Rimoldi, S.; Ascione, C.; Gini, E.; Ceccotti, C.; Gasco, L. Rainbow trout (Oncorhynchus mykiss) gut microbiota is modulated by insect meal from Hermetia illucens prepupae in the diet. Rev. Fish Biol. Fish. 2019, 29, 465–486. [Google Scholar] [CrossRef]
- Altmann, B.A.; Neumann, C.; Rothstein, S.; Liebert, F.; Mörlein, D. Do dietary soy alternatives lead to pork quality improvements or drawbacks? A look into micro-alga and insect protein in swine diets. Meat Sci. 2019, 153, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Biasato, I.; Renna, M.; Gai, F.; Dabbou, S.; Meneguz, M.; Perona, G.; Martinez, S.; Lajusticia, A.C.B.; Bergagna, S.; Sardi, L.; et al. Partially defatted black soldier fly larva meal inclusion in piglet diets: Effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2019, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.Y.; Tanga, C.M.; Osuga, I.M.; Alaru, A.O.; Mwangi, D.M.; Githinji, M.; Subramanian, S.; Fiaboe, K.K.; Ekesi, S.; van Loon, J.J.; et al. Effect of dietary replacement of fishmeal by insect meal on growth performance, blood profiles and economics of growing pigs in Kenya. Animals 2019, 9, 705. [Google Scholar] [CrossRef]
- Ahmad, I.K.; Peng, N.T.; Amrul, N.F.; Basri, N.E.A.; Jalil, N.A.A.; Azman, N.A. Potential Application of Black Soldier Fly Larva Bins in Treating Food Waste. Insects 2023, 14, 434. [Google Scholar] [CrossRef]
- Rehman, K.U.; Hollah, C.; Wiesotzki, K.; Rehman, R.U.; Rehman, A.U.; Zhang, J.; Zheng, L.; Nienaber, T.; Heinz, V.; Aganovic, K. Black soldier fly, Hermetia illucens as a potential innovative and environmentally friendly tool for organic waste management: A mini-review. Waste Manag. Res. 2023, 41, 81–97. [Google Scholar] [CrossRef]
- Boakye-Yiadom, K.A.; Ilari, A.; Duca, D. Greenhouse Gas Emissions and Life Cycle Assessment on the Black Soldier Fly (Hermetia illucens L.). Sustainability 2022, 14, 10456. [Google Scholar] [CrossRef]
- Mupeta, B.; Coker, R.; Zaranyika, E. The Added Value of Sunflower Performance of Indigenous Chickens Fed a Reduce-Fibre Sunflower Cake Diet in Pens and on Free Range. 2003. Available online: www.dfid.gov.uk/r4d/pdf/outputs/R7524e.pdf (accessed on 1 January 2023).
- Mahmoud, I.; Hassan, H.A.; Eldlebshany, A.A.; Abdel-Wareth, A.A.A. Application of black solider fly larvae as alternative source of protein in poultry nutrition. A Review. SVU-Int. J. Agric. Sci. 2022, 4, 67–78. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Shelomi, M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 2017, 6, 91. [Google Scholar] [CrossRef]
- Shumo, M.; Khamis, F.M.; Tanga, C.M.; Fiaboe, K.K.; Subramanian, S.; Ekesi, S.; Van Huis, A.; Borgemeister, C. Influence of temperature on selected life-history traits of black soldier fly (Hermetia illucens) reared on two common urban organic waste streams in Kenya. Animals 2019, 9, 79. [Google Scholar] [CrossRef]
- Spranghers, T.; Noyez, A.; Schildermans, K.; De Clercq, P. Cold hardiness of the black soldier fly (Diptera: Stratiomyidae). J. Econ. Entomol. 2017, 110, 1501–1507. [Google Scholar] [CrossRef]
- Martínez-Sánchez, A.; Magana, C.; Salona, M.; Rojo, S. First record of Hermetia illucens (Diptera: Stratiomyidae) on human corpses in Iberian Peninsula. Forensic Sci. Int. 2011, 206, e76–e78. [Google Scholar] [CrossRef] [PubMed]
- Seyedalmoosavi, M.M.; Mielenz, M.; Veldkamp, T.; Daş, G.; Metges, C.C. Growth efficiency, intestinal biology, and nutrient utilization and requirements of black soldier fly (Hermetia illucens) larvae compared to monogastric livestock species: A review. J. Anim. Sci. Biotechnol. 2022, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Diener, S.; Zurbrügg, C.; Tockner, K. Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Manag. Res. 2009, 27, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Tomberlin, J.K.; Vanlaerhoven, S. Ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environ. Entomol. 2015, 44, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zheng, L.; Qiu, N.; Cai, H.; Tomberlin, J.K.; Yu, Z. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Manag. 2011, 31, 1316–1320. [Google Scholar] [CrossRef] [PubMed]
- Chippindale, A.K.; Leroi, A.M.; Kim, S.B.; Rose, M.R. Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of reproduction. In Methuselah Flies: A Case Study in the Evolution of Aging; World Scientific: Singapore, 2004; pp. 122–144. [Google Scholar]
- Yu, G.; Chen, Y.; Yu, Z.; Cheng, P. Research progress on the larvae and prepupae of black soldier fly Hermetia illucens used as animal feedstuff. Chin. Bull. Entomol. 2009, 46, 41–45. [Google Scholar]
- De Marco, M.; Martínez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; Belforti, M.; Bergero, D.; Katz, H.; Dabbou, S.; et al. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol. 2015, 209, 211–218. [Google Scholar] [CrossRef]
- Abadi, M.H.M.G.; Moravej, H.; Shivazad, M.; Torshizi, M.A.K.; Kim, W.K. Effect of different types and levels of fat addition and pellet binders on physical pellet quality of broiler feeds. Poult. Sci. 2019, 98, 4745–4754. [Google Scholar] [CrossRef] [PubMed]
- Liland, N.S.; Biancarosa, I.; Araujo, P.; Biemans, D.; Bruckner, C.G.; Waagbø, R.; Torstensen, B.E.; Lock, E.J. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS ONE 2017, 12, e0183188. [Google Scholar] [CrossRef] [PubMed]
- Zulkifli, N.F.N.M.; Seok-Kian, A.Y.; Seng, L.L.; Mustafa, S.; Kim, Y.S.; Shapawi, R. Nutritional value of black soldier fly (Hermetia illucens) larvae processed by different methods. PLoS ONE 2022, 17, e0263924. [Google Scholar] [CrossRef] [PubMed]
- Yildirim-Aksoy, M.; Eljack, R.; Beck, B.H. Nutritional value of frass from black soldier fly larvae, Hermetia illucens, in a channel catfish, Ictalurus punctatus, diet. Aquac. Nutr. 2020, 26, 812–819. [Google Scholar] [CrossRef]
- Schiavone, A.; De Marco, M.; Martínez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F.; et al. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Council, N.R. Nutrient Requirements of Swine; National Research Council: Washington, DC, USA, 2012. [Google Scholar]
- Onsongo, V.; Osuga, I.; Gachuiri, C.; Wachira, A.; Miano, D.; Tanga, C.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K. Insects for income generation through animal feed: Effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. J. Econ. Entomol. 2018, 111, 1966–1973. [Google Scholar] [CrossRef]
- Tyshko, N.V.; Zhminchenko, V.M.; Nikitin, N.S.; Trebukh, M.D.; Shestakova, S.I.; Pashorina, V.A.; Sadykova, E.O. The comprehensive studies of Hermetia illucens larvae protein’s biological value. Probl. Nutr. 2021, 90, 49–58. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef]
- Shumo, M.; Osuga, I.M.; Khamis, F.M.; Tanga, C.M.; Fiaboe, K.K.; Subramanian, S.; Ekesi, S.; van Huis, A.; Borgemeister, C. The nutritive value of black soldier fly larvae reared on common organic waste streams in Kenya. Sci. Rep. 2019, 9, 10110. [Google Scholar] [CrossRef]
- Rawski, M.; Mazurkiewicz, J.; Kiero’nczyk, B.; Józefiak, D. Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals 2020, 10, 2119. [Google Scholar] [CrossRef]
- de Souza Vilela, J.; Alvarenga, T.I.; Andrew, N.R.; McPhee, M.; Kolakshyapati, M.; Hopkins, D.L.; Ruhnke, I. Technological quality, amino acid and fatty acid profile of broiler meat enhanced by dietary inclusion of black soldier fly larvae. Foods 2021, 10, 297. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Li, M.; Wang, G.; Wang, K.; Shang, R.; Wang, Z.; Li, L. Evaluation of the low inclusion of full-fatted Hermetia illucens larvae meal for layer chickens: Growth performance, nutrient digestibility, and gut health. Front. Vet. Sci. 2020, 7, 585843. [Google Scholar] [CrossRef] [PubMed]
- Crosbie, M.; Zhu, C.; Shoveller, A.K.; Huber, L.A. Standardized ileal digestible amino acids and net energy contents in full fat and defatted black soldier fly larvae meals (Hermetia illucens) fed to growing pigs. Transl. Anim. Sci. 2020, 4, 104. [Google Scholar] [CrossRef] [PubMed]
- Shelomi, M. Nutrient composition of black soldier fly (Hermetia illucens). In African Edible Insects as Alternative Source of Food, Oil, Protein and Bioactive Components; Springer: Cham, Switzerland, 2020; pp. 195–212. [Google Scholar]
- Jian, S.; Zhang, L.; Ding, N.; Yang, K.; Xin, Z.; Hu, M.; Zhou, Z.; Zhao, Z.; Deng, B.; Deng, J. Effects of black soldier fly larvae as protein or fat sources on apparent nutrient digestibility, fecal microbiota, and metabolic profiles in beagle dogs. Front. Microbiol. 2022, 13, 1044986. [Google Scholar] [CrossRef] [PubMed]
- Traksele, L.; Speiciene, V.; Smicius, R.; Alencikiene, G.; Salaseviciene, A.; Garmiene, G.; Zigmantaite, V.; Grigaleviciute, R.; Kucinskas, A. Investigation of in vitro and in vivo digestibility of black soldier fly (Hermetia illucens L.) larvae protein. J. Funct. Foods 2021, 79, 104402. [Google Scholar] [CrossRef]
- Do, S.; Koutsos, L.; Utterback, P.L.; Parsons, C.M.; de Godoy, M.R.C.; Swanson, K.S. Nutrient and AA digestibility of black soldier fly larvae differing in age using the precision-fed cecectomized rooster assay. J. Anim. Sci. 2020, 98, 363. [Google Scholar] [CrossRef] [PubMed]
- Barroso, F.G.; de Haro, C.; Sánchez-Muros, M.J.; Venegas, E.; Martínez-Sánchez, A.; Pérez-Bañón, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422, 193–201. [Google Scholar] [CrossRef]
- Ewald, N.; Vidakovic, A.; Langeland, M.; Kiessling, A.; Sampels, S.; Lalander, C. Fatty acid composition of black soldier fly larvae (Hermetia illucens)—Possibilities and limitations for modification through diet. Waste Manag. 2020, 102, 40–47. [Google Scholar] [CrossRef]
- Nekrasov, R.V.; Ivanov, G.A.; Chabaev, M.G.; Zelenchenkova, A.A.; Bogolyubova, N.V.; Nikanova, D.A.; Sermyagin, A.A.; Bibikov, S.O.; Shapovalov, S.O. Effect of Black Soldier Fly (Hermetia illucens L.) Fat on Health and Productivity Performance of Dairy Cows. Animals 2022, 12, 2118. [Google Scholar] [CrossRef]
- Kim, B.; Bang, H.T.; Jeong, J.Y.; Kim, M.; Kim, K.H.; Chun, J.L.; Ji, S.Y. Effects of dietary supplementation of black soldier fly (Hermetia illucens) larvae oil on broiler health. J. Poult. Sci. 2021, 58, 222–229. [Google Scholar] [CrossRef]
- Schiavone, A.; Dabbou, S.; De Marco, M.; Cullere, M.; Biasato, I.; Biasibetti, E.; Capucchio, M.T.; Bergagna, S.; Dezzutto, D.; Meneguz, M.; et al. Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal 2018, 12, 2032–2039. [Google Scholar] [CrossRef]
- Cattaneo, A.; Meneguz, M.; Dabbou, S. The fatty acid composition of black soldier fly larvae: The influence of feed substrate and applications in the feed industry. J. Insects Food Feed 2023, 1, 1–26. [Google Scholar] [CrossRef]
- Heuel, M.; Sandrock, C.; Leiber, F.; Mathys, A.; Gold, M.; Zurbrügg, C.; Gangnat, I.D.M.; Kreuzer, M.; Terranova, M. Black soldier fly larvae meal and fat can completely replace soybean cake and oil in diets for laying hens. Poult. Sci. 2021, 100, 101034. [Google Scholar] [CrossRef]
- Kierończyk, B.; Rawski, M.; Mikołajczak, Z.; Szymkowiak, P.; Stuper-Szablewska, K.; Józefiak, D. Black Soldier Fly Larva Fat in Broiler Chicken Diets Affects Breast Meat Quality. Animals 2023, 13, 1137. [Google Scholar] [CrossRef]
- Dabbou, S.; Lauwaerts, A.; Ferrocino, I.; Biasato, I.; Sirri, F.; Zampiga, M.; Bergagna, S.; Pagliasso, G.; Gariglio, M.; Colombino, E.; et al. Modified black soldier fly larva fat in broiler diet: Effects on performance, carcass traits, blood parameters, histomorphological features and gut microbiota. Animals 2021, 11, 1837. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Yang, Y.; Ma, X.; Liao, X.; Wang, R.; Zhang, L.; Li, S.; Luo, X.; Lu, L. Dietary calcium requirements of broilers fed a conventional corn-soybean meal diet from 1 to 21 days of age. J. Anim. Sci. Biotechnol. 2022, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, L.; Bernad, M.J.; Monroy-Barreto, M.; Coello, C.L.; Sumano, H.; Gutiérrez, L. Higher bioavailability of calcium in chickens with a novel in-feed pharmaceutical formulation. Front. Vet. Sci. 2020, 7, 343. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.J.; Selle, P.H.; Bedford, M.R.; Cowieson, A.J. Exploiting calcium-specific appetite in poultry nutrition. Worlds Poult. Sci. J. 2011, 67, 587–598. [Google Scholar] [CrossRef]
- Schiavone, A.; Dabbou, S.; Petracci, M.; Zampiga, M.; Sirri, F.; Biasato, I.; Gai, F.; Gasco, L. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on carcass traits, breast meat quality and safety. Animal 2019, 13, 2397–2405. [Google Scholar] [CrossRef] [PubMed]
- Valable, A.S.; Narcy, A.; Duclos, M.J.; Pomar, C.; Page, G.; Nasir, Z.; Magnin, M.; Létourneau-Montminy, M.P. Effects of dietary calcium and phosphorus deficiency and subsequent recovery on broiler chicken growth performance and bone characteristics. Animal 2018, 12, 1555–1563. [Google Scholar] [CrossRef]
- Nie, W.; Wang, B.; Gao, J.; Guo, Y.; Wang, Z. Effects of dietary phosphorous supplementation on laying performance, egg quality, bone health and immune responses of laying hens challenged with Escherichia coli lipopolysaccharide. J. Anim. Sci. Biotechnol. 2018, 9, 53. [Google Scholar] [CrossRef]
- Merzendorfer, H.; Zimoch, L. Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol. 2003, 206, 4393–4412. [Google Scholar] [CrossRef]
- Naser El Deen, S.; van Rozen, K.; Elissen, H.; van Wikselaar, P.; Fodor, I.; van der Weide, R.; Hoek-van den Hil, E.F.; Rezaei Far, A.; Veldkamp, T. Bioconversion of Different Waste Streams of Animal and Vegetal Origin and Manure by Black Soldier Fly Larvae Hermetia illucens L. (Diptera: Stratiomyidae). Insects 2023, 14, 204. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, J.; Zhu, F.; Fan, M.; Zheng, J.; Cai, M.; Zheng, L.; Huang, F.; Yu, Z.; Zhang, J. Enhanced protein degradation by black soldier fly larvae (Hermetia illucens L.) and its gut microbes. Front. Microbiol. 2023, 13, 1095025. [Google Scholar] [CrossRef]
- Amrul, N.F.; Kabir Ahmad, I.; Ahmad Basri, N.E.; Suja, F.; Abdul Jalil, N.A.; Azman, N.A. A review of organic waste treatment using black soldier fly (Hermetia illucens). Sustainability 2022, 14, 4565. [Google Scholar] [CrossRef]
- Koutsos, E.; Modica, B.; Freel, T. Immunomodulatory potential of black soldier fly larvae: Applications beyond nutrition in animal feeding programs. Transl. Anim. Sci. 2022, 6, 084. [Google Scholar] [CrossRef] [PubMed]
- Phaengphairee, P.; Boontiam, W.; Wealleans, A.; Hong, J.; Kim, Y.Y. Dietary supplementation with full-fat Hermetia illucens larvae and multi-probiotics, as a substitute for antibiotics, improves the growth performance, gut health, and antioxidative capacity of weaned pigs. BMC Vet. Res. 2023, 19, 7. [Google Scholar] [CrossRef] [PubMed]
- de Souza Vilela, J.; Kheravii, S.K.; Bajagai, Y.S.; Kolakshyapati, M.; Sibanda, T.Z.; Wu, S.B.; Andrew, N.R.; Ruhnke, I. Inclusion of up to 20% Black Soldier Fly larvae meal in broiler chicken diet has a minor effect on caecal microbiota. PeerJ 2023, 11, e15857. [Google Scholar] [CrossRef] [PubMed]
- Rampure, S.M.; Velayudhannair, K.; Marimuthu, N. Characteristics of chitin extracted from different growth phases of black soldier fly, Hermetia illucens, fed with different organic wastes. Int. J. Trop. Insect Sci. 2023, 43, 979–987. [Google Scholar] [CrossRef]
- Razdan, A.; Pettersson, D. Effect of chitin and chitosan on nutrient digestibility and plasma lipid concentrations in broiler chickens. Br. J. Nutr. 1994, 72, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Lokman, I.H.; Ibitoye, E.B.; Hezmee, M.N.M.; Goh, Y.M.; Zuki, A.B.Z.; Jimoh, A.A. Effects of chitin and chitosan from cricket and shrimp on growth and carcass performance of broiler chickens. Trop. Anim. Health Prod. 2019, 51, 2219–2225. [Google Scholar] [CrossRef]
- Jha, R.; Mishra, P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: A review. J. Anim. Sci. Biotechnol. 2021, 12, 51. [Google Scholar] [CrossRef]
- Malematja, E.; Manyelo, T.G.; Sebola, N.A.; Mabelebele, M. The role of insects in promoting the health and gut status of poultry. Comp. Clin. Pathol. 2023, 32, 501–513. [Google Scholar] [CrossRef]
- Kipkoech, C. Beyond Proteins-Edible Insects as a Source of Dietary Fiber. Polysaccharides 2023, 4, 116–128. [Google Scholar] [CrossRef]
- Swiatkiewicz, S.; Swiatkiewicz, M.; Arczewska-Wlosek, A.; Jozefiak, D. Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1–12. [Google Scholar] [CrossRef]
- Harkin, C.; Mehlmer, N.; Woortman, D.V.; Brück, T.B.; Brück, W.M. Nutritional and additive uses of chitin and chitosan in the food industry. In Sustainable Agriculture Reviews 36: Chitin and Chitosan: Applications in Food, Agriculture, Pharmacy, Medicine and Wastewater Treatment; Springer: Cham, Switzerland, 2019; pp. 1–43. [Google Scholar]
- Tufan, T.; Arslan, C. Dietary supplementation with chitosan oligosaccharide affects serum lipids and nutrient digestibility in broilers. S. Afr. J. Anim. Sci. 2020, 50, 663–671. [Google Scholar] [CrossRef]
- Ayman, U.; Akter, L.; Islam, R.; Bhakta, S.; Rahman, M.A.; Islam, M.R.; Sultana, N.; Sharif, A.; Jahan, M.R.; Rahman, M.S.; et al. Dietary chitosan oligosaccharides improves health status in broilers for safe poultry meat production. Ann. Agric. Sci. 2022, 67, 90–98. [Google Scholar] [CrossRef]
- Kobayashi, S.; Terashima, Y.; Itoh, H. The effects of dietary chitosan on liver lipid concentrations in broiler chickens treated with propylthiouracil. J. Poult. Sci. 2006, 43, 162–166. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Feng, Y.; Yan, S.; Shi, B.; Guo, X.; Zhao, Y.; Guo, Y. Dietary Chitosan Supplementation Improved Egg Production and Antioxidative Function in Laying Breeders. Animals 2022, 12, 1225. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Oonincx, D.G.; Van Broekhoven, S.; Van Huis, A.; van Loon, J.J. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, 0144601. [Google Scholar] [CrossRef] [PubMed]
- Biasato, I.; De Marco, M.; Rotolo, L.; Renna, M.; Lussiana, C.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Costa, P.; Gai, F.; et al. Effects of dietary Tenebrio molitor meal inclusion in free-range chickens. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1104–1112. [Google Scholar] [CrossRef]
- Hwangbo, J.; Hong, E.C.; Jang, A.; Kang, H.K.; Oh, J.S.; Kim, B.W.; Park, B.S. Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J. Environ. Biol. 2009, 30, 609–614. [Google Scholar]
- Cutrignelli, M.I.; Messina, M.; Tulli, F.; Randazzo, B.; Olivotto, I.; Gasco, L.; Loponte, R.; Bovera, F. Evaluation of an insect meal of the Black Soldier Fly (Hermetia illucens) as soybean substitute: Intestinal morphometry, enzymatic and microbial activity in laying hens. Res. Vet. Sci. 2018, 117, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Stanley, D.; Hughes, R.J.; Moore, R.J. Microbiota of the chicken gastrointestinal tract: Influence on health, productivity and disease. Appl. Microbiol. Biotechnol. 2014, 98, 4301–4310. [Google Scholar] [CrossRef] [PubMed]
- Pornsuwan, R.; Pootthachaya, P.; Bunchalee, P.; Hanboonsong, Y.; Cherdthong, A.; Tengjaroenkul, B.; Boonkum, W.; Wongtangtintharn, S. Evaluation of the Physical Characteristics and Chemical Properties of Black Soldier Fly (Hermetia illucens) Larvae as a Potential Protein Source for Poultry Feed. Animals 2023, 13, 2244. [Google Scholar] [CrossRef]
- Bosch, G.; Van Zanten, H.H.E.; Zamprogna, A.; Veenenbos, M.; Meijer, N.P.; Van der Fels-Klerx, H.J.; Van Loon, J.J.A. Conversion of organic resources by black soldier fly larvae: Legislation, efficiency and environmental impact. J. Clean. Prod. 2019, 222, 355–363. [Google Scholar] [CrossRef]
- Rummel, P.S.; Beule, L.; Hemkemeyer, M.; Schwalb, S.A.; Wichern, F. Black soldier fly diet impacts soil greenhouse gas emissions from frass applied as fertilizer. Front. Sustain. Food Syst. 2021, 5, 709993. [Google Scholar] [CrossRef]
- da Silva, G.D.P.; Hesselberg, T. A review of the use of black soldier fly larvae, Hermetia illucens (Diptera: Stratiomyidae), to compost organic waste in tropical regions. Neotrop. Entomol. 2020, 49, 151–162. [Google Scholar] [CrossRef]
- Dawkins, M.S.; Cook, P.A.; Whittingham, M.J.; Mansell, K.A.; Harper, A.E. What makes free-range broiler chickens’ range? In situ measurement of habitat preference. Anim. Behav. 2003, 66, 151–160. [Google Scholar] [CrossRef]
- Irawan, A.; Ratriyanto, A.; Respati, A.N.; Ningsih, N.; Fitriastuti, R.; Suprayogi, W.P.S.; Hadi, R.F.; Setyono, W.; Akhirini, N.; Jayanegara, A. Effect of feeding fermented soybean meal on broiler chickens’ performance: A meta-analysis. Anim. Biosci. 2022, 35, 1881. [Google Scholar] [CrossRef]
- Swennen, Q.; Verhulst, P.J.; Collin, A.; Bordas, A.; Verbeke, K.; Vansant, G.; Decuypere, E.; Buyse, J. Further investigations on the role of diet-induced thermogenesis in the regulation of feed intake in chickens: Comparison of adult cockerels of lines selected for high or low residual feed intake. Poult. Sci. 2007, 86, 1960–1971. [Google Scholar] [CrossRef]
- Facey, H.; Kithama, M.; Mohammadigheisar, M.; Huber, L.A.; Shoveller, A.K.; Kiarie, E.G. Complete replacement of soybean meal with black soldier fly larvae meal in feeding program for broiler chickens from placement through to 49 days of age reduced growth performance and altered organs morphology. Poult. Sci. 2023, 102, 102293. [Google Scholar] [CrossRef]
- Fruci, M.; Kithama, M.; Kiarie, E.G.; Shao, S.; Liu, H.; Topp, E.; Diarra, M.S. Effects of partial or complete replacement of soybean meal with commercial black soldier fly larvae (Hermetia illucens) meal on growth performance, cecal short chain fatty acids, and excreta metabolome of broiler chickens. Poult. Sci. 2023, 102, 102463. [Google Scholar] [CrossRef]
- Mat, K.; Kari, Z.A.; Rusli, N.D.; Rahman, M.M.; Harun, H.C.; Al-Amsyar, S.M.; Nor, M.F.M.; Dawood, M.A.; Hassan, A.M. Effects of the inclusion of black soldier fly larvae (Hermetia illucens) meal on growth performance and blood plasma constituents in broiler chicken (Gallus gallus domesticus) production. Saudi J. Biol. Sci. 2022, 29, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Nampijja, Z.; Kiggundu, M.; Kigozi, A.; Lugya, A.; Magala, H.; Ssepuuya, G.; Nakimbugwe, D.; Walusimbi, S.S.; Mugerwa, S. Optimal substitution of black soldier fly larvae for fish in broiler chicken diets. Sci. Afr. 2023, 20, 01636. [Google Scholar] [CrossRef]
- Bellezza Oddon, S.; Biasato, I.; Imarisio, A.; Pipan, M.; Dekleva, D.; Colombino, E.; Capucchio, M.T.; Meneguz, M.; Bergagna, S.; Barbero, R.; et al. Black Soldier Fly and Yellow Mealworm live larvae for broiler chickens: Effects on bird performance and health status. J. Anim. Physiol. Anim. Nutr. 2021, 105, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Ipema, A.F.; Bokkers, E.A.; Gerrits, W.J.; Kemp, B.; Bolhuis, J.E. Provision of black soldier fly larvae (Hermetia illucens) in different ways benefits broiler welfare and performance, with largest effects of scattering live larvae. Physiol. Behav. 2022, 257, 113999. [Google Scholar] [CrossRef] [PubMed]
- Seyedalmoosavi, M.M.; Mielenz, M.; Görs, S.; Wolf, P.; Daş, G.; Metges, C.C. Effects of increasing levels of whole Black Soldier Fly (Hermetia illucens) larvae in broiler rations on acceptance, nutrient and energy intakes and utilization, and growth performance of broilers. Poult. Sci. 2022, 101, 102202. [Google Scholar] [CrossRef] [PubMed]
- Attia, Y.A.; Bovera, F.; Asiry, K.A.; Alqurashi, S.; Alrefaei, M.S. Fish and Black Soldier Fly Meals as Partial Replacements for Soybean Meal Can Affect Sustainability of Productive Performance, Blood Constituents, Gut Microbiota, and Nutrient Excretion of Broiler Chickens. Animals 2023, 13, 2759. [Google Scholar] [CrossRef] [PubMed]
- Heita, D.; Mupangwa, J.; Shipandeni, M.N.T.; Charamba, V.; Kahumba, A. Effects of dietary inclusion of black soldier fly (Hermetia illucens) larvae meal on growth performance and carcass yield of broilers. STJN 2023, 16, 5–15. [Google Scholar]
- Murawska, D.; Daszkiewicz, T.; Sobotka, W.; Gesek, M.; Witkowska, D.; Matusevičius, P.; Bakuła, T. Partial and total replacement of soybean meal with full-fat black soldier fly (Hermetia illucens L.) larvae meal in broiler chicken diets: Impact on growth performance, carcass quality and meat quality. Animals 2021, 11, 2715. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, E.; Erasmus, S.W.; Uushona, T.; Hoffman, L.C. Black soldier fly (Hermetia illucens) pre-pupae meal as a dietary protein source for broiler production ensures a tasty chicken with standard meat quality for every pot. J. Sci. Food Agric. 2019, 99, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Aprianto, M.A.; Kurniawati, A.; Hanim, C.; Ariyadi, B.; Al Anas, M. Effect supplementation of black soldier fly larvae oil (Hermetia illucens L.) calcium salt on performance, blood biochemical profile, carcass characteristic, meat quality, and gene expression in fat metabolism broilers. Poult. Sci. 2023, 102, 102984. [Google Scholar] [CrossRef] [PubMed]
- Altmann, B.A.; Wigger, R.; Ciulu, M.; Mörlein, D. The effect of insect or microalga alternative protein feeds on broiler meat quality. J. Sci. Food Agric. 2020, 100, 4292–4302. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L.; et al. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci. 2017, 16, 93–100. [Google Scholar] [CrossRef]
- Popova, T.L.; Petkov, E.; Ignatova, M. Effect of black soldier fly (Hermetia illucens) meals on the meat quality in broilers. Agric. Food Sci. 2020, 29, 177–188. [Google Scholar] [CrossRef]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Miotti-Scapin, R.; Claeys, E.; De Smet, S.; Dalle Zotte, A. Black soldier fly as dietary protein source for broiler quails: Apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal 2016, 10, 1923–1930. [Google Scholar] [CrossRef]
- de Souza Vilela, J.; Andronicos, N.M.; Kolakshyapati, M.; Hilliar, M.; Sibanda, T.Z.; Andrew, N.R.; Swick, R.A.; Wilkinson, S.; Ruhnke, I. Black soldier fly larvae in broiler diets improve broiler performance and modulate the immune system. Anim. Nutr. 2021, 7, 695–706. [Google Scholar] [CrossRef]
- Kim, Y.B.; Kim, D.H.; Jeong, S.B.; Lee, J.W.; Kim, T.H.; Lee, H.G.; Lee, K.W. Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Poult. Sci. 2020, 99, 3133–3143. [Google Scholar] [CrossRef]
- Duangnumsawang, Y.; Zentek, J.; Goodarzi Boroojeni, F. Development and functional properties of intestinal mucus layer in poultry. Front. Immunol. 2021, 12, 745849. [Google Scholar] [CrossRef] [PubMed]
- Broom, L.J.; Kogut, M.H. Gut immunity: Its development and reasons and opportunities for modulation in monogastric production animals. Anim. Health Res. Rev. 2018, 19, 46–52. [Google Scholar] [CrossRef]
- Biasato, I.; Ferrocino, I.; Dabbou, S.; Evangelista, R.; Gai, F.; Gasco, L.; Cocolin, L.; Capucchio, M.T.; Schiavone, A. Black soldier fly and gut health in broiler chickens: Insights into the relationship between cecal microbiota and intestinal mucin composition. J. Anim. Sci. Biotechnol. 2020, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jin, J.; Hou, F.; Song, B.; Li, Z.; Zhao, Y. Effects of black soldier fly larvae oil on growth performance, immunity and antioxidant capacity, and intestinal function and microbiota of broilers. J. Appl. Poult. Res. 2022, 31, 100292. [Google Scholar] [CrossRef]
- Tykałowski, B.; Koncicki, A.; Kowalczyk, J.; Śmiałek, M.; Bakuła, T.; Murawska, D.; Sobotka, W.; Stenzel, T. The impact of full-fat larvae meal on the health and immune system function of broiler chickens. J. Vet. Res. 2023, 67, 197–207. [Google Scholar] [CrossRef]
- El-Kaiaty, A.M.; Atta, A.E.R.; Dawa, D.T.; El-sayed, T.R. The Impact of Black Soldier Fly (Hermetia illucens) as Feed Supplementation on Productive and Physiological Performance of Broiler Chickens. World’s Vet. J. 2022, 12, 133–140. [Google Scholar] [CrossRef]
- Li, L.; Ji, H.; Zhang, B.; Tian, J.; Zhou, J.; Yu, H. Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 2016, 465, 43–52. [Google Scholar] [CrossRef]
- Loponte, R.; Nizza, S.; Bovera, F.; De Riu, N.; Fliegerova, K.; Lombardi, P.; Moniello, G. Growth performance, blood profiles and carcass traits of Barbary partridge (Alectoris barbara) fed two different insect larvae meals (Tenebrio molitor and Hermetia illucens). Res. J. Vet. Sci. 2017, 115, 183–188. [Google Scholar] [CrossRef]
- Bongiorno, V.; Gariglio, M.; Zambotto, V.; Cappone, E.E.; Biasato, I.; Renna, M.; Forte, C.; Coudron, C.; Bergagna, S.; Gai, F.; et al. Black soldier fly larvae used for environmental enrichment purposes: Can they affect the growth, slaughter performance, and blood chemistry of medium-growing chickens? Front. Vet. Sci. 2022, 9, 1064017. [Google Scholar] [CrossRef]
- Neumann, C.; Velten, S.; Liebert, F. Improving the dietary protein quality by amino acid fortification with a high inclusion level of micro algae (Spirulina platensis) or insect meal (Hermetia illucens) in meat type chicken diets. Open J. Anim. Sci. 2018, 8, 12–26. [Google Scholar] [CrossRef]
- Ndotono, E.W.; Khamis, F.M.; Bargul, J.L.; Tanga, C.M. Insights into the Gut Microbial Communities of Broiler Chicken Fed Black Soldier Fly Larvae-Desmodium-Based Meal as a Dietary Protein Source. Microorganisms 2022, 10, 1351. [Google Scholar] [CrossRef]
- Ndotono, E.W. Diversity of the Gut Microbiome of Chicken Fed with Black Soldier Fly Larvae-Based Feeds. Ph.D. Thesis, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya, 2023. [Google Scholar]
- Kierończyk, B.; Rawski, M.; Mikołajczak, Z.; Leciejewska, N.; Józefiak, D. fat affects the gastrointestinal tract selected microbial populations, their activity, and the immune status of broiler chickens. Ann. Anim. Sci. 2021, 22, 663–675. [Google Scholar] [CrossRef]
- Waithaka, M.K.; Osuga, I.M.; Kabuage, L.W.; Subramanian, S.; Muriithi, B.; Wachira, A.M.; Tanga, C.M. Evaluating the growth and cost-benefit analysis of feeding improved indigenous chicken with diets containing black soldier fly larva meal. Front. Insect Sci. 2022, 2, 933571. [Google Scholar] [CrossRef]
- Sumbule, E.K.; Ambula, M.K.; Osuga, I.M.; Changeh, J.G.; Mwangi, D.M.; Subramanian, S.; Salifu, D.; Alaru, P.A.; Githinji, M.; Van Loon, J.J.; et al. Cost-effectiveness of black soldier fly larvae meal as substitute of fishmeal in diets for layer chicks and growers. Sustainability 2021, 13, 6074. [Google Scholar] [CrossRef]
- Mutisya, M.M.; Agbodzavu, M.K.; Kinyuru, J.N.; Tanga, C.M.; Gicheha, M.; Hailu, G.; Salifu, D.; Khan, Z.; Niassy, S. Can black soldier fly Desmodium intortum larvae-based diets enhance the performance of Cobb500 broiler chickens and smallholder farmers’ profit in Kenya? Poult. Sci. 2021, 100, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Cammack, J.A.; Tomberlin, J.K. The impact of diet protein and carbohydrate on select life-history traits of the black soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae). Insects 2017, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Nyakeri, E.M.; Ayieko, M.A.; Amimo, F.A.; Salum, H.; Ogola, H.J.O. An optimal feeding strategy for black soldier fly larvae biomass production and faecal sludge reduction. J. Insects Food Feed 2019, 5, 201–213. [Google Scholar] [CrossRef]
- Fitriana, E.L.; Laconi, E.B.; Astuti, D.A.; Jayanegara, A. Effects of various organic substrates on growth performance and nutrient composition of black soldier fly larvae: A meta-analysis. Bioresour. Technol. Rep. 2022, 18, 101061. [Google Scholar] [CrossRef]
- Weko, M.R.; Bao, F.; Ega, M.E.; Mia, H.; Una, K.S.I.; Viana, M.; Wale, L.; Nalle, C.L.; Burithnaban, Y.M.; Lema, A.T. Nutrient profile black soldier fly larvae (Hermetia illucens): Effect of feeding substrate and harvested time. Biotropia S. Asian J. Trop. Bio. 2023, 30, 297–307. [Google Scholar] [CrossRef]
- Yakti, W.; Müller, M.; Klost, M.; Mewis, I.; Dannehl, D.; Ulrichs, C. Physical properties of substrates as a driver for Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae growth. Insects 2023, 14, 266. [Google Scholar] [CrossRef]
- Association of American Feed Control Officials. 2018 AAFCO Midyear Meeting Committee Reports; AAFCO: Anaheim, CA, USA, 2018. [Google Scholar]
- Abd El Latif, M.A.; Abdel-Wareth, A.A.A.; Daley, M.; Lohakare, J. Effect of Dietary Orange Peel Meal and Multi-Enzymes on Productive, Physiological and Nutritional Responses of Broiler Chickens. Animals 2023, 13, 2473. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.A.; Lohakare, J. Bioactive Lipid Compounds as Eco-Friendly Agents in the Diets of Broiler Chicks for Sustainable Production and Health Status. Vet. Sci. 2023, 10, 612. [Google Scholar] [CrossRef]
- Amer, S.A.; Farahat, M.; Gouda, A.; Abdel-Wareth, A.A.A.; Abdel-Warith, A.-W.A.; Younis, E.M.; Elshopakey, G.E.; Baher, W.M.; Saleh, G.K.; Davies, S.J.; et al. New Insights into the Effects of Microbial Muramidase Addition in the Diets of Broiler Chickens. Animals 2023, 13, 1356. [Google Scholar] [CrossRef] [PubMed]
- Lohakare, J.; Abdel-Wareth, A.A.A. Effects of Dietary Supplementation of Oregano Bioactive Lipid Compounds and Silver Nanoparticles on Broiler Production. Sustainability 2022, 14, 13715. [Google Scholar] [CrossRef]
- Amer, S.A.; Abdel-Wareth, A.A.A.; Gouda, A.; Saleh, G.K.; Nassar, A.H.; Sherief, W.R.I.A.; Albogami, S.; Shalaby, S.I.; Abdelazim, A.M.; Abomughaid, M.M. Impact of Dietary Lavender Essential Oil on the Growth and Fatty Acid Profile of Breast Muscles, Antioxidant Activity, and Inflammatory Responses in Broiler Chickens. Antioxidants 2022, 11, 1798. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wareth, A.A.A.; Mobashar, M.; Shah, A.; Sadiq, A.B. Jojoba Seed Oil as Feed Additive for Sustainable Broiler Meat Production under Hot Climatic Conditions. Animals 2022, 12, 273. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wareth, A.A.A.; Lohakare, J. Moringa oleifera Leaves as Eco-Friendly Feed Additive in Diets of Hy-Line Brown Hens during the Late Laying Period. Animals 2021, 11, 1116. [Google Scholar] [CrossRef]
- Amer, S.A.; A-Nasser, A.; Al-Khalaifah, H.S.; AlSadek, D.M.M.; Abdel fattah, D.M.; Roushdy, E.M.; Sherief, W.R.I.A.; Farag, M.F.M.; Altohamy, D.E.; Abdel-Wareth, A.A.A.; et al. Effect of Dietary Medium-Chain α-Monoglycerides on the Growth Performance, Intestinal Histomorphology, Amino Acid Digestibility, and Broiler Chickens’ Blood Biochemical Parameters. Animals 2021, 11, 57. [Google Scholar] [CrossRef]
- Paneru, D.; Tellez-Isaias, G.; Arreguin-Nava, M.A.; Romano, N.; Bottje, W.G.; Asiamah, E.; Abdel-Wareth, A.A.A.; Lohakare, J. Effect of Fenugreek Seeds and Bacillus-Based Direct-Fed Microbials on The Growth Performance, Blood Biochemicals, and Intestinal Histomorphology of Broiler Chickens. Front. Vet. Sci. 2023, 10, 1298587. [Google Scholar] [CrossRef]
- Purkayastha, D.; Sarkar, S. Sustainable waste management using black soldier fly larva: A review. Int. J. Environ. Sci. Technol. 2021, 19, 12701–12726. [Google Scholar] [CrossRef]
- Peguero, D.A.; Gold, M.; Vandeweyer, D.; Zurbrügg, C.; Mathys, A. A review of pretreatment methods to improve agri-food waste bioconversion by black soldier fly larvae. Front. Sustain. Food Syst. 2022, 5, 745894. [Google Scholar] [CrossRef]
- Phi, C.P.V.; Walraven, M.; Bézagu, M.; Lefranc, M.; Ray, C. Industrial symbiosis in insect production-a sustainable eco-efficient and circular business model. Sustainability 2020, 12, 10333. [Google Scholar] [CrossRef]
- Smetana, S.; Palanisamy, M.; Mathys, A.; Heinz, V. Sustainability of insect use for feed and food: Life Cycle Assessment perspective. J. Clean. Prod. 2016, 137, 741–751. [Google Scholar] [CrossRef]
- Weththasinghe, P.; Rocha, S.D.; Øyås, O.; Lagos, L.; Hansen, J.Ø.; Mydland, L.T.; Øverland, M. Modulation of Atlantic salmon (Salmo salar) gut microbiota composition and predicted metabolic capacity by feeding diets with processed black soldier fly (Hermetia illucens) larvae meals and fractions. Anim. Microbiome 2022, 4, 9. [Google Scholar] [CrossRef]
- Khaemba, C.N.; Kidoido, M.M.; Owuor, G.; Tanga, C.M. Consumers’ perception towards eggs from laying hens fed commercial black soldier fly (Hermetia illucens) larvae meal-based feeds. Poult. Sci. 2022, 101, 101645. [Google Scholar] [CrossRef]
- Harriet, M.; Mburu, J.; Irungu, P.; Diiro, G.; Tanga, C.M.; Subramanian, S.; Fiaboe, K.K.M.; van Loon, J.J.; Dicke, M.; Ekesi, S. Consumer Preference and Willingness to Pay for Meat Derived from Chicken Fed on Insect-Based Feed in Kenya. In Proceedings of the 6th African Conference of Agricultural Economists, Abuja, Nigeria, 23–26 September 2019. [Google Scholar]
- Barragan-Fonseca, K.B.; Cortés-Urquijo, J.; Pineda-Mejía, J.; Lagos-Sierra, D.; Dicke, M. Small-scale Black Soldier Fly-fish farming: A model with socioeconomic benefits. Anim. Front. 2023, 13, 91–101. [Google Scholar] [CrossRef]
Type | CP (%) | CF (%) | Crude Fiber (%) | Ash (%) | Chitin (%) | References |
---|---|---|---|---|---|---|
FF | 43.1 | 38.6 | 4.1 | 2.7 | 6.7 | [55] |
FF | 41.1 | 30.1 | 0.0 | 9.3 | 0.0 | [56] |
FF | 43.9 | 29.4 | 21.3 | 13.2 | 0.0 | [53] |
FF | 35.0 | 29.8 | 7.9 | 5.3 | 0.0 | [57] |
FF | 40.1 | 32.5 | 0.0 | 10.4 | 0.0 | [58] |
FF | 27.54 | 51.53 | 0.0 | 6.59 | 3.87 | [54] |
DF | 55.42 | 9.85 | 7.4 | 8.1 | 7.21 | [54] |
DF | 65.5 | 4.6 | 0.0 | 9.3 | 6.9 | [51] |
DF | 21.6 | 6.3 | 7.0 | 9.3 | 0.0 | [50] |
SM | 49.44 | 1.4 | 7.43 | 7.19 | 0.0 | [52] |
FM | 67.53 | 10.36 | 0.26 | 17.15 | 0.0 | [52] |
Birds | Duration (Days) | Type of BSFL | Substitute to | Inclusion (%) | FI (%) | FCR (%) | BWG (gm) | References |
---|---|---|---|---|---|---|---|---|
Ross 308 | 35 | DF | SM | 5 | NS (−1.02) | NS (−0.6) | NS (−5.14) | [21] |
Ross 308 | 35 | DF | SM | 10 | NS (−1.22) | NS (0.0) | NS (9.7) | [21] |
Ross 308 | 35 | DF | SM | 15 | NS (−2.66) | *** (−7.5) | *** (−197.1) | [21] |
Ross × Ross 708 | 49 | DF | SM | 12.5 | NS (−0.39) | NS (−2) | NS (45) | [112] |
Ross × Ross 708 | 49 | DF | SM | 25 | NS (0.12) | NS (−1.83) | NS (71) | [112] |
Ross × Ross 708 | 49 | DF | SM | 50 | NS (−4.28) | *** (3.95) | *** (−248) | [112] |
Ross × Ross 708 | 49 | DF | SM | 100 | *** (−10.05) | *** (9.39) | *** (−547) | [112] |
Ross × Ross 708 | 35 | DF | SM | 12.5 | NS (−1.77) | NS (−1.55) | NS (7.20) | [113] |
Ross × Ross 708 | 35 | DF | SM | 25 | NS (−0.98) | NS (0.91) | NS (−29.90) | [113] |
Ross × Ross 708 | 35 | DF | SM | 50 | NS (−2.12) | NS (4.93) | ** (−97.70) | [113] |
Ross × Ross 708 | 35 | DF | SM | 100 | ** (−18.52) | ** (9.57) | ** (−286.20) | [113] |
Cobb-500 | 42 | DF | FM and SBM | 4 | ** (6.08) | ** (5.6) | *** (152.3) | [114] |
Cobb-500 | 42 | DF | FM and SM | 8 | ** (−10.33) | ** (44.4) | *** (−178.5) | [114] |
Cobb-500 | 42 | DF | FM and SM | 12 | ** (−34.04) | ** (−5.6) | *** (−204.7) | [114] |
Cobb-500 | 28 | FF | FM | 25 | NS (−8.99) | NS (1.99) | NS (−122.21) | [115] |
Cobb-500 | 28 | FF | FM | 50 | * (−15.78) | NS (−5.47) | NS (−123.04) | [115] |
Cobb-500 | 28 | FF | FM | 75 | * (−20.13) | NS (3.48) | *** (−258.96) | [115] |
Cobb-500 | 28 | FF | FM | 100 | * (−37.39) | *** (21.89) | *** (−544.97) | [115] |
Ross 308 | 38 | FF | 5 | NS (−1.82) | NS (0.73) | NS (39) | [116] | |
Ross 308 | 35 | FF | 8 | *** (−6.96) | *** (−0.8) | *** (98) | [117] | |
Ross-308 | 42 | FF | 10 | NS (−0.17) | NS (5.03) | NS (−81) | [118] | |
Ross-308 | 42 | FF | 20 | NS (8.46) | NS (6.29) | NS (−45) | [118] | |
Ross-308 | 42 | FF | 30 | NS (4.83) | *** (17.61) | NS (−137) | [118] | |
Arbor Acres | 42 | FF | SM | 5 | NS (13.39) | NS (9.84) | NS (−11) | [119] |
Ross-308 | 42 | FF | SM | 5 | * (−30.42) | NS (25.64) | * (364.6) | [120] |
Ross-308 | 42 | FF | SM | 10 | * (−23.90) | NS (6.15) | * (178.48) | [120] |
Ross-308 | 42 | FF | SM | 50 | ** (−10.12) | NS (−2.64) | ** (−319) | [121] |
Ross-308 | 42 | FF | SM | 75 | ** (−10.53) | NS (−2.27) | ** (−541.5) | [121] |
Ross-308 | 42 | FF | SM | 100 | ** (19.92) | * (8.53) | ** (−668) | [121] |
Inclusion (%) | Bird Number | Dressing (%) | Abdominal Fat (%) | Physical Quality | Chemical Quality | Fatty Acid Profile | References | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH (%) | WHC (%) | DL (%) | CL (%) | Protein (%) | Fat (%) | Ash (%) | SFA (%) | MUFA (%) | PUFA (%) | |||||
5 | 64 | NS (0.31) | * (−0.04) | NS (−0.04) | n.a | NS (0.12) | NS (0.38) | n.a | n.a | n.a | NS (−0.55) | *** (8.66) | *** (−5.43) | [77] |
10 | 64 | NS (0.37) | * (0.22) | NS (0.01) | n.a | NS (0.02) | NS (−0.8) | n.a | n.a | n.a | NS (0.38) | *** (14.34) | *** (−10.55) | [77] |
15 | 64 | NS (0.45) | * (0.23) | NS (−0.05) | n.a | NS (0.15) | NS (−0.4) | n.a | n.a | n.a | NS (2.57) | *** (16.52) | *** (−13.48) | [77] |
1 | 70 | NS (−0.23) | * (−0.17) | n.a | ** (5.79) | n.a | * (−0.65) | *** (0.07) | *** (−0.9) | NS (−0.22) | *** (3.31) | NS (0.14) | NS (−2.07) | [123] |
2 | 70 | NS (−0.23) | * (−0.27) | n.a | ** (6.89) | n.a | * (−0.75) | *** (0.52) | *** (−1.73) | NS (−0.41) | *** (1.97) | ** (0.88) | ** (−5) | [123] |
3 | 70 | NS (0.04) | * (−0.36) | n.a | ** (10.13) | n.a | * (−2.53) | *** (1.26) | *** (−1.15) | NS (−0.25) | *** (2.83) | ** (1.13) | ** (−4.38) | [123] |
5 | 80 | NS (0.3) | n.a | NS (−0.63) | n.a | NS (0.16) | NS (−1.47) | NS (−0.1) | NS (0) | NS (0) | n.a | n.a | n.a | [122] |
10 | 80 | NS (0.4) | n.a | NS (−0.94) | n.a | NS (1.06) | NS (−4.24) | NS (−0.3) | NS (−0.1) | NS (0) | n.a | n.a | n.a | [122] |
15 | 80 | NS (−0.8) | n.a | NS (−0.94) | n.a | NS (0.48) | NS (0.76) | NS (0.1) | NS (0.3) | NS (0) | n.a | n.a | n.a | [122] |
50 | 49 | * (9.2) | n.a | n.a | n.a | NS (0.02) | NS (2.71) | n.a | n.a | n.a | * (18.15) | * (12.96) | * (−13.64) | [124] |
50 | 40 | NS (0.54) | n.a | NS (1.28) | n.a | NS (−0.01) | n.a | NS (0.3) | NS (−0.01) | NS (0.05) | **** (26.74) | *** (−7.58) | **** (−16.85) | [20] |
100 | 40 | NS (3.53) | n.a | NS (0.96) | n.a | NS (−0.02) | n.a | NS (−0.1) | NS (0.28) | NS (0.1) | **** (59.03) | *** (−15.16) | **** (−36.41) | [20] |
50 | 50 | NS (3.84) | NS (−0.2) | NS (0.52) | n.a | NS (1.2) | n.a | NS (0) | NS (0.06) | NS (0) | **** (17.39) | NS (1.32) | **** (−15.49) | [125] |
100 | 50 | NS (0.75) | NS (0.2) | NS (1.37) | n.a | NS (0.4) | n.a | NS (0) | NS (−0.14) | * (−0.01) | **** (35.09) | NS (0.88) | **** (−28.26) | [125] |
50 | 96 | *** (−1.3) | *** (0.34) | *** (3.10) | n.a | NS (−0.2) | *** (−2.96) | n.a | n.a | n.a | n.a | n.a | [121] | |
75 | 96 | *** (−6) | *** (0.92) | *** (−3.26) | n.a | NS (−0.01) | *** (−4.73) | n.a | n.a | n.a | n.a | n.a | [121] | |
100 | 96 | *** (−3.7) | *** (1.15) | *** (3.10) | n.a | NS (−0.18) | *** (−4.64) | n.a | n.a | n.a | n.a | n.a | [121] |
Inclusion (%) | Birds Nr | Type of Meat | L* | a* | b* | References |
---|---|---|---|---|---|---|
50 | 96 | Breast | ** (−6.21) | ** (12.44) | *** (−20.63) | [121] |
75 | 96 | Breast | ** (−5.49) | ** (33.61) | *** (−6.30) | [121] |
100 | 96 | Breast | ** (−4.93) | ** (20.17) | *** (−12.75) | [121] |
1 | 70 | Breast | NS (−2.41) | *** (14.95) | ** (8.54) | [123] |
2 | 70 | Breast | NS (−2.56) | *** (75.25) | ** (27.07) | [123] |
3 | 70 | Breast | NS (−4.56) | *** (53.61) | ** (35.87) | [123] |
5 | 50 | Breast | *** (9.53) | NS (−13.63) | * (−21.11) | [126] |
50 | 40 | Breast | NS (−0.64) | NS (17.65) | NS (10.85) | [20] |
100 | 40 | Breast | NS (2.12) | NS (5.43) | NS (12.40) | [20] |
10 | 150 | Breast | NS (0.55) | * (39.51) | NS (5.03) | [127] |
15 | 150 | Breast | NS (−0.73) | * (−43.21) | NS (1.29) | [127] |
2.5 | 80 | Breast | NS (2.06) | NS (−2.38) | NS (59.5) | [128] |
5 | 80 | Breast | NS (0.86) | NS (−3.89) | NS (78.6) | [128] |
7.5 | 80 | Breast | NS (1.37) | NS (−2.59) | NS (71.4) | [128] |
10 | 80 | Breast | NS (2.06) | NS (−9.07) | NS (114.3) | [128] |
5 | 150 | Breast | NS (−1.82) | NS (32.19) | ** (15.88) | [129] |
5 | 150 | Thigh | NS (1.16) | NS (−7.23) | NS (5.71) | [129] |
5 | 50 | Thigh | **** (9.43) | NS (−18.47) | * (−24.47) | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salahuddin, M.; Abdel-Wareth, A.A.A.; Hiramatsu, K.; Tomberlin, J.K.; Luza, D.; Lohakare, J. Flight toward Sustainability in Poultry Nutrition with Black Soldier Fly Larvae. Animals 2024, 14, 510. https://doi.org/10.3390/ani14030510
Salahuddin M, Abdel-Wareth AAA, Hiramatsu K, Tomberlin JK, Luza D, Lohakare J. Flight toward Sustainability in Poultry Nutrition with Black Soldier Fly Larvae. Animals. 2024; 14(3):510. https://doi.org/10.3390/ani14030510
Chicago/Turabian StyleSalahuddin, Md, Ahmed A. A. Abdel-Wareth, Kohzy Hiramatsu, Jeffery K. Tomberlin, Daylan Luza, and Jayant Lohakare. 2024. "Flight toward Sustainability in Poultry Nutrition with Black Soldier Fly Larvae" Animals 14, no. 3: 510. https://doi.org/10.3390/ani14030510
APA StyleSalahuddin, M., Abdel-Wareth, A. A. A., Hiramatsu, K., Tomberlin, J. K., Luza, D., & Lohakare, J. (2024). Flight toward Sustainability in Poultry Nutrition with Black Soldier Fly Larvae. Animals, 14(3), 510. https://doi.org/10.3390/ani14030510