Seasonal Changes in Hemolymph Protein Level and Hypopharyngeal Gland Size Depending on Age and In-Nest Location of Honeybee Workers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection and Treatment of Experimental Bee Colonies
2.2. Worker Bees’ Biological Age Marker Development during the Season—Experiment 1
2.3. Worker Bee Position within the Hive Nest—Experiment 2
2.4. Hypopharyngeal Gland Dissection
2.5. Hemolymph Collection
2.6. Total Hemolymph Protein Quantification
2.7. Hemolymph Storage
2.8. Statistical Analysis
3. Results
3.1. Monitoring the Sesonal Biomarkers—Experiment 1
3.1.1. Hypopharyngeal Gland Size Development
3.1.2. Total Hemolymph Protein Content Development within a Season
3.2. Worker Bee Position within the Hive Nest—Experiment 2
3.3. Hemolymph Storability
4. Discussion
4.1. Biological Age and Worker Bee Position in the Colony
4.2. Hypopharyngeal Gland Size
4.3. Total Hemolymph Protein Content
4.4. Hemolymph Storability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Free, J.B. Hypopharyngeal gland development and division of labour in honey-bee (Apis mellifera L.) colonies. Proc. R. Entomol. Soc. Lond. 1961, 36, 5–8. [Google Scholar] [CrossRef]
- Seeley, T.D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 1982, 11, 287–293. [Google Scholar] [CrossRef]
- Moritz, R.; Southwick, E.E. Bees as Superorganisms: An Evolutionary Reality, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1992; p. 395. ISBN 978-3-642-84668-7. [Google Scholar]
- Winston, M.L.; Slessor, K.N. Honey bee primer pheromones and colony organization: Gaps in our knowledge. Apidologie 1998, 29, 81–95. [Google Scholar] [CrossRef]
- Robinson, G.E. Regulation of division of labor in insect societies. Annu. Rev. Entomol. 1992, 37, 637–665. [Google Scholar] [CrossRef] [PubMed]
- Kratky, E. Morphologie und Physiologie der Drüser in Kopf und Thorax der Honigbiene (Apis mellifica L.). Z. Wiss. Zool. 1931, 139, 120–200. [Google Scholar]
- Rutz, W.; Gerig, L.; Wille, H.; Lüscher, M. The function of juvenile hormone in adult worker honeybees, Apis mellifera. J. Insect Physiol. 1976, 22, 1485–1491. [Google Scholar] [CrossRef]
- Fluri, P.; Lüscher, M.; Wille, H.; Gerig, L. Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J. Insect Physiol. 1982, 28, 61–68. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Otis, G.W.; Teal, P.E.A. Nature of brood signal activating the protein synthesis of hypopharyngeal gland in honey bees, Apis mellifera (Apidae: Hymenoptera). Apidologie 1989, 20, 455–464. [Google Scholar] [CrossRef]
- Lindauer, M. Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat. Z. Vgl. Physiol. 1952, 34, 299–345. [Google Scholar] [CrossRef]
- Soudek, Š. The Pharyngeal Glands of the Honeybee (Apis mellifica L.) [The Pharyngeal Glands of the Honeybee (Apis mellifica L.)]. In Sborník Vysoké Školy Zemědělské v Brně; Mendel University in Brno: Brno, Czech Republic, 1927; pp. 1–63. [Google Scholar]
- Barker, S.A.; Foster, A.B.; Lamb, D.C.; Jackman, L.M. Biological Origin and Configuration of 10-Hydroxy-Δ2-decenoic acid. Nature 1959, 184, 634. [Google Scholar] [CrossRef] [PubMed]
- Winston, M.L. The Biology of the Honey Bee; Harvard University Press: Cambridge, MA, USA, 1987; p. 281. [Google Scholar]
- Seeley, T.D.; Kolmes, S.A. Age polyethism for hive duties in honey bees—Illusion or reality? Ethology 1991, 87, 284–297. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Robinson, G.E. Honeybee colony integration: Worker-worker interactions mediate hormonally regulated plasticity in division of labor. Proc. Natl. Acad. Sci. USA 1992, 89, 11726–11729. [Google Scholar] [CrossRef]
- Hrassnigg, N.; Crailsheim, K. Adaptation of hypopharyngeal gland development to the brood status of honeybee (Apis mellifera L.) colonies. J. Insect Physiol. 1998, 44, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Kunc, M.; Dobeš, P.; Hurychová, J.; Vojtek, L.; Poiani, S.B.; Danihlík, J.; Havlík, J.; Titěra, D.; Hyršl, P. The year of the honey bee (Apis mellifera L.) with respect to its physiology and immunity: A search for biochemical markers of longevity. Insects 2019, 10, 244. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Robinson, G.E. Regulation of honey bee division of labor by colony age demography. Behav. Ecol. Sociobiol. 1996, 39, 147–158. [Google Scholar] [CrossRef]
- Alaux, C.; Soubeyrand, S.; Prado, A.; Peruzzi, M.; Maisonnasse, A.; Vallon, J.; Hernandez, J.; Jourdan, P.; Le Conte, Y. Measuring biological age to assess colony demographics in honeybees. PLoS ONE 2018, 13, 0209192. [Google Scholar] [CrossRef]
- Rosch, G.A. Untersuchungen über die Arbeitsteilung im Bienenstaat. II. Teil: Die Tatigkeiten der Arbeitsbienen unter experimentell veranderten bedingungen. Z. Vgl. Physiol. 1930, 12, 1–71. [Google Scholar] [CrossRef]
- Winston, M.L.; Fergusson, L.A. The effect of worker loss on temporal caste structure in colonies of the honeybee (Apis mellifera L.). Can. J. Zool. 1985, 63, 777–780. [Google Scholar] [CrossRef]
- Fergusson, L.A.; Winston, M.L. The influence of wax deprivation on temporal polyethism in honey bee (Apis mellifera L.) colonies. Can. J. Zool. 1988, 66, 1997–2001. [Google Scholar] [CrossRef]
- Fukuda, H.; Sekiguchi, K. Seasonal change of the honeybee worker longevity in Sapporo, North Japan, with notes on some factors affecting the life-span. Jpn. J. Ecol. 1966, 16, 206–212. [Google Scholar] [CrossRef]
- Jarman, S.N.; Polanowski, A.M.; Faux, C.E.; Robbins, J.; de Paoli-Iseppi, R.; Bravington, M.; Deagle, B.E. Molecular biomarkers for chronological age in animal ecology. Mol. Ecol. 2015, 24, 4826–4847. [Google Scholar] [CrossRef]
- Kodrík, D.; Krištůfek, V.; Svobodová, Z. Bee year: Basic physiological strategies to cope with seasonality. Comp. Biochem. Physiol. 2022, 264, 111115. [Google Scholar] [CrossRef]
- Sakagami, S. Untersuchungen über die Arbeitsteilung in einen Zwergvolk der Honigbienen. Beitrage zur Biologie des Bienenvolkes, Apis mellifera L. Jpn. J. Zool. 1953, 11, 117–185. [Google Scholar]
- Halberstadt, K. Über die proteine der hypopharynxdrüseder bienenarbeiterin. II.—Elektrophoretische untersuchung der sekretproteine bei schwarmbienen und arbeiterinnen aus brutschwachen völkern (1). Les Ann. L’abeille 1967, 10, 119–132. [Google Scholar] [CrossRef]
- Brouwers, E.V.M. Measurement of hypopharyngeal gland activity in the honeybee. J. Apic. Res. 1982, 21, 193–198. [Google Scholar] [CrossRef]
- Takenaka, T.; Kaatz, H.H. Protein Synthesis by Hypopharyngeal Glands of Worker Honey Bees; Chemistry and Biology of Social Insects: München, Germany, 1987; pp. 166–167. [Google Scholar]
- Crailsheim, K. The protein balance of the honey bee worker. Apidologie 1990, 21, 417–429. [Google Scholar] [CrossRef]
- Crailsheim, K. Dependence of protein metabolism on age and season in the honeybee (Apis mellifica carnica Pollm). J. Insect Physiol. 1986, 32, 629–634. [Google Scholar] [CrossRef]
- Sinizki, N.N.; Lewtschenko, I.W. Der Gehalt an Eiweiß und freien Aminosäuren in der Hämolymphe der Arbeitsindividuen der Honigbiene. In Proceedings of the 23rd International Apicultural Apimondia Congress, Moscow, Apimondia Publ House, Bucharest, Romania, 27 August–2 September1971; pp. 361–364. [Google Scholar]
- Simpson, J.; Riedel, I.B.; Wilding, N. Invertase in the hypopharyngeal glands of the honeybee. J. Apic. Res. 1968, 7, 29–36. [Google Scholar] [CrossRef]
- Halberstadt, K. Electrophoretical investigations concerning the secretory activity of the hypopharyngeal gland of the honey bee (Apis mellifera L.). Insectes Soc. 1980, 27, 61–77. [Google Scholar] [CrossRef]
- Sasagawa, H.; Sasaki, M.; Okada, I. Hormonal control of the division of labor in adult honeybees (Apis mellifera L.): I. Effect of methoprene on corpora allata and hypopharyngeal gland, and its α-glucosidase activity. Appl. Entomol. Zool. 1989, 24, 66–77. [Google Scholar] [CrossRef]
- Ohashi, K.; Natori, S.; Kubo, T. Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age-dependent role change of the worker honeybee (Apis mellifera L.). Eur. J. Biochem. 1999, 265, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Cremonz, T.M.; de Jong, D.; Bitondi, M.M. Quantification of hemolymph proteins as a fast method for testing protein diets for honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 1998, 91, 1284–1289. [Google Scholar] [CrossRef]
- Cappelari, F.A.; Turcatto, A.P.; Morais, M.M.; de Jong, D. Africanized honey bees more efficiently convert protein diets into hemolymph protein than do Carniolan bees (Apis mellifera carnica). Genet. Mol. Res. 2009, 8, 1245–1249. [Google Scholar] [CrossRef] [PubMed]
- Basualdo, M.; Barragán, S.; Vanagas, L.; Garcia, C.; Solana, H.; Rodriguez, E.; Bedascarrasbure, E. Conversion of high and low pollen protein diets into protein in worker honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 2013, 106, 1553–1558. [Google Scholar] [CrossRef] [PubMed]
- Dietz, A. Initiation of pollen consumption and pollen movement through the alimentary canal of newly emerged honey bees. Ann. Entomol. Soc. Am. 1969, 62, 4346. [Google Scholar] [CrossRef]
- Haydak, M.H. Honey bee nutrition. Annu. Rev. Entomol. 1970, 15, 143–156. [Google Scholar] [CrossRef]
- Deseyn, J.; Billen, J. Age-dependent morphology and ultrastructure of the hypopharyngeal gland of Apis mellifera workers (Hymenoptera, Apidae). Apidologie 2005, 36, 49–57. [Google Scholar] [CrossRef]
- Jaycox, E.R.; Skowronek, W.; Guynn, G. Behavioral changes in worker honey bees (Apis mellifera) induced by injections of a juvenile hormone mimic. Ann. Entomol. Soc. Am. 1974, 67, 529–534. [Google Scholar] [CrossRef]
- Mohammedi, A.; Crauser, A.; Paris, A.; Le Conte, Y. Effect of a brood pheromone on honeybee hypopharyngeal glands. C. R. Acad. Sci. Gen. 1996, 319, 769–772. [Google Scholar]
- Hartfelder, K.; Bitondi, M.M.; Brent, C.S.; Guidugli-Lazzarini, K.R.; Simões, Z.L.; Stabentheiner, A.; Tanaka, É.D.; Wang, Y. Standard methods for physiology and biochemistry research in Apis mellifera. J. Apic. Res. 2013, 52, 1–48. [Google Scholar] [CrossRef]
- Fluri, P.; Wille, H.; Gerig, L.; Lüscher, M. Juvenile hormone, vitellogenin and haemocyte composition in winter worker honeybees (Apis mellifera). Experientia 1977, 33, 1240–1241. [Google Scholar] [CrossRef]
- Amdam, G.V.; Aase, A.L.T.; Seehuus, S.C.; Fondrk, M.K.; Norberg, K.; Hartfelder, K. Social reversal of immunosenescence in honey bee workers. Exp. Gerontol. 2005, 40, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Seehuus, S.C.; Norberg, K.; Gimsa, U.; Krekling, T.; Amdam, G.V. Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc. Natl. Acad. Sci. USA 2006, 103, 962–967. [Google Scholar] [CrossRef] [PubMed]
- Rutz, W.; Lüscher, M. The occurrence of vitellogenin in workers and queens of Apis mellifica and the possibility of its transmission to the queen. J. Insect Physiol. 1974, 20, 897–909. [Google Scholar] [CrossRef] [PubMed]
- Free, J.B. The distribution of bees in a honey-bee (Apis mellifera L.) colony. Proc. R. Entomol. Soc. Lond. 1960, 35, 141–144. [Google Scholar] [CrossRef]
- Přidal, A.; Šustek, D. Development of hypopharyngeal glands in honeybee workers during growth and swarming fever of their colonies. Pszczel. Zest. Nauk. 2000, 44, 25–34. [Google Scholar]
- Delaplane, K.S.; van der Steen, J.; Guzman-Novoa, E. Standard methods for estimating strength parameters of Apis mellifera colonies. J. Apic. Res. 2013, 52, 1–12. [Google Scholar] [CrossRef]
- Wegener, J.; Huang, Z.-Y.; Lorenz, M.W.; Bienefeld, K. Regulation of hypopharyngeal gland activity and oogenesis in honey bee (Apis mellifera) workers. J. Insect Physiol. 2009, 55, 716–725. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- DuBois, K.P.; Erway, W.F. Studies on the mechanism of action of thiourea and related compounds: II. Inhibition of oxidative enzymes and oxidations catalyzed by copper. J. Biol. Chem. 1946, 165, 711–721. [Google Scholar] [CrossRef]
- van der Steen, J.J.M.; Cornelissen, B.; Donders, J.; Blacquiere, T.; van Dooremalen, C. How honey bees of successive age classes are distributed over a one storey, ten frames hive. J. Apic. Res. 2012, 51, 174–178. [Google Scholar] [CrossRef]
- Crane, E. Bees and Beekeeping: Science, Practice and World Resources, 1st ed.; Heinemann Newnes: Oxford, UK, 1990; p. 614. ISBN 0-434-90271-3. [Google Scholar]
- Graham, J.M. The Hive and the Honeybee; Dadant & Sons: Hamilton, IL, USA, 1992; p. 1324. ISBN 978-09-1569-809-7. [Google Scholar]
- Tomšík, B.; Lisý, E. Selekce včel. [Selection of honeybees]. In Včelařství, 1st ed.; Tomšík, B., Lisý, E., Svoboda, J., Hejtmánek, J., Eds.; Československá akademie věd: Praha, Czech Republic, 1953; pp. 216–290. [Google Scholar]
- Škrobal, D.; Krieg, P. Ošetřování včelstev během roku. [Honeybee colony manipulations within a year]. In Včelařství, 1st ed.; Veselý, V., Ed.; SZN: Praha, Czech Republic, 1985; pp. 137–197. [Google Scholar]
- Lotmar, R. Untersuchungen über den Eisenstoffwechsel der Insekten, besonders der Honigbienen. Rev. Suisse Zool. 1938, 45, 237–271. [Google Scholar]
- Přidal, A.; Háslbachová, H.; Kubišová, S. Stav hltanových žláz a vaječníků dělnic včely medonosné (Apis mellifera L.) v období rozvoje včelstev a rojení. [Condition of hypopharyngeal glands and ovaries of honeybee workers (Apis mellifera L.) during growth and swarming of colonies]. Acta Univ. Agric. Silvic. Mendel. Brun. 1997, 45, 51–58. [Google Scholar]
- Kunert, K.; Crailsheim, K. Seasonal changes in carbohydrate, lipid and protein content in emerging worker honeybees and their mortality. J. Apic. Res. 1988, 27, 13–21. [Google Scholar] [CrossRef]
- Williams, G.R.; Alaux, C.; Costa, C.; Csáki, T.; Doublet, V.; Eisenhardt, D.; Fries, I.; Kuhn, R.; McMahon, D.P.; Medrzycki, P.; et al. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J. Apic. Res. 2013, 52, 1–36. [Google Scholar] [CrossRef]
- Otis, G.W.; Wheeler, D.E.; Buck, N.; Mattila, H.R. Storage proteins in winter honey bees. Apiacata 2004, 38, 352–357. [Google Scholar]
- Haydak, M.H. Value of foods other than pollen in nutrition of the honeybee. J. Econ. Entomol. 1936, 29, 870–877. [Google Scholar] [CrossRef]
- de Groot, A.P. Protein and amino acid requirements of the honeybee (Apis mellifica L.). Physiol. Comp. Ocol. 1953, 3, 197–285. [Google Scholar]
- de Groot, A.P. The influence of temperature and kind of food on the increase in the nitrogen content of the young worker honeybee (Apis mellifica L.). Proc. K. Ned. Akad. Wet. C 1950, 53, 560–566. [Google Scholar]
- Wahl, O. Vergleichende Untersuchungen über den Nährwert von Pollen, Hefe, Soja-mehl und Trockenmilch für die Honigbiene (Apis mellifica). Z. Bienenforsch 1963, 6, 209–279. [Google Scholar]
- Neukirch, A. Dependence of the life span of the honeybee (Apis mellifica) upon flight performance and energy consumption. J. Comp. Physiol. 1982, 146, 35–40. [Google Scholar] [CrossRef]
- Smedal, B.; Brynem, M.; Kreibich, C.D.; Amdam, G.V. Brood pheromone suppresses physiology of extreme longevity in honeybees (Apis mellifera). J. Exp. Biol. 2009, 212, 3795–3801. [Google Scholar] [CrossRef] [PubMed]
- Melnichuk, I.A. Physiological exhaustion of honeybees after autumn processing of sugar syrup. Tr. Nauchno-Isledovatelnovo Inst. Pchelovodstva 1966, 79–89. (In Russian) [Google Scholar]
- Skubida, P. Wplyw zróznicowanego sposobu przygotowania zapasów zimowych na rozwój i produkcyjnosc rodzin. Pszczel. Zest. Nauk. 1998, 42, 95–117. [Google Scholar]
- Mattila, H.R.; Otis, G.W. Dwindling pollen resources trigger the transition to broodless populations of long-lived honeybees each autumn. Ecol. Entomol. 2007, 32, 496–505. [Google Scholar] [CrossRef]
- Maurizio, A. The influence of pollen feeding and brood rearing on the length of life and physiological condition of the honeybee: Preliminary report. Bee World 1950, 31, 9–12. [Google Scholar] [CrossRef]
- Amdam, G.V.; Omholt, S.W. The regulatory anatomy of honeybee lifespan. J. Theor. Biol. 2002, 216, 209–228. [Google Scholar] [CrossRef]
- Mattila, H.R.; Otis, G.W. The effects of pollen availability during larval development on the behaviour and physiology of spring-reared honey bee workers. Apidology 2006, 37, 533–546. [Google Scholar] [CrossRef]
- Mattila, H.R.; Otis, G.W. Influence of pollen diet in spring on development of honey bee (Hymenoptera: Apidae) colonies. J. Econom. Entomol. 2006, 99, 604–613. [Google Scholar] [CrossRef]
- Maisonnasse, A.; Lenoir, J.C.; Beslay, D.; Crauser, D.; Le Conte, Y. E-β-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLoS ONE 2010, 5, e13531. [Google Scholar] [CrossRef]
- Pankiw, T. Worker honey bee pheromone regulation of foraging ontogeny. Naturwissenschaften 2004, 91, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Eyer, M.; Dainat, B.; Neumann, P.; Dietemann, V. Social regulation of ageing by young workers in the honey bee, Apis mellifera. Exp. Geront. 2017, 87, 84–91. [Google Scholar] [CrossRef] [PubMed]
Seasonal Cohort | Workers’ Age (Weeks) Number of Sampled Workers in Each Colony Strength: Weak + Medium + Strong, Respectively | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | |
Spring | 5 + 5 + 5 | 5 + 10 + 10 | 5 + 10 + 10 | 5 + 10 + 10 | 5 + 5 + 5 | 0 |
Early summer | 5 + 5 + 5 | 5 + 10 + 10 | 10 + 10 + 10 | 10 + 10 + 10 | 5 + 5 + 5 | 5 + 3 + 5 |
Late summer | 0 + 7 + 7 | 0 + 14 + 14 | 0 + 14 + 14 | 0 + 14 + 14 | 0 + 7 + 4 | 0 + 7 + 0 |
Sample Composition | Parameter | 0 h (n = 6) | 24 h (n = 18) | 1 Week (n = 18) | 2 Weeks (n = 18) | 4 Weeks (n = 18) |
---|---|---|---|---|---|---|
H+PBS | p-Value | 0.808 | 0.851 | 0.887 | 0.006 | |
± SEM | 22.8 ± 0.3 | 22.7 ± 0.3 | 22.6 ± 0.5 | 22.9 ± 0.3 | 25.3 ± 0.5 | |
cv | 3.6% | 6.1% | 9.1% | 5.5% | 7.6% | |
H+PBS+PTU | p-Value | 0.015 | 0.020 | 0.532 | 0.133 | |
± SEM | 21.3 ± 0.5 | 23.3 ± 0.4 | 22.8 ± 0.3 | 20.8 ± 0.4 | 23.1 ± 0.6 | |
cv | 6.0% | 7.5% | 5.8% | 8.6% | 11.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musila, J.; Přidal, A. Seasonal Changes in Hemolymph Protein Level and Hypopharyngeal Gland Size Depending on Age and In-Nest Location of Honeybee Workers. Animals 2024, 14, 512. https://doi.org/10.3390/ani14030512
Musila J, Přidal A. Seasonal Changes in Hemolymph Protein Level and Hypopharyngeal Gland Size Depending on Age and In-Nest Location of Honeybee Workers. Animals. 2024; 14(3):512. https://doi.org/10.3390/ani14030512
Chicago/Turabian StyleMusila, Jan, and Antonín Přidal. 2024. "Seasonal Changes in Hemolymph Protein Level and Hypopharyngeal Gland Size Depending on Age and In-Nest Location of Honeybee Workers" Animals 14, no. 3: 512. https://doi.org/10.3390/ani14030512
APA StyleMusila, J., & Přidal, A. (2024). Seasonal Changes in Hemolymph Protein Level and Hypopharyngeal Gland Size Depending on Age and In-Nest Location of Honeybee Workers. Animals, 14(3), 512. https://doi.org/10.3390/ani14030512