The Welfare of Horses Competing in Three-Barrel Race Events Is Shown to Be Not Inhibited by Short Intervals between Starts
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Breeding System
2.2. Three-Barrel Race Test
2.3. Collection of Blood Samples
2.4. Thermography
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Souza, T.M.S.; Rêgo, G.M.; Nunes, G.S.; Paraguaio, P.E.; Machado, L.P. Elevação transitória da atividade sérica das enzimas musculares em equinos após exercício de vaquejada. Cien. Vet. Trop. 2014, 17, 56–57. [Google Scholar]
- Silva, C.J.F.L.; Trindade, K.L.G.; Cruz, R.K.S.; Vilela, C.F.; Coelho, C.S.; Ribeiro Filho, J.D.; Manso, H.H.C.C.C.; Manso Filho, H.C. Association between infrared thermography, blood count and creatine kinase in the evaluation of the welfare of vaquejada horses. Open J. Vet. Med. 2023, 13, 53–67. [Google Scholar] [CrossRef]
- Lo Feudo, C.M.; Stucchi, L.; Conturba, B.; Stancari, G.; Zucca, E.; Ferrucci, F. Medical causes of poor performance and their associations with fitness in Standardbred racehorses. J. Vet. Intern. Med. 2023, 37, 1514–1527. [Google Scholar] [CrossRef] [PubMed]
- Witkowska-Piłaszewicz, O.D.; Zmigrodzka, M.; Winnicka, A.; Miskiewicz, A.; Strzelec, K.; Cywinska, A. Serum amyloid A in equine health and disease. Equine Vet. J. 2019, 51, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Voigt, M.A.; Hiney, K.; Richardson, J.C.; Waite, K.; Borron, A.; Brady, C.M. Show Horse Welfare: Horse Show Competitors’ Understanding, Awareness, and Perceptions of Equine Welfare. J. Appl. Anim. Welf. Sci. 2016, 19, 335–352. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Ramsay, J.D.; Wakshlag, J.J.; Stokol, T.; Reed, S.; Divers, T.J. Investigating the pathogenesis of high-serum gamma-glutamyl transferase activity in Thoroughbred racehorses: A series of case-control studies. Equine Vet. J. 2022, 54, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Holtby, A.R.; McGivney, B.A.; Browne, J.A.; Katz, L.M.; Murphy, K.J.; Hill, E.W. Variation in salivary cortisol responses in yearling Thoroughbred racehorses during their first year of training. PLoS ONE. 2023, 18, e0284102. [Google Scholar] [CrossRef]
- Atock, M.A.; Williams, R.B. Welfare of competition horses. Rev. Sci. Et Tech. (Int. Off. Epizoot.) 1994, 13, 217–232. [Google Scholar] [CrossRef]
- Andriichuk, A.; Tkachenko, H.; Tkachova, I. Oxidative Stress Biomarkers and Erythrocytes Hemolysis in Well-Trained Equine Athletes Before and After Exercise. J. Equine Vet. Sci. 2016, 36, 32–43. [Google Scholar] [CrossRef]
- Mach, N.; Ruet, A.; Clark, A.; Bars-Cortina, D.; Ramayo-Caldas, Y.; Crisci, E.; Pennarun, S.; Dhorne-Pollet, S.; Foury, A.; Moisan, M.-P.; et al. Priming for welfare: Gut microbiota is associated with equitation conditions and behavior in horse athletes. Sci. Rep. 2020, 10, 8311. [Google Scholar] [CrossRef]
- Gold, J.R.; Knowles, D.P.; Coffey, T.; Bayly, W.M. Exercise-induced pulmonary hemorrhage in barrel racing horses in the Pacific Northwest region of the United States. J. Vet. Intern. Med. 2018, 32, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.A.; Hunka, M.M.; Nery, P.C.R.; Coelho, C.S.; Manso, H.E.C.C.C.; Manso Filho, H.C. The effect of repeated barrel racing on blood biomarkers and physiological parameters in Quarter Horses. Comp. Exerc. Physiol. 2018, 14, 47–54. [Google Scholar] [CrossRef]
- Scott, M. Musculoskeletal injuries in nonracing Quarter Horses. Vet. Clin. Equine 2008, 24, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Medica, P.; Cravana, C.; Fazio, E.; Ferlazzo, A. Hormonal responses of Quarter Horses to a 6-week conventional Western-riding training programe. Livest. Sci. 2011, 140, 262–267. [Google Scholar] [CrossRef]
- Sala, L.C.C.; Elui, M.C.; Jardin, M.C. Avaliação termográfica da musculatura pélvica de equinos da modalidade esportiva de três tambores. PUBVET 2012, 6, 1437. [Google Scholar] [CrossRef]
- Rodrigues, I.M.S.M.M.; Spindola, B.F.; Botteon, P.T.L. Perfil bioquímico e oxidativo de cavalos usados em prova simulada dos três tambores. Rev. Bras. Med. Vetet. 2016, 38, 93–100. [Google Scholar] [CrossRef]
- Gomes, C.L.N.; Alves, A.M.; Ribeiro Filho, J.D.; Moraes Junior, F.J.; Barreto Junior, R.A.; Fucuta, R.S.; Ribeiro, B.M.; Miranda, L.M. Physiological and biochemical responses and hydration status in equines after two-barrel racing courses. Pesq. Vet. Bras. 2020, 40, 992–1001. [Google Scholar] [CrossRef]
- Holtby, A.R.; Hall, T.J.; Han, H.; Murhy, K.J.; MacHugh, D.E.; Katz, L.M.; Hill, E.W. Integrative genomics analysis highlights functionally relevant genes for equine behaviour. Anim. Genet. 2023, 1–13. [Google Scholar] [CrossRef]
- Hunka, M.M.; Souza, L.A.; Almeida, T.H.S.; Nery, P.C.R.; Manso, H.E.C.C.C.; Manso Filho, H.C. Metabolic and physiological changes during and after vaquejada exercise in horse. Med. Veterinária (UFRPE) 2018, 12, 254–262. [Google Scholar] [CrossRef]
- Liburt, N.R.; Adams, A.; Betancourt, A.; Horohov, D.W.; McKeever, K.H. Exercise-induced increases in inflammatory cytokines in muscle and blood of horses. Equine Vet. J. 2010, 42, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Brownlow, M.; Smith, T. The use of the hand-held infrared thermometer as an early detection tool for exertional heat illness in Thoroughbred racehorses: A study at racetracks in eastern Australia. Equine Vet. Educ. 2020, 33, 296–305. [Google Scholar] [CrossRef]
- Witkowska-Piłaszewicz, O.; Masko, M.; Domino, M.; Winnicka, A. Infrared thermography correlates with lactate concentration in blood during race training in horses. Animals 2020, 10, 2072. [Google Scholar] [CrossRef] [PubMed]
- Kędzierski, W.; Cywińska, A. The Effect of Different Physical Exercise on Plasma Leptin, Cortisol, and Some Energetic Parameters Concentrations in Purebred Arabian Horses. J. Equine Vet. Sci. 2014, 34, 1059–1063. [Google Scholar] [CrossRef]
- Bartolomé, E.; Sánchez, M.J.; Molina, A.; Schaefer, A.L.; Cervantes, I.; Valera, M. Using eye temperature and heart rate for stress assessment in young horses competing in jumping competitions and its possible influence on sport performance. Animal 2013, 7, 2044–2053. [Google Scholar] [CrossRef]
- Valera, M.; Bartolomé, E.; Sánchez, M.J.; Molina, A.; Cook, N.; Schaefer, A.L. Changes in Eye Temperature and Stress Assessment in Horses During Show Jumping Competitions. J. Equine Vet. Sci. 2012, 32, 827–830. [Google Scholar] [CrossRef]
- ABQM—Associação Brasileira de Criadores de Cavalo Quarto de Milha. Regras Para Provas Dos Três Tambores; ABQM: São Paulo, Brazil, 2020; 175p. [Google Scholar]
- Mellor, D.J. Operational details of the five domains model and its key applications to the assessment and management of animal welfare. Animals 2017, 7, 60. [Google Scholar] [CrossRef]
- Turner, T.A. Diagnostic thermography. Vet. Clin. N. Am. 2001, 17, 95–113. [Google Scholar] [CrossRef]
- Bartolomé, E.; Perdomo-González, D.I.; Sánchez-Guerrero, M.J.; Valera, M. Genetic parameters of effort and recovery in sport horses assessed with infrared thermography. Animals 2021, 11, 832. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-M.; Cho, G.-J. Validation of eye temperature assessed using infrared thermography as an indicator of welfare in horses. Appl. Sci. 2021, 11, 7186. [Google Scholar] [CrossRef]
- Kruljc, P. Thermographic examination of the horse. Acta Vet.-Beograd. 2023, 73, 289–316. [Google Scholar] [CrossRef]
- NOAA—National Oceanic Atmospheric Administration. Livestock Hot Weather Stress; Regional Operations Manual Letter C-31-76; US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service Central Region: Kansas City, MO, USA, 1976. [Google Scholar]
- Loving, N.S.; Johnston, A.M. Veterinary Manual for the Performance Horse; Blackwell Science Ltd.: Hoboken, NJ, USA, 1995; 580p. [Google Scholar]
- Cymbaluk, N.F.; Christison, G.I. Environmental Effects on Thermoregulation and Nutrition of Horses. Vet. Clin. N. Am. 1990, 6, 255–372. [Google Scholar] [CrossRef]
- Vitali, A.; Segnalini, M.; Bertocchi, L.; Bernabucci, U.; Nardone, A.; Lacetera, N. Seasonal pattern of mortality and relationships between mortality and temperature-humidity index in dairy cows. J. Dairy Sci. 2009, 92, 3781–3790. [Google Scholar] [CrossRef]
- Gabay, C.; Kushner, I. Acute-phase protein, and other systemic responses to inflammation. N. Engl. J. Med. 1999, 11, 448–454. [Google Scholar] [CrossRef]
- Peng, S.; Magdesian, K.G.; Dowd, J.; Carpenter, R.; Ho, W.; Finno, C.J. Investigation of high gamma-glutamyltransferase syndrome in California Thoroughbred racehorses. J. Vet. Intern. Med. 2022, 36, 2203–2212. [Google Scholar] [CrossRef]
- Borges, A.S.; Divers, T.J.; Stokol, T.; Mohammed, O.H. Serum Iron and Plasma Fibrinogen Concentrations as Indicators of Systemic Inflammatory Diseases in Horses. J. Vet. Intern. Med. 2007, 21, 489–494. [Google Scholar] [CrossRef]
- Page, A.E.; Stewart, J.C.; Holland, R.E.; Horohov, D.W. The Impact of Training Regimen on the Inflammatory Response to Exercise in 2-Year-Old Thoroughbreds. J. Equine Vet. Sci. 2017, 58, 78–83. [Google Scholar] [CrossRef]
- Fazio, E.; Lindner, A.; Wegener, J.; Medica, P.; Hartmann, U.; Ferlazzo, A. Plasma cortisol concentration during standardized exercise in Standardbred racehorses within a racing season. Pferdeheilkunde 2023, 39, 151–157. [Google Scholar] [CrossRef]
- Rocha, A.L.; Pinto, A.P.; Kohama, E.B.; Pauli, J.R.; Moura, L.P.; Cintra, D.E.; Ropelle, E.R.; Silva, A.S.R. The proinflammatory effects of chronic excessive exercise. Cytokine 2019, 119, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Stallones, L.; McManus, P.; McGreevy, P. Sustainability and the Thoroughbred Breeding and Racing Industries: An Enhanced One Welfare Perspective. Animals 2023, 13, 490. [Google Scholar] [CrossRef] [PubMed]
- Trindade, P.H.E.; Ferraz, G.C.; Lima, M.L.P.; Negrão, J.A.; Costa, M.J.R.P. Eye surface temperature as a potential indicator of physical fitness in ranch horses. JEVS 2019, 75, 1–8. [Google Scholar] [CrossRef]
- Verdegaal, E.-L.J.M.M.; Howarth, G.S.; McWhorter, T.J.; Delesalle, C.J.G. Is continuous monitoring of skin surface temperature a reliable proxy to assess the thermoregulatory response in endurance horses during field exercise? Front. Vet. Sci. 2022, 9, 894146. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, D.R.; McGowanm, C.M.; McKeever, K.H. The Athletic Horse: Principles and Practice of Equine Sports Medicine; Saunders: Philadelphia, PA, USA, 2014; 408p. [Google Scholar]
- Lisboa, B.R.F.; Silva, J.A.R.; Silva, W.C.; Barbosa, A.V.C.; Silva, L.K.X.; Lourenço-Júnior, J.D.B. Evaluation of thermoregulation of horses (Equus caballus) submitted to two methods of post-exercise cooling, in hot and humid climate conditions, in the Eastern Amazon. Front. Vet. Sci. 2023, 10, 1150763. [Google Scholar] [CrossRef]
- Stewart, M.; Schaefer, A.L.; Haley, B.D.; Colyn, J.; Cook, N.J.; Stafford, K.J.; Webster, J.R. Infrared thermography as a non-invasive method for detecting fear-related responses of cattle to handling procedures. Anim. Welf. 2008, 17, 387–393. [Google Scholar] [CrossRef]
- Klous, L.; Siegers, E.; van den Broek, J.; Folkerts, M.; Gerrett, N.; Sloet van Oldruitenborgh-Oosterbaan, M.; Munsters, C. Effects of pre-cooling on thermophysiological responses in elite eventing horses. Animals 2020, 10, 1664. [Google Scholar] [CrossRef] [PubMed]
Region and Description | Location | Region and Description | Location |
---|---|---|---|
Ocular caruncle: region at the inner angle of the eye | Jaw/Masseter muscle region: Region on the lateral surfaces of the head, with the masseter muscle | ||
The corner of the mouth: the point where the lips meet at the corner of the mouth | Neck/Trapezius muscle region: Muscle near the upper border of the neck, near the base (1: upper edge of neck; 2: withers; 3: midpoint of base of neck) | ||
Neck/Brachiocephalicus muscle region: muscle near the lower border of the neck and dorsal to the jugular groove | Barrel/Costal arches: region referring to the costal arches (1: elbow; 2: stifle; 3: point of hip) | ||
Flank: midpoint between the point of the hip and the stifle |
Model | Index | Risk Rating | Effects on the Metabolism of Horses |
---|---|---|---|
TSI | 1 | <120/130 | Normal cooling of the horse’s body through evaporation, respiration, and sweating unless the horse is obese or very hairy. |
2 | >140 | Sweat is responsible for heat loss, which can be aggravated by obesity or excessive hair. | |
3 | >150 | Evaporative heat loss is compromised, especially if the relative humidity is above 50%, but sweat is still important for heat loss. | |
4 | >180 | The natural dissipation of heat does not occur, which may raise body temperature. There is great danger of thermal stress. | |
THI | Light | 72–79 | Mild risk of thermal stress. Heat loss is done by sweating. Hairy or obese horses may be more impacted. |
Moderate | 80–89 | Moderate risk of heat stress. | |
Severe | >90 | Severe risk of heat stress. |
Biomarkers | Experimental Periods | ||||
---|---|---|---|---|---|
Pre-Race | Immediately after the Races | +1 h after the Races | +4 h after the Races | +24 h after the Races | |
Red blood cell count, ×106/µL | 6.85 ± 0.30 B | 10.79 ± 0.36 A | 7.44 ± 0.29 B | 7.48 ± 0.26 B | 7.18 ± 0.41 B |
Hemoglobin, g/dL | 11.16 ± 0.51 B | 17.57 ± 0.57 A | 12.06 ± 0.45 B | 12.12 ± 0.40 B | 11.60 ± 0.60 B |
Hematocrit, % | 31.27 ± 1.33 B | 49.97 ± 1.68 A | 33.74 ± 1.29 B | 33.76 ± 1.14 B | 33.43 ± 1.80 B |
MCHC, g/dL | 35.66 ± 0.27 | 35.18 ± 0.19 | 35.52 ± 0.25 | 35.95 ± 0.21 | 35.84 ± 0.24 |
MCV, fL | 45.29 ± 0.49 | 46.36 ± 0.49 | 45.62 ± 0.49 | 45.20 ± 0.50 | 45.18 ± 0.50 |
RDW-CV, % | 19.53 ± 0.30 | 19.63 ± 0.30 | 19.65 ± 0.31 | 19.71 ± 0.31 | 19.46 ± 0.27 |
RDW-SD, fL | 35.61 ± 0.44 | 36.44 ± 0.51 | 35.92 ± 0.46 | 35.65 ± 0.48 | 35.52 ± 0.45 |
Platelets, ×103/µL | 117.40 ± 7.80 A | 143.00 ± 11.90 AB | 145.20 ± 9.13 AB | 160.90 ± 6.94 A | 115.80 ± 1.74 B |
White blood cells, ×103/µL | 7.00 ± 0.49 C | 9.54 ± 0.44 A | 7.72 ± 0.42 BC | 9.26 ± 0.40 AB | 7.41 ± 0.20 C |
Lymphocytes, ×103/µL | 2.26 ± 0.17 B | 3.79 ± 0.22 A | 2.45 ± 0.14 B | 2.08 ± 0.12 B | 2.29 ± 0.16 B |
Other white blood cells, ×103/µL | 4.74 ± 0.48 B | 5.75 ± 0.48 AB | 5.27 ± 0.48 B | 7.18 ± 0.46 A | 5.12 ± 0.30 B |
Urea, mg/dL | 54.54 ± 3.98 | 58.75 ± 4.32 | 58.04 ± 3.47 | 63.38 ± 2.18 | 53.36 ± 2.84 |
Creatinine, mg/dL | 2.29 ± 0.24 | 2.61 ± 0.28 | 2.69 ± 0.29 | 2.43 ± 0.24 | 2.20 ± 0.22 |
Plasma proteins, mg/dL | 6.52 ± 0.17 B | 7.46 ± 0.13 A | 6.52 ± 0.17 B | 6.88 ± 0.15 AB | 6.58 ± 0.14 B |
Fibrinogen, mg/dL | 0.32 ± 0.08 | 0.38 ± 0.06 | 0.40 ± 0.04 | 0.56 ± 0.10 | 0.41 ± 0.06 |
GGT, IU/L | 45.72 ± 2.55 | 45.07 ± 2.56 | 46.60 ± 2.62 | 42.53 ± 3.02 | 45.00 ± 1.87 |
CK, IU/L | 208.16 ± 31.44 | 236.38 ± 21.42 | 231.10 ± 25.74 | 282.10 ± 24.42 | 213.58 ± 14.03 |
Cortisol, ng/dL | 27.69 ± 7.57 | 26.13 ± 4.84 | 24.75 ± 5.69 | 23.40 ± 5.36 | 23.27 ± 6.52 |
IL-1β, pg/dL | 39.81 ± 2.24 | 35.88 ± 2.29 | 39.10 ± 3.11 | 38.38 ± 3.52 | 37.99 ± 3.63 |
IL-6, pg/dL | 3.96 ± 0.19 | 3.54 ± 0.25 | 4.25 ± 0.43 | 3.71 ± 0.43 | 4.15 ± 0.19 |
Parameters | Experimental Periods | |||
---|---|---|---|---|
Pre-Race | +1 h after the Races | +4 h after the Races | +24 h after the Races | |
Ambient temperature, °C (°F) | 28.0 (82.4) | 28.0 (82.4) | 29.3 (84.7) | 26.0 (78.8) |
Relative humidity, % | 79.4 | 72.0 | 71.5 | 77.6 |
IST | 161.4 | 154.0 | 156.2 | 156.4 |
THI | 79.6 | 78.6 | 80.4 | 82.0 |
Barrel/Costal arches, L | 35.65 ± 0.39 AB | 36.68 ± 0.45 A | 36.10 ± 0.25 AB | 34.75 ± 0.34 B |
Barrel/Costal arches, R | 35.43 ± 0.40 AB | 36.52 ± 0.51 A | 35.83 ± 0.25 AB | 34.90 ± 0.19 B |
Flank, L | 35.83 ± 0.42 AB | 36.98 ± 0.34 A | 36.26 ± 0.21 AB | 35.04 ± 0.32 B |
Flank, R | 35.73 ± 0.49 AB | 36.85 ± 0.40 A | 35.93 ± 0.21 AB | 35.26 ± 0.31 B |
Neck/Brachiocephalicus region, L | 35.35 ± 0.43 AB | 36.36 ± 0.57 A | 35.64 ± 0.31 AB | 34.40 ± 0.37 B |
Neck/Brachiocephalicus muscle, R | 35.47 ± 0.41 AB | 36.43 ± 0.37 A | 35.49 ± 0.28 AB | 34.55 ± 0.37 B |
Neck/Trapezius muscle, L | 34.82 ± 0.85 | 35.29 ± 0.90 | 35.07 ± 0.55 | 33.65 ± 1.10 |
Neck/Trapezius muscle, R | 35.66 ± 0.52 | 36.07 ± 0.41 | 35.06 ± 0.62 | 34.90 ± 0.45 |
Jaw/Masseter muscle region, L | 35.48 ± 0.45 | 35.79 ± 0.36 | 35.77 ± 0.24 | 35.25 ± 0.24 |
Jaw/Masseter muscle region, R | 35.39 ± 0.44 | 35.62 ± 0.40 | 35.71 ± 0.51 | 35.13 ± 0.30 |
The corner of the mouth, L | 36.54 ± 0.27 | 36.40 ± 0.36 | 36.77 ± 0.28 | 36.00 ± 0.20 |
The corner of the mouth, R | 36.52 ± 0.31 | 36.45 ± 0.28 | 36.71 ± 0.25 | 35.89 ± 0.26 |
Ocular caruncle, L | 36.46 ± 0.60 | 36.10 ± 0.31 | 36.06 ± 0.32 | 35.60 ± 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filho, H.C.M.; Trindade, K.L.G.; Silva, C.J.F.L.; Cruz, R.K.S.; Vilela, C.F.; Coelho, C.S.; Filho, J.D.R.; Manso, H.E.C.C.C. The Welfare of Horses Competing in Three-Barrel Race Events Is Shown to Be Not Inhibited by Short Intervals between Starts. Animals 2024, 14, 583. https://doi.org/10.3390/ani14040583
Filho HCM, Trindade KLG, Silva CJFL, Cruz RKS, Vilela CF, Coelho CS, Filho JDR, Manso HECCC. The Welfare of Horses Competing in Three-Barrel Race Events Is Shown to Be Not Inhibited by Short Intervals between Starts. Animals. 2024; 14(4):583. https://doi.org/10.3390/ani14040583
Chicago/Turabian StyleFilho, Helio C. Manso, Keity L. G. Trindade, Carolina J. F. L. Silva, Raissa K. S. Cruz, César F. Vilela, Clarisse S. Coelho, José D. Ribeiro Filho, and Helena E. C. C. C. Manso. 2024. "The Welfare of Horses Competing in Three-Barrel Race Events Is Shown to Be Not Inhibited by Short Intervals between Starts" Animals 14, no. 4: 583. https://doi.org/10.3390/ani14040583
APA StyleFilho, H. C. M., Trindade, K. L. G., Silva, C. J. F. L., Cruz, R. K. S., Vilela, C. F., Coelho, C. S., Filho, J. D. R., & Manso, H. E. C. C. C. (2024). The Welfare of Horses Competing in Three-Barrel Race Events Is Shown to Be Not Inhibited by Short Intervals between Starts. Animals, 14(4), 583. https://doi.org/10.3390/ani14040583