The Effect of Saponite Clay on Ruminal Fermentation Parameters during In Vitro Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Saponite Clay
2.3. Chemical Analysis
2.4. Fermentation in the In Vitro Studies
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. Int. 2022, 29, 42539–42559. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Front. Sustain. Food Syst. 2021, 4, 518039. [Google Scholar] [CrossRef] [PubMed]
- Króliczewska, B.; Pecka-Kiełb, E.; Bujok, J. Strategies used to reduce methane emissions from ruminants: Controversies and issues. Agriculture 2023, 13, 602. [Google Scholar] [CrossRef]
- Hashizume, H. Natural Mineral Materials; National Institute for Materials Science: Tsukuba, Japan, 2022; pp. 85–102. [Google Scholar] [CrossRef]
- Amanzougarene, Z.; Fondevila, M. Rumen Fermentation of Feed Mixtures Supplemented with Clay Minerals in a Semicontinuous In Vitro System. Animals 2022, 12, 345. [Google Scholar] [CrossRef] [PubMed]
- Damato, A.; Vianello, F.; Novelli, E.; Balzan, S.; Gianesella, M.; Giaretta, E.; Gabai, G. Comprehensive Review on the Interactions of Clay Minerals with Animal Physiology and Production. Front. Vet. Sci. 2022, 9, 889612. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hearon, S.E.; Phillips, T.D. A high capacity bentonite clay for the sorption of aflatoxins. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2020, 37, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Fisher, L.J.; Mackay, V.G. The investigation of sodium bicarbonate or bentonite as supplements in silages fed to lactating cows. Can. J. Anim. Sci. 1983, 63, 939–947. [Google Scholar] [CrossRef]
- Gulsen, N.; Inal, F.; Umucalilar, H.D. Effects of bentonite (Excell FS/7) on rumen fermentation, digestibility, milk yield in dairy cattle. Indian Vet. J. 2000, 77, 134–137. [Google Scholar]
- Damato, A.; Vanzani, P.; Giannuzzi, D.; Giaretta, E.; Novelli, E.; Vianello, F.; Tagliapietra, F.; Zennaro, L. Bentonite does not affect in vitro ruminal gross fermentations but could modify ruminal metabolome and mineral content. A proof of concept. Res. Vet. Sci. 2022, 144, 78–81. [Google Scholar] [CrossRef]
- Schlattl, M.; Buffler, M.; Windisch, W. Clay minerals affect the solubility of Zn and other bivalent cations in the digestive tract of ruminants in vitro. Animals 2021, 11, 877. [Google Scholar] [CrossRef]
- Galan, E. Properties and applications of palygorskite-sepiolite clays. Clay Miner. 1996, 31, 443–453. [Google Scholar] [CrossRef]
- Burçak, E.; Yalçın, S. Effects of dietary sepiolite usage on performance, carcass characteristics, blood parameters and rumen fluid metabolites in Merino cross breed lambs. Appl. Clay Sci. 2018, 163, 291–298. [Google Scholar] [CrossRef]
- Oliveira, M.A.; Alves, S.P.; Santos-Silva, J.; Bessa, R.J. Effects of clays used as oil adsorbents in lamb diets on fatty acid composition of abomasal digesta and meat. Anim. Feed. Sci. Technol. 2016, 213, 64–73. [Google Scholar] [CrossRef]
- Rodríguez, J.P.; Carretero, M.; Maqueda, C. Behaviour of sepiolite, vermiculite and montmorillonite as supports in anaerobic digesters. Appl. Clay Sci. 1989, 4, 69–82. [Google Scholar] [CrossRef]
- Wolter, R.; Dunoyer, C.; Henry, N.; Seegmuller, N. Les argiles en alimentation animale: Interet general. Recl. Med. Vet. 1990, 166, 21–27. [Google Scholar]
- Rodriguez-Beltrán, J.; Rodriguez-Rojas, A.; Yubero, E.; Blázquez, J. The animal food supplement sepiolite promotes a direct horizontal transfer of antibiotic resistance plasmids between bacterial species. Antimicrob. Agents Chemother. 2013, 57, 2651–2653. [Google Scholar] [CrossRef]
- Fonty, G.; Jouany, J.P.; Forano, E.; Gouet, P.H. Nutrition Des Ruminants Domestiques: L’écosystème Microbien du Réticulo Rumen; INRA: Paris, France, 1995. [Google Scholar]
- Elitok, B.; Guvlu, S. Investigation on effects of orally given sepiolite on ruminal protozoa in cattle. Res. Med. Health Sci. 2017, 4, 163–173. [Google Scholar]
- Ivan, M.; Dayrell, D.S.; Hidiroglou, M. Effects of bentonite and monensin on selected elements in the stomach and liver of fauna-free and faunated sheep. J. Dairy Sci. 1992, 75, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Jouany, J.P.; Morgavi, D.P. Use of natural products as alternatives to antibiotic feed additives in ruminant production. Animal 2007, 1, 1443–1466. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Dong, H.; Dong, H.; Agrawal, A.; Singh, R.; Zhang, J.; Wang, H. Inhibitory effect of clay mineral on methanogenesis by Methanosarcina mazei and Methanothermobacter thermautotrophicus. Appl. Clay Sci. 2016, 126, 25–32. [Google Scholar] [CrossRef]
- Urías-Estrada, J.D.; López-Soto, M.A.; Barreras, A.; Aguilar-Hernández, J.A.; González-Vizcarra, V.M.; Estrada-Angulo, A.; Zinn, R.A.; Mendoza, G.D.; Plascencia, A. Influence of zeolite (clinoptilolite) supplementation on characteristics of digestion and ruminal fermentation of steers fed a steam-flaked corn-based finishing diet. Anim. Prod. Sci. 2018, 58, 1239–1245. [Google Scholar] [CrossRef]
- Karatzia, M.A.; Pourliotis, K.; Katsoulos, P.D.; Karatzias, H. Effects of in-feed inclusion of clinoptilolite on blood serum concentrations of aluminum and inorganic phosphorus and on ruminal pH and volatile fatty acid. Biol. Trace Element Res. 2011, 2, 159–166. [Google Scholar] [CrossRef]
- Bosi, P.; Creston, D.; Casini, L. Production performance of dairy cows after the dietary addition of clinoptilolite. Ital. J. Anim. Sci. 2002, 1, 187–195. [Google Scholar] [CrossRef]
- Kardaya, D.; Sudrajat, D.; Dihansih, E. Efficacy of Dietary Urea-Impregnated Zeolite in Improving Rumen Fermentation Characteristics of Local Lamb. Media Peternak. 2012, 35, 207–213. [Google Scholar] [CrossRef]
- Khachlouf, K.; Hamed, H.; Gdoura, R.; Gargouri, A. Effects of zeolite supplementation on dairy cow production and ruminal parameters—A review. Ann. Anim. Sci. 2018, 18, 857–877. [Google Scholar] [CrossRef]
- Helmy, S.A.; Ebeid, H.M.; Hanafy, M.A.; Mahmoud, A.E.M.; El-Tanany, R.R.A. Impact of Bentonite, Humic Acid or Zeolite Levels with Soybean, Sunflower or Cottonseed Meals as Dietary Protein Sources on In vitro Rumen Fermentation. J. Anim. Health Prod. 2022, 10, 158–167. [Google Scholar]
- Zhou, C.H.; Zhou, Q.; Wu, Q.Q.; Petit, S.; Jiang, X.C.; Xia, S.T.; Li, C.S.; Yu, W.H. Modification, hybridization, and applications of saponite: An overview. Appl. Clay Sci. 2019, 168, 136–154. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Ponce, C.P. Spectroscopic studies of synthetic and natural saponites: A review. Minerals 2021, 11, 112. [Google Scholar] [CrossRef]
- Sokol, H.; Sprynskyy, M.; Ganzyuk, A.; Raks, V.; Buszewski, B. Structural, mineral and elemental composition features of iron-rich saponite clay from Tashkiv deposit (Ukraine). Colloids Interfaces 2019, 3, 10. [Google Scholar] [CrossRef]
- Zarate-Reyes, L.; Lopez-Pacheco, C.; Nieto-Camacho, A.; Palacios, E.; Gómez-Vidales, V.; Kaufhold, S.; Ufer, K.; García Zepeda, E.; Cervini-Silva, J. Antibacterial clay against gram-negative antibiotic-resistant bacteria. J. Haz. Mat. 2018, 342, 625–632. [Google Scholar] [CrossRef]
- Basargin, V.; Lavrinyuk, O.; Mamchenko, V. Biological value of swine feedings in addition to the rational of sorbents of natural origin. Sci. Horizons 2018, 3, 27–32. [Google Scholar] [CrossRef]
- Savchuk, I. The Influence of Natural Minerals on the Intensity of Growth, Milk Productivity, and the Content of Cs-137 in the Colostrum of First-Born Cows. Polissia National University: Zhytomyr, Ukraine, 2005; pp. 137–141. Available online: http://ir.polissiauniver.edu.ua/bitstream/123456789/6481/3/VDAU_2005_1_137-141.pdf (accessed on 1 January 2020).
- Razikova, M. The Use of Saponite and Selenium in the Feeding of Cows in the Conditions of PE “PAF” Grant “Chudniv District of Zhytomyr Region. Master’s Thesis, Polissia National University, Zhytomyr, Ukraine, 2020. Available online: http://ir.znau.edu.ua/handle/123456789/10942 (accessed on 1 January 2020).
- Guidelines for the Use of Saponite Flour as a Mineral Additive in the Feed of Farm Animals and Poultry. Specifications 10.9-43512914-001:2022. Available online: https://sapokorm.com.ua/ua/about_us (accessed on 1 January 2020). (In Ukraine).
- Varadyova, Z.; Styriakova, I.; Kisidayova, S. Effect of natural dolomites on the in vitro fermentation and rumen protozoan population using rumen fluid and fresh faeces inoculum from sheep. Small Rumin. Res. 2007, 73, 58–66. [Google Scholar] [CrossRef]
- Tate, K.; Yuan, G.; Theng, B.; Churchman, G.; Singh, J.; Berben, P. Can geophagy mitigate enteric methane emission from cattle? J. Prelim. Res. 2015, 2, 1–8. [Google Scholar]
- IZ-INRA. Standards for Cattle Nutrition. In Standards for Ruminants Nutrition; National Research Institute of Animal Production: Kraków, Poland, 2016; pp. 21–81. (In Polish) [Google Scholar]
- European Parliament and of the Council. Directive 2010/63/EU of 22 September 2010 on the Protection of Animals Used for Scientific Purposes; European Parliament and of the Council: Strasbourg, France, 2010. [Google Scholar]
- AOAC. International Official Methods of Analysis, 18th ed.; AOAC International: Arlington, TX, USA, 2005. [Google Scholar]
- Britannica, T. Editors of Encyclopaedia (2016, April 7). Kjeldahl Method. Encyclopedia Britannica. Available online: https://www.britannica.com/science/Kjeldahl-method (accessed on 1 January 2020).
- Holst, D.O. Holst filtration apparatus for Van Soest detergent fiber analysis. J. AOAC 1973, 56, 1352–1356. [Google Scholar] [CrossRef]
- Casu, A.; Sogne, E.; Genovese, A.; Di Benedetto, C.; Lentijo Mozo, S.; Zuddas, E.; Pagliari, F.; Falqui, A. The new youth of the in situ transmission electron microscopy. In Microscopy and Analysis; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Tagliapietra, F.; Cattani, M.; Bailoni, L.; Schiavon, S. In vitro rumen fermentation: Effect of headspace pressure on the gas production kinetics of corn meal and meadow hay. Anim. Feed. Sci. Technol. 2010, 158, 197–201. [Google Scholar] [CrossRef]
- Suassuna, J.M.A.; Andrade, A.P.d.; Menezes, D.R.; Teles, Y.C.F.; Araujo, C.M.; Lima, L.K.S.; Beelen, P.M.G.; Magalhães, A.L.R.; Fernandes, B.D.O.; Medeiros, A.N. Accuracy of Techniques for Predicting Gas Production by Ruminants Associated with Diet. Fermentation 2023, 9, 39. [Google Scholar] [CrossRef]
- Shaw, C.A.; Park, Y.; Gonzalez, M.; Duong, R.A.; Pandey, P.K.; Brooke, C.G.; Hess, M. A Comparison of Three ArtificialRumen Systems for Rumen Microbiome Modeling. Fermentation 2023, 9, 953. [Google Scholar] [CrossRef]
- ANKOM. ANKOM Gas Production System Operator’s Manual; ANKOM Technology: Macedon, NY, USA, 2018. [Google Scholar]
- McDougall, E.I. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99–109. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Wang, C.X. Analysis of Permanent Gases and Methane with the Agilent 6820 Gas Chromatography; 5988–9269EN; Agilent Technologies Inc.: Santa Clara, CA, USA, 2003. [Google Scholar]
- Dhakal, R.; Copani, G.; Cappellozza, B.I.; Milora, N.; Hansen, H.H. The Effect of Direct-Fed Microbials on In-Vitro Rumen Fermentation of Grass or Maize Silage. Fermentation 2023, 9, 347. [Google Scholar] [CrossRef]
- Ørskov, E.R. Manipulation of rumen fermentation for maximum food utilization. World Rev. Nutr. Diet. 1975, 22, 153–182. [Google Scholar]
- Abrahamse, P.A.; Vlaeminck, B.; Tamminga, S.; Dijkstra, J. The effect of silage and concentrate type on intake behavior, rumen function, and milk production in dairy cows in early and late lactation. J. Dairy Sci. 2008, 91, 4778–4792. [Google Scholar] [CrossRef]
- Baran, M.; Žitňan, R. Effect of monensin sodium on fermentation efficiency in sheep rumen (short communication). Arch. Tierz. 2002, 45, 181–185. [Google Scholar] [CrossRef]
- Chalupa, W. Manipulating rumen fermentation. J. Anim. Sci. 1977, 46, 585–599. [Google Scholar] [CrossRef]
- Demeyer, D.I. Quantitative aspects of microbial metabolism in the rumen and hindgut. In Rumen Microbial Metabolism and Ruminant Digestion; Jouany, J.P., Ed.; INRA Editions: Paris, France, 1991; pp. 217–237. [Google Scholar]
- STATISTICA. (Data Analysis Software System), v. 13.3; StatSoft, Inc.: Tulsa, OK, USA, 2010; Available online: www.statsoft.com (accessed on 1 January 2020).
- Dijkstra, J. Production and absorption of volatile fatty acids in the rumen. Livest. Prod. Sci. 1994, 39, 61–69. [Google Scholar] [CrossRef]
- Olijhoek, D.W.; Difford, G.F.; Lund, P.; Løvendahl, P. Phenotypic modeling of residual feed intake using physical activity and methane production as energy sinks. J. Dairy Sci. 2020, 103, 6967–6981. [Google Scholar] [CrossRef]
- Manzanilla-Pech, C.I.V.; Stephansen, R.B.; Difford, G.F.; Løvendahl, P.; Lassen, J. Selecting for feed efficient cows will help to reduce methane gas emissions. Front. Genet. 2022, 13, 885932. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Belanche, A.; Newbold, C.J.; Morgavi, D.P.; Bach, A.; Zweifel, B.; Yáñez-Ruiz, D.R. A meta-analysis describing the effects of the essential oils blend agolin ruminant on performance, rumen fermentation and methane emissions in dairy cows. Animals 2020, 10, 620. [Google Scholar] [CrossRef] [PubMed]
- Lyle, R.R.; Johnson, R.R.; Wilhite, J.V. Rumen characteristics in steers as affected by adaptation from forage to all concentrate diets. J. Anim. Sci. 1981, 53, 1383–1390. [Google Scholar] [CrossRef]
- Kala, A.; Kamra, D.N.; Kumar, A.; Agarwal, N.; Chaudhary, L.C.; Joshi, C.G. Impact of levels of total digestible nutrients on microbiome, enzyme profile and degradation of feeds in buffalo rumen. PLoS ONE 2017, 12, e0172051. [Google Scholar] [CrossRef]
- Hook, S.E.; Steele, M.A.; Northwood, K.S.; Dijkstra, J.; France, J.; Wright, A.D.G.; McBride, B.W. Impact of subacute ruminal acidosis (SARA) adaptation and recovery on the density and diversity of bacteria in the rumen of dairy cows. FEMS Microbiol. Ecol. 2011, 78, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Takizawa, S.; Shinkai, T.; Kobayashi, Y.; Masuda, M.; Hashiba, K.; Uchisawa, K.; Terada, F. Rumen microbial composition associated with the non-glucogenic to glucogenic short-chain fatty acids ratio in Holstein cows. Anim. Sci. J. 2023, 94, e13829. [Google Scholar] [CrossRef] [PubMed]
- Polyakov, V.E.; Tarasevich, Y.I. Ion exchange equilibria involving uncharged cations on saponite. J. Water Chem. Tech. 2012, 34, 18–27. [Google Scholar] [CrossRef]
- Rindsig, R.B.; Schultz, L.H.; Shook, G.E. Effects of the addition of bentonite to high grain dairy rations which depress milk fat percentage. J. Dairy Sci. 1969, 52, 1770–1775. [Google Scholar] [CrossRef]
- Sulzberger, S.A.; Kalebich, C.C.; Melnichenko, S.; Cardoso, F.C. Effects of clay after a grain challenge on milk composition and on ruminal, blood, and fecal pH in Holstein cows. J. Dairy Sci. 2016, 99, 8028–8040. [Google Scholar] [CrossRef] [PubMed]
- Salem, F.A.F.; El-Amary, H.; Hassanin, S.H. Effect of bentonite supplementation on nutrients digestibility; rumen fermentation; some blood physiological parameters and performance of growing lambs. Egypt J. Nutr. Feed. 2001, 4, 179–191. [Google Scholar]
- Wang, H.R.; Chen, Q.; Chen, L.M.; Ge, R.F.; Wang, M.Z.; Yu, L.H.; Zhang, J. Effects of dietary physically effective neutral detergent fiber content on the feeding behavior, digestibility, and growth of 8- to 10-month-old Holstein replacement heifers. J. Dairy Sci. 2017, 100, 1161–1169. [Google Scholar] [CrossRef]
- Dschaak, C.M.; Eun, J.S.; Young, A.J.; Stott, R.D.; Peterson, S. Effects of supplementation of natural zeolite on intake, digestion, ruminal fermentation, and lactational performance of dairy cows. Prof. Anim. Sci. 2010, 26, 647–654. [Google Scholar] [CrossRef]
- Grabherr, H.; Spolders, M.; Lebzien, P.; Huther, L.; Flachowsky, G.; Furll, M.; Grun, M. Effect of zeolite A on rumen fermentation and phosphorus metabolism in dairy cows. Arch. Anim. Nutr. 2009, 63, 321–336. [Google Scholar] [CrossRef]
- Sweeney, T.E.; Cervantes, A.; Bull, L.S.; Hemken, R.W. Effect of dietary clinoptilolite on digestion and rumen fermentation in steers. In Zeo-Agriculture. Use of Natural Zeolites in Agriculture and Aquaculture; Pond, W.G., Mumpton, F.A., Eds.; Westview Press: Bowlder, CO, USA, 1984; pp. 183–193. [Google Scholar]
- Galyean, M.I.; Chabot, R.C. Effect of sodium bentonite, buffer salts, cement kiln dust and clinoptilolite on rumen characteristics of beef steers fed a high roughage diet. J. Anim. Sci. 1981, 52, 1197–1204. [Google Scholar] [CrossRef]
- Arce-Cordero, J.A.; Monteiro, H.F.; Brandao, V.L.N.; Dai, X.; Bennett, S.L.; Faciola, A.P. Effects of calcium–magnesium carbonate and calcium–magnesium hydroxide as supplemental sources of magnesium on microbial fermentation in a dual-flow continuous culture. Transl. Anim. Sci. 2021, 5, txaa229. [Google Scholar] [CrossRef]
- Agustinho, B.C.; Ravelo, A.; Vinyard, J.R.; Lobo, R.R.; Arce-Cordero, J.A.; Monteiro, H.F.; Sarmikasoglou, E.; Bennett, S.; Johnson, M.L.; Vieira, E.R.Q.; et al. Effects of replacing magnesium oxide with calcium-magnesium carbonate with or without sodium bicarbonate on ruminal fermentation and nutrient flow in vitro. J. Dairy Sci. 2022, 105, 3090–3101. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, M.; Zhang, Z.; Sun, H. Effects of over-load iron on nutrient digestibility, haemato-biochemistry, rumen fermentation and bacterial communities in sheep. J. Anim. Physiol. Anim. Nutr. 2020, 104, 32–43. [Google Scholar] [CrossRef] [PubMed]
- El-Nile, A.; Elazab, M.; El-Zaiat, H.; El-Azrak, K.E.; Elkomy, A.; Sallam, S.; Soltan, Y. In Vitro and In Vivo Assessment of Dietary Supplementation of Both Natural or Nano-Zeolite in Goat Diets: Effects on Ruminal Fermentation and Nutrients Digestibility. Animals 2021, 11, 2215. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Wang, J.H.; Lu, Y.; Liang, Q.; Liu, J.X. In vitro rumen fermentation and methane production are influenced by active components of essential oils combined with fumarate. J. Anim. Physiol. Anim. Nutr. 2013, 97, 1–9. [Google Scholar] [CrossRef]
- Schönhusen, U.; Zitnan, R.; Kuhla, S.; Jentsch, W.; Derno, M.; Voigt, J. Effects of protozoa on methane production in rumen and hindgut of calves around time of weaning. Arch. Anim. Nutr. 2003, 57, 279–295. [Google Scholar] [CrossRef]
- Yamada, C.; Kato, S.; Kimura, S.; Ishii, M.; Igarashi, Y. Reduction of Fe(III) oxides by phylogenetically and physiologically diverse thermophilic methanogens. FEMS Microbiol. Ecol. 2014, 89, 637–645. [Google Scholar] [CrossRef]
- Williams, L.B.; Metge, D.W.; Eberl, D.D.; Harvey, R.W.; Turner, A.G.; Prapaipong, P.; Poret-Peterson, A.T. What Makes a Natural Clay Antibacterial? Environ. Sci. Technol. 2011, 45, 3768–3773. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, K.; Motamedi, M.; Karnland, O.; Sandén, T. Mixing and sulphate-reducing activity of bacteria in swelling, compacted bentonite clay under high-level radioactive waste repository conditions. J. Appl. Microbiol. 2000, 89, 1038–1047. [Google Scholar] [CrossRef]
- Liu, D.; Wang, H.; Dong, H.; Qiu, X.; Dong, X.; Cravotta, C.A. Mineral transformations associated with goethite reduction by Methanosarcina barkeri. Chem. Geol. 2011, 288, 53–60. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, H.; Liu, D.; Fischer, T.B.; Wang, S.; Huang, L. Microbial reduction of Fe(III) in illite–smectite minerals by methanogen Methanosarcina mazei. Chem. Geol. 2012, 292–293, 35–44. [Google Scholar] [CrossRef]
- Sun, J.; Xu, J.; Shen, Y.; Wang, M.; Yu, L.; Wang, H. Effects of different dietary ratio of physically effective neutral detergent fiber and metabolizable glucose on rumen fermentation, blood metabolites and growth performance of 8 to 10-month-old heifers. Asian-Australas. J. Anim. Sci. 2018, 31, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.R.O.; Hannah, M.C.; Jacobs, J.L.; Wales, W.J.; Moate, P.J. Volatile fatty acids in ruminal fluid can be used to predict the methane yield of dairy cows. Animals 2019, 9, 1006. [Google Scholar] [CrossRef]
- Abdl-Rahman, M.A. In vitro manipulation of rumen fermentation efficiency by fumaric acid—Bentonite coupled addition as an alternative to antibiotics. J. Agricul. Sci. 2010, 2, 174–180. [Google Scholar] [CrossRef]
- Pecka-Kiełb, E.; Miśta, D.; Króliczewska, B.; Zachwieja, A.; Słupczyńska, M.; Król, B.; Sowiński, J. Changes in the in vitro ruminal fermentation of diets for dairy cows based on selected sorghum cultivars compared to maize, rye, and grass silage. Agriculture 2021, 11, 492. [Google Scholar] [CrossRef]
- Ortiz, J.; Montaño, M.; Plascencia, A.; Salinas, J.; Torrentera, N.; Zinn, R.A. Influence of Kaolinite Clay Supplementation on Growth Performance and Digestive Function in Finishing Calf-fed Holstein Steers. Asian-Australas. J. Anim. Sci. 2016, 29, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
Item | Unit | Feed Mixture | Saponite Clay |
---|---|---|---|
Dry matter (DM) | g/kg | 555.25 | - |
Crude protein | g/kg DM | 129.20 | - |
Ether extract | g/kg DM | 23.85 | - |
Crude fiber | g/kg DM | 98,63 | - |
Neutral detergent fiber | g/kg DM | 556 | - |
Acid detergent fiber | g/kg5 DM | 254 | - |
Crude ash | g/kg DM | 50.20 | - |
Non-structural carbohydrates | g/kg DM | 240.75 | - |
Gross energy | MJ/kg DM | 17.50 | - |
K | % | 3.53 | 0.90 |
Ca | % | 0.28 | 1.97 |
Mg | % | 0.43 | 4.98 |
S | % | 0.67 | - |
P | % | 0.54 | - |
Cl | % | 0.61 | - |
Si | % | 0.33 | 15.81 |
Fe | % | - | 10.94 |
Al | % | - | 6.08 |
Ti | % | - | 0.15 |
O | % | 28.37 | 52.03 |
C | % | 65.19 | 7.10 |
Group | SEM | p-Value | |||
---|---|---|---|---|---|
C | I | II | |||
pH | 6.32 | 6.48 | 6.49 | 0.055 | 0.344 |
H2 (%) | 64.39 a | 65.28 a | 56.59 b | 2.268 | 0.034 |
CH4/VFA | 1.09 a | 1.12 a | 0.75 b | 0.092 | 0.046 |
Group | SEM | p-Value | |||
---|---|---|---|---|---|
Incubation Time (h) | C | I | II | ||
Total gas production [mL/L] * | |||||
4 | 14.35 a | 5.10 b | 4.15 b | 0.275 | 0.025 |
8 | 59.05 | 43.05 | 39.95 | 8.151 | 0.159 |
12 | 101.50 | 87.15 | 76.30 | 6.235 | 0.243 |
16 | 133.50 | 112.90 | 101.80 | 7.685 | 1.940 |
20 | 167.05 | 141.00 | 125.05 | 9.615 | 0.234 |
24 | 212.05 a | 171.50 ab | 146.20 b | 0.905 | 0.029 |
Methane [mL/L] | |||||
24 | 33.05 a | 25.95 ab | 17.75 b | 0.105 | 0.014 |
Group | SEM | p-Value | |||
---|---|---|---|---|---|
C | I | II | |||
Total VFA [mmol/L] | 87.90 | 69.20 | 69.61 | 3.969 | 0.078 |
Individual VFA, [mol/100 mol] | |||||
Acetic acid | 66.55 | 68.33 | 66.38 | 0.505 | 0.274 |
Propionic acid | 18.85 b | 21.66 a | 22.89 a | 0.593 | 0.006 |
Isobutyric acid | 0.48 | 0.59 | 0.59 | 0.049 | 0.563 |
Butyric acid | 11.91 a | 7.23 b | 8.13 b | 0.740 | 0.017 |
Isovaleric acid | 0.68 | 0.74 | 0.64 | 0.032 | 0.517 |
Valeric acid | 0.96 | 0.91 | 0.82 | 0.056 | 0.567 |
Isocaproic acid | 0.15 | 0.00 | 0.04 | 0.026 | 0.064 |
Hexanoic acid | 0.13 | 0.20 | 0.01 | 0.049 | 0.315 |
Heptanoic acid | 0.31 | 0.34 | 0.49 | 0.057 | 0.353 |
FE (%) | 73.76 b | 74.13 ab | 74.82 a | 0.180 | 0.029 |
A:P | 3.60 a | 3.16 b | 2.93 b | 0.097 | 0.006 |
P:B | 1.91 b | 3.01 a | 2.82 a | 0.149 | 0.029 |
NGR | 4.87 a | 3.75 b | 3.58 b | 0.198 | 0.006 |
CY 1 | 7.46 a | 4.49 c | 5.88 b | 0.587 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pikhtirova, A.; Pecka-Kiełb, E.; Króliczewska, B.; Zachwieja, A.; Króliczewski, J.; Kupczyński, R. The Effect of Saponite Clay on Ruminal Fermentation Parameters during In Vitro Studies. Animals 2024, 14, 738. https://doi.org/10.3390/ani14050738
Pikhtirova A, Pecka-Kiełb E, Króliczewska B, Zachwieja A, Króliczewski J, Kupczyński R. The Effect of Saponite Clay on Ruminal Fermentation Parameters during In Vitro Studies. Animals. 2024; 14(5):738. https://doi.org/10.3390/ani14050738
Chicago/Turabian StylePikhtirova, Alina, Ewa Pecka-Kiełb, Bożena Króliczewska, Andrzej Zachwieja, Jarosław Króliczewski, and Robert Kupczyński. 2024. "The Effect of Saponite Clay on Ruminal Fermentation Parameters during In Vitro Studies" Animals 14, no. 5: 738. https://doi.org/10.3390/ani14050738
APA StylePikhtirova, A., Pecka-Kiełb, E., Króliczewska, B., Zachwieja, A., Króliczewski, J., & Kupczyński, R. (2024). The Effect of Saponite Clay on Ruminal Fermentation Parameters during In Vitro Studies. Animals, 14(5), 738. https://doi.org/10.3390/ani14050738