The Effect of Repeated Blood Harvesting from Pregnant Mares on Haematological Variables
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Behaviour Observations
2.3. Blood Sampling
2.4. Haematological and Total Protein Analysis
2.5. Statistical Analysis
3. Results
3.1. Animal Behaviour and Health
3.2. Haematological Values
3.3. Total Protein
3.4. Minimum Haematological Values
4. Discussion
4.1. General Development in Haematological Values
4.2. Levels of Individual Anaemia
4.3. Compensation for Blood Loss
4.4. Recovery after Last Blood Harvest
4.5. Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murphy, B.D.; Martinuk, S.D. Equine chorionic gonadotropin. Endocr. Rev. 1991, 12, 27–44. [Google Scholar] [CrossRef]
- De Rensis, F.; López-Gatius, F. Use of equine chorionic gonadotropin to control reproduction of the dairy cow: A review. Reprod. Domest. Anim. 2014, 49, 177–182. [Google Scholar] [CrossRef]
- Zhao, Q.; Tao, C.; Pan, J.; Wei, Q.; Zhu, Z.; Wang, L.; Liu, M.; Huang, J.; Yu, F.; Chen, X.; et al. Equine chorionic gonadotropin pretreatment 15 days before fixed-time artificial insemination improves the reproductive performance of replacement gilts. Animal 2021, 15, 100406. [Google Scholar] [CrossRef]
- Driancourt, M.A.; Fry, R.C. Effect of superovulation with pFSH or PMSG on growth and maturation of the ovulatory follicles in sheep. Anim. Reprod. Sci. 1992, 27, 279–292. [Google Scholar] [CrossRef]
- Di Berardino, C.; Peserico, A.; Capacchietti, G.; Crociati, M.; Monaci, M.; Tosi, U.; Mauro, A.; Russo, V.; Bernabò, N.; Barboni, B. Equine chorionic gonadotropin as an effective FSH replacement for in vitro ovine follicle and oocyte development. Int. J. Mol. Sci. 2021, 22, 12422. [Google Scholar] [CrossRef]
- Malikides, N.; Mollison, P.J.; Reid, S.W.; Murray, M. Haematological responses of repeated large volume blood collection in the horse. Res. Vet. Sci. 2000, 68, 275–278. [Google Scholar] [CrossRef]
- Malikides, N.; Hodgson, J.L.; Rose, R.J.; Hodgson, D.R. Cardiovascular, haematological and biochemical responses after large volume blood collection in horses. Vet. J. 2001, 162, 44–55. [Google Scholar] [CrossRef]
- Gunnarsson, E.; Ólafsson, Þ. Blóðsöfnun úr fylfullum hryssum til lyfjaframleiðslu. [Blood harvesting from pregnant mares for production of medicine]. Freyr 1982, 78, 472–476. [Google Scholar]
- Oddsdóttir, C.; Jónsdóttir, H.K.; Sturludóttir, E. Haematological reference intervals for pregnant Icelandic mares on pasture. Acta Vet. Scand. 2023, 65, 57–63. [Google Scholar] [CrossRef]
- Satué, K.; Blanco, O.; Muñoz, A. Age-related differences in the hematological profile of Andalusian broodmares of Carthusian strain. Vet. Med. 2009, 54, 175–182. [Google Scholar] [CrossRef]
- Buendia, A.; Teng, K.T.Y.; Camino, E.; Dominguez, L.; Cruz-Lopez, F. Influence of multiple factors on hematologic reference intervals in horses residing in livery yards in Spain. Vet. Clin. Pathol. 2021, 50, 273–277. [Google Scholar] [CrossRef]
- Orozco, C.A.; Martins, C.B.; D’Angelis, F.H.; Oliveira, J.V.; Lacerda-Neto, J.C. Hematological values and total protein of Brasileiro de Hipismo and Breton mares during pregnancy. Ciênc. Rural 2007, 37, 1695–1700. [Google Scholar] [CrossRef]
- Leidinger, E.F.; Leidinger, J.; Figl, J.; Rumpler, B.; Schwendenwein, I. Application of the ASVCP guidelines for the establishment of haematologic and biochemical reference intervals in Icelandic horses in Austria. Acta Vet. Scand. 2015, 57, 30–39. [Google Scholar] [CrossRef]
- Ólason, S. Blodværdier hos Islandske Rideheste—Hæmatologiske og Biokemiske Normalværdier hos Islandske Rideheste. [Haematologial and Biochemical Reference Values in Icelandic Riding Horses]. Honour’s Thesis, Royal Veterinary and Agricultural College, Frederiksberg, Denmark, 2010. [Google Scholar]
- Balan, M.; McCullough, M.; O’Brien, P.J. Equine blood reticulocytes: Reference intervals, physiological and pathological changes. Comp. Clin. Pathol. 2019, 28, 53–62. [Google Scholar] [CrossRef]
- Lording, P.M. Erythrocytes. Vet. Clin. N. Am. Equine Pract. 2008, 24, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Grondin, T.M.; Dewitt, S.F. Normal hematology of the horse and donkey. In Schalm’s Veterinary Hematology, 6th ed.; Weiss, D.J., Wardrop, K.J., Eds.; Blackwell Publishing Ltd.: Ames, IA, USA, 2010; pp. 821–829. [Google Scholar]
- Persson, S.G.B.; Ekman, L.; Lydin, G.; Tufvesson, G. Circulatory effects of splenectomy in the horse. I. Effect on red-cell distribution and variability of haematocrit in the peripheral blood. Zentralbl. Veterinaermed. A 1973, 20, 441–455. [Google Scholar] [CrossRef]
- Harewood, E.J.; McGowan, C.M. Behavioral and physiological responses to stabling in naive horses. J. Equine Vet. Sci. 2005, 4, 164–170. [Google Scholar] [CrossRef]
- Collins, J.F.; Anderson, G.J. Molecular mechanisms of intestinal iron transport. In Physiology of the Gastrointestinal Tract, 5th ed.; Johnson, L.R., Ed.; Elsevier Science & Technology: Boston, MA, USA, 2012; Volume 2, pp. 1921–1947. [Google Scholar]
- Takahashi, A. Role of zinc and copper in erythropoiesis in patients on hemodialysis. J. Ren. Nutr. 2022, 32, 650–657. [Google Scholar] [CrossRef]
- Kaushal, N.; Hegde, S.; Lumadue, J.; Paulson, R.F.; Prabhu, K.S. The regulation of erythropoiesis by selenium in mice. Antioxid. Redox Signal. 2011, 14, 1403–1412. [Google Scholar] [CrossRef]
- Stefánsdóttir, G.J.; Björnsdóttir, S. Mat á holdafari hrossa. [Body condition scoring of horses]. Eiðfaxi-Ræktun 2001, 1, 60–65. [Google Scholar]
- Dawnay, A.B.S.; Hirst, A.D.; Perry, D.E.; Chambers, R.E. A critical assessment of current analytical methods for the routine assay of serum total protein and recommendations for their improvement. Ann. Clin. Biochem. 1991, 28, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, J.; Ning, L.; Wu, D. Assessing the influence of true hemolysis occurring in patient samples on emergency clinical biochemistry tests results using the Vitros® 5600 Integrated System. Biomed. Rep. 2021, 15, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, S.; Singla, P.; Manocha, A.; Kankra, M.; Sharma, A.; Ahirwar, A.; Ralhan, R.; Thapliyal, U.; Mehra, P. The hemolyzed sample: To analyse or not to analyse. Indian J. Clin. Biochem. 2020, 35, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Zuur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: New York, NY, USA, 2009; p. 574. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Team. R Version 4.3.1: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 3 October 2023).
- Stokol, T. Hematology red flags—The value of blood smear examination in horses. Vet. Clin. N. Am. Equine Pract. 2020, 36, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Magdesian, K.G. Acute blood loss. Compend. Equine 2008, 3, 80–90. [Google Scholar]
- Lumsden, J.H.; Valli, V.E.; McSherry, B.J.; Robinson, G.A.; Claxton, M.J. The kinetics of hematopoiesis in the light horse II. The hematological response to hemorrhagic anemia. Can. J. Comp. Med. 1975, 39, 324–331. [Google Scholar]
- Easley, J.R. Erythrogram and red cell distribution width of equidae with experimentally induced anemia. Am. J. Vet. Res. 1985, 46, 2378–2384. [Google Scholar]
- Stefánsdóttir, G.J.; Gunnarsson, V.; Roepstorff, L.; Ragnarsson, S.; Jansson, A. The effect of rider weight and additional weight in Icelandic horses in tölt: Part I. Physiological responses. Animal 2017, 11, 1558–1566. [Google Scholar] [CrossRef]
- Jensen, R.B.; Rockhold, L.L.; Tauson, A.H. Weight estimation and hormone concentrations related to body condition in Icelandic and Warmblood horses: A field study. Acta Vet. Scand. 2019, 61, 63. [Google Scholar] [CrossRef] [PubMed]
- McKeever, K.H.; Hinchcliff, K.W.; Reed, S.M.; Robertson, J.T. Role of decreased plasma volume in hematocrit alterations during incremental treadmill exercise in horses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1993, 265, R404–R408. [Google Scholar] [CrossRef]
- Satué, K.; Hernández, A.; Muñoz, A. Physiological factors in the interpretation of equine hematological profile. In Hematology-Science and Practice; Lawrie, C., Ed.; Intech: London, UK, 2012; pp. 573–596. [Google Scholar] [CrossRef]
- Persson, S.G.B.; Ekman, L.; Lydin, G.; Tufvesson, G. Circulatory effects of splenectomy in the horse. II. Effect on plasma volume and total and circulating red-cell volume. Zentralbl. Veterinaermed. A 1973, 20, 456–468. [Google Scholar] [CrossRef]
- Jamieson, C.A.; Baillie, S.L.; Johnson, J.P. Blood transfusion in equids—A practical approach and review. Animals 2022, 12, 2162. [Google Scholar] [CrossRef]
- Radin, M.J.; Eubank, M.C.; Weiser, M.G. Electronic measurement of erythrocyte volume and volume heterogeneity in horses during erythrocyte regeneration associated with experimental anaemias. Vet. Pathol. 1986, 23, 656–660. [Google Scholar] [CrossRef]
- Marcilese, N.A.; Figueiras, H.D.; Valsecchi, R.M.; Fraga, A.H.; Camberos, H.R.; Varela, J.E. Erythrokinetics in the horse. Am. J. Physiol. 1965, 209, 727–764. [Google Scholar] [CrossRef]
- Horwell, C.J.; Baxter, P.J.; Hillman, S.E.; Calkins, J.A.; Damby, D.E.; Delmelle, P.; Donaldson, K.; Dunster, C.; Fubini, B.; Kelly, F.J.; et al. Physicochemical and toxicological profiling of ash from the 2010 and 2011 eruptions of Eyjafjallajökull and Grímsvötn volcanoes, Iceland using a rapid respiratory hazard assessment protocol. Environ. Res. 2013, 127, 63–73. [Google Scholar] [CrossRef]
- Calamari, L.; Abeni, F.; Bertin, G. Metabolic and hematological profiles in mature horses supplemented with different selenium sources and doses. J. Anim. Sci. 2010, 88, 650–659. [Google Scholar] [CrossRef]
- Jančíková, P.; Horký, P.; Zeman, L.; Mareš, P. The effect of peroral copper supplementation on selected haematological indicators of horses. Acta Univ. Agric. Silvic. Mendel. Brun. 2011, 59, 119–124. [Google Scholar] [CrossRef]
- Cooper, C.; Sears, W.; Bienzle, D. Reticulocyte changes after experimental anemia and erythropoietin treatment of horses. J. Appl. Physiol. 2005, 99, 915–921. [Google Scholar] [CrossRef]
- Tablin, F.; Weiss, L. Equine bone marrow: A quantitative analysis of erythroid maturation. Anat. Rec. 1985, 213, 202–206. [Google Scholar] [CrossRef]
- Giordano, A.; Rossi, G.; Pieralisi, C.; Paltrinieri, S. Evaluation of equine hemograms using the ADVIA 120 as compared with an impedance counter and manual differential count. Vet. Clin. Pathol. 2008, 37, 21–30. [Google Scholar] [CrossRef]
- Tyler, R.D.; Cowell, R.L.; Clinkenbeard, K.D.; MacAllister, C.G. Hematologic values in horses and interpretation of hematologic data. Vet. Clin. N. Am. Equine Pract. 1987, 3, 461–484. [Google Scholar] [CrossRef]
- Brockus, C.W.; Andreasen, C.B. Erythrocytes. In Duncan and Prasse’s Veterinary Laboratory Medicine: Clinical Pathology; Latimer, K.S., Mahaffey, E.A., Prasse, K.W., Eds.; Iowa State Press: Ames, IA, USA, 2011; pp. 3–45. [Google Scholar]
- Tvedten, H. Laboratory and clinical diagnosis of anemia. In Schalm’s Veterinary Hematology, 6th ed.; Weiss, D.J., Wardrop, K.J., Eds.; Blackwell Publishing Ltd.: Ames, IA, USA, 2010; pp. 152–161. [Google Scholar]
- Köller, G.; Gieseler, T.; Schusser, G.F. Hematology and serum biochemistry reference ranges of horses of different breeds and age measured with newest clinico-pathological methods. Pferdeheilkunde 2014, 30, 381–393. [Google Scholar] [CrossRef]
- Czech, A.; Kiesz, M.; Kiesz, A.; Próchniak, T.; Różański, P.; Klimiuk, K. Influence of type of use, age and gender on haematological and biochemical blood parameters of Małopolski horses. Ann. Anim. Sci. 2019, 19, 85–96. [Google Scholar] [CrossRef]
- Satué, K.; Hernández, Á.; Lorente, C.; Fazio, E.; Medica, P. Age- and sex-related modifications of hematology in Spanish purebred horse. J. Equine Vet. Sci. 2020, 93, 103219. [Google Scholar] [CrossRef]
- Inoue, Y.; Ono, T.; Hisaeda, K.; Yamada, Y.; Hata, A.; Shimokawa, T.; Miyama; Shibano, K.; Ohzawa, E.; Kitagawa, H.; et al. Relationships between the age and blood test results or body sizes in Noma horses. J. Equine Sci. 2022, 33, 27–30. [Google Scholar] [CrossRef]
- Whitney, M.S. Regenerative anemia. In Clinical Veterinary Advisor: The Horse; Wilson, D., Ed.; Elsevier Saunders: St. Louis, MO, USA, 2011; pp. 906–907. [Google Scholar]
- Jain, N.C. (Ed.) The horse. Normal haematology with comments on response to disease. In Schalm’s Veterinary Hematology; Lea & Febiger: Philadelphia, PA, USA, 1986; pp. 140–177. [Google Scholar]
- Mariella, J.; Pirrone, A.; Gentilini, F.; Castagnetti, C. Hematologic and biochemical profiles in Standardbred mares during peripartum. Theriogenology 2014, 81, 526–534. [Google Scholar] [CrossRef]
- Sharif, M.T.; Mahabadi, M.A.; Moshfeghi, S.; Sharifi, H.; Hoseini, S.M.; Alavi, S.M. Artifactual changes in hematological variables in equine blood samples stored at different temperatures and various anticoagulants. Comp. Clin. Pathol. 2012, 21, 449–452. [Google Scholar] [CrossRef]
- Russell, K.E. Platelet kinetics and laboratory evaluation of thrombocytopenia. In Schalm’s Veterinary Hematology, 6th ed.; Weiss, D.J., Wardrop, K.J., Eds.; Blackwell Publishing Ltd.: Ames, IA, USA, 2010; pp. 576–585. [Google Scholar]
- Altomare, I.; Kessler, C.M. Thrombocytosis: Essential thrombocythemia and reactive causes. In Consultative Hemostasis and Thrombosis, 4th ed.; Kitchens, C.S., Kessler, C.M., Konkle, B.A., Streiff, M.B., Garcia, D.A., Eds.; Elsevier: Philadelphia, PA, USA, 2019; pp. 346–373. [Google Scholar] [CrossRef]
Variable | Unit | N | Min | Mean | SD | Max |
---|---|---|---|---|---|---|
RBC | ×1012/L | 1337 | 3.89 | 6.43 | 1.16 | 11.44 |
Hct | % | 1337 | 20 | 33 | 5.1 | 53 |
Hgb | g/L | 1337 | 74 | 115 | 16 | 179 |
MCV | fL | 1337 | 36.8 | 51.5 | 5 | 66.5 |
MCH | Pg | 1337 | 13.5 | 18.1 | 1.6 | 22.6 |
MCHC | g/L | 1337 | 308 | 351 | 11 | 384 |
RDW | % | 1337 | 22.9 | 30 | 2.9 | 39.8 |
TP | g/L | 362 | 55 | 68 | 6.1 | 85 |
Age | Years | 160 | 4 | 11 | 4.4 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oddsdóttir, C.; Jónsdóttir, H.K.; Sturludóttir, E.; Vilanova, X.M. The Effect of Repeated Blood Harvesting from Pregnant Mares on Haematological Variables. Animals 2024, 14, 745. https://doi.org/10.3390/ani14050745
Oddsdóttir C, Jónsdóttir HK, Sturludóttir E, Vilanova XM. The Effect of Repeated Blood Harvesting from Pregnant Mares on Haematological Variables. Animals. 2024; 14(5):745. https://doi.org/10.3390/ani14050745
Chicago/Turabian StyleOddsdóttir, Charlotta, Hanna Kristrún Jónsdóttir, Erla Sturludóttir, and Xavier Manteca Vilanova. 2024. "The Effect of Repeated Blood Harvesting from Pregnant Mares on Haematological Variables" Animals 14, no. 5: 745. https://doi.org/10.3390/ani14050745
APA StyleOddsdóttir, C., Jónsdóttir, H. K., Sturludóttir, E., & Vilanova, X. M. (2024). The Effect of Repeated Blood Harvesting from Pregnant Mares on Haematological Variables. Animals, 14(5), 745. https://doi.org/10.3390/ani14050745