Selection Signal Analysis Reveals Hainan Yellow Cattle Are Being Selectively Bred for Heat Tolerance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Animals
2.2. DNA Sample Preparation and Whole-Genome Sequencing
2.3. Bioinformatics Analysis of Whole-Genome Sequencing Data
2.4. Detection of Genome-Wide Selection Signatures
2.5. Functional Enrichment Analysis of Genes
3. Results
3.1. Selection Signatures and Candidate Genes under Selection
3.2. Functional Enrichment Analysis of the Candidate Genes in Five Breeds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Broecker, W.S. Climatic change: Are we on the brink of a pronounced global warming? Science 1975, 189, 460–463. [Google Scholar] [CrossRef]
- Renaudeau, D.; Collin, A.; Yahav, S.; de Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef]
- Mishra, S.R. Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress: An updated review. Trop. Anim. Health Prod. 2021, 53, 400. [Google Scholar] [CrossRef] [PubMed]
- Morrell, J.M. Heat stress and bull fertility. Theriogenology 2020, 153, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Dado-Senn, B.; Laporta, J.; Dahl, G.E. Carry over effects of late-gestational heat stress on dairy cattle progeny. Theriogenology 2020, 154, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J.; Imtiwati; Kumar, R. Impact of heat stress on health and performance of dairy animals: A review. Vet. World 2016, 9, 260–268. [Google Scholar] [CrossRef]
- Xiao, J. Livestock and Poultry Genetic Resources of Hainan Province; Hainan Press: Haikou, China, 2011. [Google Scholar]
- Guo, X.; Xing, C.H.; Wei, W.; Zhang, X.F.; Wei, Z.Y.; Ren, L.L.; Jiang, J.J.; Li, M.; Wang, J.X.; He, X.X.; et al. Genome-wide scan for selection signatures and genes related to heat tolerance in domestic chickens in the tropical and temperate regions in Asia. Poult. Sci. 2022, 101, 101821. [Google Scholar] [CrossRef] [PubMed]
- Abondio, P.; Cilli, E.; Luiselli, D. Inferring Signatures of Positive Selection in Whole-Genome Sequencing Data: An Overview of Haplotype-Based Methods. Genes 2022, 13, 926. [Google Scholar] [CrossRef]
- Bagath, M.; Krishnan, G.; Devaraj, C.; Rashamol, V.P.; Pragna, P.; Lees, A.M.; Sejian, V. The impact of heat stress on the immune system in dairy cattle: A review. Res. Vet. Sci. 2019, 126, 94–102. [Google Scholar] [CrossRef]
- Sullivan, K.F.; Mader, T.L. Managing Heat Stress Episodes in Confined Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 325–339. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Lin, Y.L.; Chang, P.C.; Hsu, C.; Hung, M.Z.; Chien, Y.H.; Hwu, W.L.; Lai, F.; Lee, N.C. Comparison of GATK and DeepVariant by trio sequencing. Sci. Rep. 2022, 12, 1809. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, R.; Williamson, S.; Kim, Y.; Hubisz, M.J.; Clark, A.G.; Bustamante, C. Genomic scans for selective sweeps using SNP data. Genome Res. 2005, 15, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Gautier, M.; Vitalis, R. rehh: An R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics 2012, 28, 1176–1177. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Huang, M.; Tang, J.; Yang, L.; Yu, Z.; Li, D.; Li, G.; Jiang, Y.; Sun, Y.; et al. Whole-genome SNP markers reveal conservation status, signatures of selection, and introgression in Chinese Laiwu pigs. Evol. Appl. 2020, 14, 383–398. [Google Scholar] [CrossRef]
- Périard, J.D.; Eijsvogels, T.M.H.; Daanen, H.A.M. Exercise under heat stress: Thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev. 2021, 101, 1873–1979. [Google Scholar] [CrossRef]
- Morimoto, R.I. Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 1998, 12, 3788–3796. [Google Scholar] [CrossRef] [PubMed]
- Tissières, A.; Mitchell, H.K.; Tracy, U.M. Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. J. Mol. Biol. 1974, 84, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Hagymasi, A.T.; Dempsey, J.P.; Srivastava, P.K. Heat-Shock Proteins. Curr. Protoc. 2022, 2, e592. [Google Scholar] [CrossRef] [PubMed]
- Kregel, K.C. Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 2002, 92, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
- Feder, M.E.; Hofmann, G.E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 1999, 61, 243–282. [Google Scholar] [CrossRef]
- Liu, B.; Cao, Y.; Wang, D.; Zhou, Y.; Zhang, P.; Wu, J.; Chen, J.; Qiu, J.; Zhou, J. Zhen-Wu-Tang Induced Mitophagy to Protect Mitochondrial Function in Chronic Glomerulonephritis via PI3K/AKT/mTOR and AMPK Pathways. Front. Pharmacol. 2021, 12, 777670. [Google Scholar] [CrossRef]
- Wang, T.; Yu, Q.; Chen, J.; Deng, B.; Qian, L.; Le, Y. PP2A mediated AMPK inhibition promotes HSP70 expression in heat shock response. PLoS ONE 2010, 5, e13096. [Google Scholar] [CrossRef]
- Gambaryan, S. The Role of NO/sGC/cGMP/PKG Signaling Pathway in Regulation of Platelet Function. Cells 2022, 11, 3704. [Google Scholar] [CrossRef]
- Higgins, C.B.; Adams, J.A.; Ward, M.H.; Greenberg, Z.J.; Milewska, M.; Sun, J.; Zhang, Y.; Chiquetto Paracatu, L.; Dong, Q.; Ballentine, S.; et al. The tetraspanin transmembrane protein CD53 mediates dyslipidemia and integrates inflammatory and metabolic signaling in hepatocytes. J. Biol. Chem. 2023, 299, 102835. [Google Scholar] [CrossRef]
- Lee, H.; Bae, S.; Jang, J.; Choi, B.W.; Park, C.S.; Park, J.S.; Lee, S.H.; Yoon, Y. CD53, a suppressor of inflammatory cytokine production, is associated with population asthma risk via the functional promoter polymorphism −1560 C>T. Biochim. Biophys. Acta 2013, 1830, 3011–3018. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, Z.J.; Paracatu, L.C.; Monlish, D.A.; Dong, Q.; Rettig, M.; Roundy, N.; Gaballa, R.; Li, W.; Yang, W.; Luke, C.J.; et al. The tetraspanin CD53 protects stressed hematopoietic stem cells via promotion of DREAM complex-mediated quiescence. Blood 2023, 141, 1180–1193. [Google Scholar] [CrossRef] [PubMed]
- Yunta, M.; Lazo, P.A. Apoptosis protection and survival signal by the CD53 tetraspanin antigen. Oncogene 2003, 22, 1219–1224. [Google Scholar] [CrossRef]
- Chu, D.; Dong, X.; Shi, X.; Zhang, C.; Wang, Z. Neutrophil-Based Drug Delivery Systems. Adv. Mater. 2018, 30, e1706245. [Google Scholar] [CrossRef]
- Noro, F.; Gianfagna, F.; Gialluisi, A. ZBTB12 DNA methylation is associated with coagulation- and inflammation-related blood cell parameters: Findings from the Moli-family cohort. Clin. Epigenetics 2019, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Frazier-Wood, A.C.; Aslibekyan, S.; Borecki, I.B.; Hopkins, P.N.; Lai, C.Q.; Ordovas, J.M.; Straka, R.J.; Tiwari, H.K.; Arnett, D.K. Genome-wide association study indicates variants associated with insulin signaling and inflammation mediate lipoprotein responses to fenofibrate. Pharmacogenet. Genom. 2012, 22, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Min, L.; Zheng, N.; Zhao, S.; Cheng, J.; Yang, Y.; Zhang, Y.; Yang, H.; Wang, J. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis. Biochem. Biophys. Res. Commun. 2016, 471, 296–302. [Google Scholar] [CrossRef]
- Goodman, S.C.; Letra, A.; Dorn, S.; Araujo-Pires, A.C.; Vieira, A.E.; Chaves de Souza, L.; Yadlapati, M.; Garlet, G.P.; Silva, R.M. Expression of heat shock proteins in periapical granulomas. J. Endod. 2014, 40, 830–836. [Google Scholar] [CrossRef]
- Rodrigues, B.L.; Dotti, I.; Pascoal, L.B.; Morari, J.; Esteller, M.; Coope, A.; Ayrizono, M.L.S.; Salas, A.; Leal, R.F. Endoplasmic Reticulum Stress in Colonic Mucosa of Ulcerative Colitis Patients Is Mediated by PERK and IRE1 Pathway Activation. Mediat. Inflamm. 2022, 2022, 6049500. [Google Scholar] [CrossRef]
- Wu, S.; Pei, Q.; Ni, W.; Fu, X.; Zhang, W.; Song, C.; Peng, Y.; Guo, Q.; Dong, J.; Yao, M. HSPA1A Protects Cells from Thermal Stress by Impeding ESCRT-0-Mediated Autophagic Flux in Epidermal Thermoresistance. J. Investig. Dermatol. 2021, 141, 48–58. [Google Scholar] [CrossRef]
- Huang, P.; Lu, C.; Li, J.; Xu, J.; Liu, Z.; Wang, Q.; Wang, Z.; Huo, J.; Li, H.; Teng, Y.; et al. Mutations in HSP70-2 gene change the susceptibility to clinical mastitis in Chinese Holstein. Gene 2015, 559, 62–72. [Google Scholar] [CrossRef]
- He, X.; Guo, X.; Deng, B.; Kang, J.; Liu, W.; Zhang, G.; Wang, Y.; Yang, Y.; Kang, X. HSPA1A ameliorated spinal cord injury in rats by inhibiting apoptosis to exert neuroprotective effects. Exp. Neurol. 2023, 361, 114301. [Google Scholar] [CrossRef] [PubMed]
- Elayadeth-Meethal, M.; Keambou Tiambo, C.; Poonkuzhi Naseef, P.; Saheer Kuruniyan, M.K.; Maloney, S. The profile of HSPA1A gene expression and its association with heat tolerance in crossbred cattle and the tropically adapted dwarf Vechur and Kasaragod. J. Therm. Biol. 2023, 111, 103426. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, J.; Mutua, J.Y.; Notenbaert, A.M.O.; Marshall, K.; Butterbach-Bahl, K. Heat stress will detrimentally impact future livestock production in East Africa. Nat. Food 2021, 2, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Leite, N.G.; Knol, E.F.; Garcia, A.L.S.; Lopes, M.S.; Zak, L.; Tsuruta, S.; Silva, F.F.E.; Lourenco, D. Investigating pig survival in different production phases using genomic models. J. Anim. Sci. 2021, 99, skab217. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Yan, X.; Wu, H.; Wang, F.; Zhong, Z.; Zheng, G.; Xiao, Q.; Wu, K.; Na, W. Selection Signal Analysis Reveals Hainan Yellow Cattle Are Being Selectively Bred for Heat Tolerance. Animals 2024, 14, 775. https://doi.org/10.3390/ani14050775
Wang L, Yan X, Wu H, Wang F, Zhong Z, Zheng G, Xiao Q, Wu K, Na W. Selection Signal Analysis Reveals Hainan Yellow Cattle Are Being Selectively Bred for Heat Tolerance. Animals. 2024; 14(5):775. https://doi.org/10.3390/ani14050775
Chicago/Turabian StyleWang, Liuhao, Xuehao Yan, Hongfen Wu, Feifan Wang, Ziqi Zhong, Gang Zheng, Qian Xiao, Kebang Wu, and Wei Na. 2024. "Selection Signal Analysis Reveals Hainan Yellow Cattle Are Being Selectively Bred for Heat Tolerance" Animals 14, no. 5: 775. https://doi.org/10.3390/ani14050775
APA StyleWang, L., Yan, X., Wu, H., Wang, F., Zhong, Z., Zheng, G., Xiao, Q., Wu, K., & Na, W. (2024). Selection Signal Analysis Reveals Hainan Yellow Cattle Are Being Selectively Bred for Heat Tolerance. Animals, 14(5), 775. https://doi.org/10.3390/ani14050775