The Most Important Metabolic Diseases in Dairy Cattle during the Transition Period
Abstract
:Simple Summary
Abstract
1. Introduction
2. Subacute Ruminal Acidosis
2.1. Etiology and Pathophysiology
2.2. Clinical Presentation
2.3. Diagnosis
2.4. Prevention of SARA
3. Ketosis
3.1. Etiology and Pathophysiology
3.2. Clinical Presentation
3.3. Diagnosis
3.4. Treatment and Prevention of Ketosis
4. Hypocalcemia
4.1. Etiology and Pathophysiology
4.2. Clinical Presentation
4.3. Diagnosis
4.4. Treatment and Prevention of Hypocalcemia
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Britt, J.H.; Cushman, R.A.; Dechow, C.D.; Dobson, H.; Humblot, P.; Hutjens, M.F.; Jones, G.A.; Ruegg, P.S.; Sheldon, I.M.; Stevenson, J.S. Invited Review: Learning from the Future—A Vision for Dairy Farms and Cows in 2067. J. Dairy Sci. 2018, 101, 3722–3741. [Google Scholar] [CrossRef]
- Vries, A.D.; Marcondes, M.I. Review: Overview of Factors Affecting Productive Lifespan of Dairy Cows. Animal 2020, 14, s155–s164. [Google Scholar] [CrossRef]
- Pulina, G.; Tondo, A.; Danieli, P.P.; Primi, R.; Matteo Crovetto, G.; Fantini, A.; Macciotta, N.P.P.; Atzori, A.S. How to Manage Cows Yielding 20,000 Kg of Milk: Technical Challenges and Environmental Implications. Ital. J. Anim. Sci. 2020, 19, 865–879. [Google Scholar] [CrossRef]
- Leduc, A.; Souchet, S.; Gelé, M.; Le Provost, F.; Boutinaud, M. Effect of Feed Restriction on Dairy Cow Milk Production: A Review. J. Anim. Sci. 2021, 99, skab130. [Google Scholar] [CrossRef] [PubMed]
- Doran, M.J.; Mulligan, F.J.; Lynch, M.B.; Fahey, A.G.; Rajauria, G.; Brady, E.L.; Pierce, K.M. Effects of Concentrate Supplementation and Genotype on Milk Production and Nitrogen Utilisation Efficiency in Late-Lactation, Spring-Calving Grazing Dairy Cows. Livest. Sci. 2022, 261, 104962. [Google Scholar] [CrossRef]
- Maltz, E. Individual Dairy Cow Management: Achievements, Obstacles and Prospects. J. Dairy Res. 2020, 87, 145–157. [Google Scholar] [CrossRef]
- Davis, T.C.; White, R.R. Breeding Animals to Feed People: The Many Roles of Animal Reproduction in Ensuring Global Food Security. Theriogenology 2020, 150, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Abbate, J.M.; Macrì, F.; Capparucci, F.; Iaria, C.; Briguglio, G.; Cicero, L.; Salvo, A.; Arfuso, F.; Ieni, A.; Piccione, G.; et al. Administration of Protein Hydrolysates from Anchovy (Engraulis Encrasicolus) Waste for Twelve Weeks Decreases Metabolic Dysfunction-Associated Fatty Liver Disease Severity in ApoE−/−Mice. Animals 2020, 10, 2303. [Google Scholar] [CrossRef] [PubMed]
- Piccione, G.; Arfuso, F.; Fazio, F.; Bazzano, M.; Giannetto, C. Serum Lipid Modification Related to Exercise and Polyunsaturated Fatty Acid Supplementation in Jumpers and Thoroughbred Horses. J. Equine Vet. Sci. 2014, 34, 1181–1187. [Google Scholar] [CrossRef]
- Armato, L.; Gianesella, M.; Morgante, M.; Fiore, E.; Rizzo, M.; Giudice, E.; Piccione, G. Rumen Volatile Fatty Acids × Dietary Supplementation with Live Yeast and Yeast Cell Wall in Feedlot Beef Cattle. Acta Agric. Scand. Sect. A—Anim. Sci. 2016, 66, 119–124. [Google Scholar] [CrossRef]
- Monteverde, V.; Congiu, F.; Vazzana, I.; Dara, S.; Di Pietro, S.; Piccione, G. Serum Lipid Profile Modification Related to Polyunsaturated Fatty Acid Supplementation in Thoroughbred Horses. J. Appl. Anim. Res. 2017, 45, 615–618. [Google Scholar] [CrossRef]
- Lopreiato, V.; Mezzetti, M.; Cattaneo, L.; Ferronato, G.; Minuti, A.; Trevisi, E. Role of Nutraceuticals during the Transition Period of Dairy Cows: A Review. J. Anim. Sci. Biotechnol. 2020, 11, 96. [Google Scholar] [CrossRef]
- Mezzetti, M.; Cattaneo, L.; Passamonti, M.M.; Lopreiato, V.; Minuti, A.; Trevisi, E. The Transition Period Updated: A Review of the New Insights into the Adaptation of Dairy Cows to the New Lactation. Dairy 2021, 2, 617–636. [Google Scholar] [CrossRef]
- Caixeta, L.S.; Omontese, B.O. Monitoring and Improving the Metabolic Health of Dairy Cows during the Transition Period. Animals 2021, 11, 352. [Google Scholar] [CrossRef] [PubMed]
- Pascottini, O.B.; Leroy, J.L.M.R.; Opsomer, G. Metabolic Stress in the Transition Period of Dairy Cows: Focusing on the Prepartum Period. Animals 2020, 10, 1419. [Google Scholar] [CrossRef]
- Borchardt, S.; Sutter, F.; Heuwieser, W.; Venjakob, P. Management-Related Factors in Dry Cows and Their Associations with Colostrum Quantity and Quality on a Large Commercial Dairy Farm. J. Dairy Sci. 2022, 105, 1589–1602. [Google Scholar] [CrossRef]
- Roche, J.R.; Meier, S.; Heiser, A.; Mitchell, M.D.; Walker, C.G.; Crookenden, M.A.; Riboni, M.V.; Loor, J.J.; Kay, J.K. Effects of Precalving Body Condition Score and Prepartum Feeding Level on Production, Reproduction, and Health Parameters in Pasture-Based Transition Dairy Cows. J. Dairy Sci. 2015, 98, 7164–7182. [Google Scholar] [CrossRef]
- Ingvartsen, K.L. Feeding- and Management-Related Diseases in the Transition Cow: Physiological Adaptations around Calving and Strategies to Reduce Feeding-Related Diseases. Anim. Feed Sci. Technol. 2006, 126, 175–213. [Google Scholar] [CrossRef]
- Tamminga, S. The Effect of the Supply of Rumen Degradable Protein and Metabolisable Protein on Negative Energy Balance and Fertility in Dairy Cows. Anim. Reprod. Sci. 2006, 96, 227–239. [Google Scholar] [CrossRef]
- Buonaiuto, G.; Lopez-Villalobos, N.; Costa, A.; Niero, G.; Degano, L.; Mammi, L.M.E.; Cavallini, D.; Palmonari, A.; Formigoni, A.; Visentin, G. Stayability in Simmental Cattle as Affected by Muscularity and Body Condition Score between Calvings. Front. Vet. Sci. 2023, 10, 1141286. [Google Scholar] [CrossRef]
- Plaizier, J.C.; Martin, A.; Duffield, T.; Bagg, R.; Dick, P.; McBride, B.W. Effect of a Prepartum Administration of Monensin in a Controlled-Release Capsule on Apparent Digestibilities and Nitrogen Utilization in Transition Dairy Cows. J. Dairy Sci. 2000, 83, 2918–2925. [Google Scholar] [CrossRef]
- Gáspárdy, A.; Schwartz, Z.; Zöldág, L.; Veresegyházy, T.; Fekete, S. Changes in Daily Energy Amounts of Main Milk Components (Lactose, Protein and Fat) during the Lactation of High-Yielding Dairy Cows. Acta Vet. Hung. 2004, 52, 457–467. [Google Scholar] [CrossRef]
- Strączek, I.; Młynek, K.; Danielewicz, A. The Capacity of Holstein-Friesian and Simmental Cows to Correct a Negative Energy Balance in Relation to Their Performance Parameters, Course of Lactation, and Selected Milk Components. Animals 2021, 11, 1674. [Google Scholar] [CrossRef]
- Komaragiri, M.V.S.; Casper, D.P.; Erdman, R.A. Factors Affecting Body Tissue Mobilization in Early Lactation Dairy Cows. 2. Effect of Dietary Fat on Mobilization of Body Fat and Protein. J. Dairy Sci. 1998, 81, 169–175. [Google Scholar] [CrossRef]
- Bazzano, M.; Giannetto, C.; Fazio, F.; Arfuso, F.; Giudice, E.; Piccione, G. Metabolic Profile of Broodmares During Late Pregnancy and Early Post-Partum. Reprod. Domest. Anim. 2014, 49, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Fiore, E.; Arfuso, F.; Gianesella, M.; Vecchio, D.; Morgante, M.; Mazzotta, E.; Badon, T.; Rossi, P.; Bedin, S.; Piccione, G. Metabolic and Hormonal Adaptation in Bubalus Bubalis around Calving and Early Lactation. PLoS ONE 2018, 13, e0193803. [Google Scholar] [CrossRef] [PubMed]
- Fiore, E.; Gianesella, M.; Arfuso, F.; Giudice, E.; Piccione, G.; Lora, M.; Stefani, A.; Morgante, M. Glucose Infusion Response on Some Metabolic Parameters in Dairy Cows during Transition Period. Arch. Anim. Breed. 2014, 57, 3. [Google Scholar] [CrossRef]
- Arfuso, F.; Minuti, A.; Liotta, L.; Giannetto, C.; Trevisi, E.; Piccione, G.; Lopreiato, V. Stress and Inflammatory Response of Cows and Their Calves during Peripartum and Early Neonatal Period. Theriogenology 2023, 196, 157–166. [Google Scholar] [CrossRef]
- Abdela, N. Sub-Acute Ruminal Acidosis (SARA) and Its Consequence in Dairy Cattle: A Review of Past and Recent Research at Global Prospective. Achiev. Life Sci. 2016, 10, 187–196. [Google Scholar] [CrossRef]
- Elmhadi, M.E.; Ali, D.K.; Khogali, M.K.; Wang, H. Subacute Ruminal Acidosis in Dairy Herds: Microbiological and Nutritional Causes, Consequences, and Prevention Strategies. Anim. Nutr. 2022, 10, 148–155. [Google Scholar] [CrossRef]
- Zebeli, Q.; Metzler-Zebeli, B.U. Interplay between Rumen Digestive Disorders and Diet-Induced Inflammation in Dairy Cattle. Res. Vet. Sci. 2012, 93, 1099–1108. [Google Scholar] [CrossRef]
- McCann, J.C.; Luan, S.; Cardoso, F.C.; Derakhshani, H.; Khafipour, E.; Loor, J.J. Induction of Subacute Ruminal Acidosis Affects the Ruminal Microbiome and Epithelium. Front. Microbiol. 2016, 7, 701. [Google Scholar] [CrossRef]
- Gómez, L.M.; Posada, S.L.; Olivera, M. Sub-Acute Ruminal Acidosis and Non-Structural Carbohydrates: A Study Model in Nutritional Immunology. CES Med. Vet. Zootec. 2014, 9, 295–9306. [Google Scholar]
- Hayton, A.; Husband, J.; Vecqueray, R. Nutritional Management of Herd Health. In Dairy Herd Health; CABI: Wallingford, UK, 2012; pp. 227–278. [Google Scholar] [CrossRef]
- Kitkas, G.C.; Panousis, N.; Valergakis, G.E.; Karatzias, C. Subacute Ruminai Acidosis in Dairy Cows. J. Hell. Vet. Med. Soc. 2017, 62, 352. [Google Scholar] [CrossRef]
- Kitkas, G.C.; Valergakis, G.E.; Kritsepi-Konstantinou, M.; Gelasakis, A.I.; Arsenos, G.; Kalaitzakis, E.; Panousis, N. Effects of Ruminal pH and Subacute Ruminal Acidosis on Milk Yield and Composition of Holstein Cows in Different Stages of Lactation. J. Hell. Vet. Med. Soc. 2019, 70, 1551. [Google Scholar] [CrossRef]
- Voulgarakis, N.; Athanasiou, L.; Psalla, D.; Gougoulis, D.; Papatsiros, V.; Christodoulopoulos, G. Ruminal Acidosis Part II: Diagnosis, Prevention and Treatment. J. Hell. Vet. Med. Soc. 2024, 74, 6329–6336. [Google Scholar] [CrossRef]
- Voulgarakis, N.; Gougoulis, D.; Psalla, D.; Papakonstantinou, G.; Angelidou-Tsifida, M.; Papatsiros, V.; Athanasiou, L.; Christodoulopoulos, G. Ruminal Acidosis Part I: Clinical Manifestations, Epidemiology and Impact of the Disease. J. Hell. Vet. Med. Soc. 2023, 74, 5883–5891. [Google Scholar] [CrossRef]
- Huxley, J.N. Impact of Lameness and Claw Lesions in Cows on Health and Production. Livest. Sci. 2013, 156, 64–70. [Google Scholar] [CrossRef]
- Valente, T.N.P.; Sampaio, C.B.; Lima, E.D.S.; Deminicis, B.B.; Cezário, A.S.; Santos, W.B.R.D. Aspects of Acidosis in Ruminants with a Focus on Nutrition: A Review. JAS 2017, 9, 90. [Google Scholar] [CrossRef]
- Hernández, J.; Benedito, J.L.; Abuelo, A.; Castillo, C. Ruminal Acidosis in Feedlot: From Aetiology to Prevention. Sci. World J. 2014, 2014, e702572. [Google Scholar] [CrossRef] [PubMed]
- Rabaza, A.; Banchero, G.; Cajarville, C.; Zunino, P.; Britos, A.; Repetto, J.L.; Fraga, M. Effects of Feed Withdrawal Duration on Animal Behaviour, Rumen Microbiota and Blood Chemistry in Feedlot Cattle: Implications for Rumen Acidosis. Animal 2020, 14, 66–77. [Google Scholar] [CrossRef]
- Viana, P.R.L.; Viana, L.F.; Araújo, G.H.M.; de Moraes, I.D.T.; Queiroz, P.J.B.; Cagnini, D.Q.; da Silva, L.A.F.; Rabelo, R.E. The Macroscopic and Microscopic Description of Ruminal Lesions in Feedlot Bovine. Ciênc. Anim. Bras. 2022, 23, e. [Google Scholar] [CrossRef]
- Bus, J.D.; Stockhofe, N.; Webb, L.E. Abomasal Damage in Veal Calves. J. Dairy Sci. 2019, 102, 943–960. [Google Scholar] [CrossRef]
- Braun, U.; Gerspach, C.; Hilbe, M.; Devaux, D.J.; Reif, C. Clinical and Laboratory Findings in 60 Cows with Type-3 Abomasal Ulcer. Schweiz. Arch. Tierheilkd. 2019, 161, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Freitas, S.L.R.; Queiroz, P.J.B.; Fernandes, J.J.R.; Nascente, E.P.; Santos, A.S.; Nascimento, K.S.; Silva, L.A.F. Occurrence of Clinical Laminitis after Adaptation to Confinement: Effects on Morphology, Density, and Mineral Composition of the Hoof of Nellore Cattle after Finishing. Pesq. Vet. Bras. 2023, 43, e07131. [Google Scholar]
- Stefańska, B.; Komisarek, J.; Nowak, W. Non-Invasive Indicators Associated with Subacute Ruminal Acidosis in Dairy Cows. Ann. Anim. Sci. 2020, 20, 1325–1338. [Google Scholar] [CrossRef]
- Khorrami, B.; Khiaosa-ard, R.; Zebeli, Q. Models to Predict the Risk of Subacute Ruminal Acidosis in Dairy Cows Based on Dietary and Cow Factors: A Meta-Analysis. J. Dairy Sci. 2021, 104, 7761–7780. [Google Scholar] [CrossRef] [PubMed]
- Garrett, E.F.; Pereira, M.N.; Nordlund, K.V.; Armentano, L.E.; Goodger, W.J.; Oetzel, G.R. Diagnostic Methods for the Detection of Subacute Ruminal Acidosis in Dairy Cows. J. Dairy Sci. 1999, 82, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Enemark, J.M.D. The Monitoring, Prevention and Treatment of Sub-Acute Ruminal Acidosis (SARA): A Review. Vet. J. 2008, 176, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gelsinger, S.; Edwards, A.; Riehle, C.; Koch, D. Transcriptome Analysis of Rumen Epithelium and Meta-Transcriptome Analysis of Rumen Epimural Microbial Community in Young Calves with Feed Induced Acidosis. Sci. Rep. 2019, 9, 4744. [Google Scholar] [CrossRef]
- Krause, K.M.; Oetzel, G.R. Understanding and Preventing Subacute Ruminal Acidosis in Dairy Herds: A Review. Anim. Feed Sci. Technol. 2006, 126, 215–236. [Google Scholar] [CrossRef]
- Esposito, G.; Irons, P.C.; Webb, E.C.; Chapwanya, A. Interactions between Negative Energy Balance, Metabolic Diseases, Uterine Health and Immune Response in Transition Dairy Cows. Anim. Reprod. Sci. 2014, 144, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Drong, C.; Meyer, U.; von Soosten, D.; Frahm, J.; Rehage, J.; Breves, G.; Dänicke, S. Effect of Monensin and Essential Oils on Performance and Energy Metabolism of Transition Dairy Cows. J. Anim. Physiol. Anim. Nutr. 2016, 100, 537–551. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Nagy, O.; Tóthová, C.; Chovanová, F. Clinical and Diagnostic Significance of Lactate Dehydrogenase and Its Isoenzymes in Animals. Vet. Med. Int. 2020, 2020, e5346483. [Google Scholar] [CrossRef]
- Delaby, L.; Faverdin, P.; Michel, G.; Disenhaus, C.; Peyraud, J.L. Effect of Different Feeding Strategies on Lactation Performance of Holstein and Normande Dairy Cows. Animal 2009, 3, 891–905. [Google Scholar] [CrossRef]
- Mann, S.; Yepes, F.A.L.; Overton, T.R.; Wakshlag, J.J.; Lock, A.L.; Ryan, C.M.; Nydam, D.V. Dry Period Plane of Energy: Effects on Feed Intake, Energy Balance, Milk Production, and Composition in Transition Dairy Cows. J. Dairy Sci. 2015, 98, 3366–3382. [Google Scholar] [CrossRef]
- Stone, W.C. Nutritional Approaches to Minimize Subacute Ruminal Acidosis and Laminitis in Dairy Cattle. J. Dairy Sci. 2004, 87, E13–E26. [Google Scholar] [CrossRef]
- Zebeli, Q.; Dijkstra, J.; Tafaj, M.; Steingass, H.; Ametaj, B.N.; Drochner, W. Modeling the Adequacy of Dietary Fiber in Dairy Cows Based on the Responses of Ruminal pH and Milk Fat Production to Composition of the Diet. J. Dairy Sci. 2008, 91, 2046–2066. [Google Scholar] [CrossRef]
- Lei, M.A.C.; Simões, J. Invited Review: Ketosis Diagnosis and Monitoring in High-Producing Dairy Cows. Dairy 2021, 2, 303–325. [Google Scholar] [CrossRef]
- Mann, S.; McArt, J.; Abuelo, A. Production-Related Metabolic Disorders of Cattle: Ketosis, Milk Fever and Grass Staggers. Practice 2019, 41, 205–219. [Google Scholar] [CrossRef]
- Fox, F.H. Clinical Diagnosis and Treatment of Ketosis. J. Dairy Sci. 1971, 54, 974–978. [Google Scholar] [CrossRef]
- Wu, G. Management of Metabolic Disorders (Including Metabolic Diseases) in Ruminant and Nonruminant Animals. In Animal Agriculture; Bazer, F.W., Lamb, G.C., Wu, G., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 471–491. ISBN 978-0-12-817052-6. [Google Scholar]
- García, A.M.B.; Cardoso, F.C.; Campos, R.; Thedy, D.X.; González, F.H.D. Metabolic Evaluation of Dairy Cows Submitted to Three Different Strategies to Decrease the Effects of Negative Energy Balance in Early Postpartum. Pesq. Vet. Bras. 2011, 31, 11–17. [Google Scholar] [CrossRef]
- Roche, J.R.; Bell, A.W.; Overton, T.R.; Loor, J.J. Nutritional Management of the Transition Cow in the 21st Century—A Paradigm Shift in Thinking. Anim. Prod. Sci. 2013, 53, 1000–1023. [Google Scholar] [CrossRef]
- Mekuriaw, Y. Negative Energy Balance and Its Implication on Productive and Reproductive Performance of Early Lactating Dairy Cows: Review Paper. J. Appl. Anim. Res. 2023, 51, 220–229. [Google Scholar] [CrossRef]
- Cotter, D.G.; Ercal, B.; Huang, X.; Leid, J.M.; d’Avignon, D.A.; Graham, M.J.; Dietzen, D.J.; Brunt, E.M.; Patti, G.J.; Crawford, P.A. Ketogenesis Prevents Diet-Induced Fatty Liver Injury and Hyperglycemia. J. Clin. Investig. 2014, 124, 5175–5190. [Google Scholar] [CrossRef]
- Bradford, B.J.; Swartz, T.H. Review: Following the Smoke Signals: Inflammatory Signaling in Metabolic Homeostasis and Homeorhesis in Dairy Cattle. Animal 2020, 14, s144–s154. [Google Scholar] [CrossRef] [PubMed]
- Fukao, T.; Mitchell, G.; Sass, J.O.; Hori, T.; Orii, K.; Aoyama, Y. Ketone Body Metabolism and Its Defects. J. Inherit. Metab. Dis. 2014, 37, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Yu, S.; Zeng, W.; Zhou, J. Comparative Analysis of the Chemical and Biochemical Synthesis of Keto Acids. Biotechnol. Adv. 2021, 47, 107706. [Google Scholar] [CrossRef]
- Tufarelli, V.; Colonna, M.A.; Losacco, C.; Puvača, N. Biological Health Markers Associated with Oxidative Stress in Dairy Cows during Lactation Period. Metabolites 2023, 13, 405. [Google Scholar] [CrossRef]
- Service, F.J. Hypoglycemic Disorders. N. Engl. J. Med. 1995, 332, 1144–1152. [Google Scholar] [CrossRef]
- Holtenius, P.; Holtenius, K. New Aspects of Ketone Bodies in Energy Metabolism of Dairy Cows: A Review. J. Vet. Med. Ser. A 1996, 43, 579–587. [Google Scholar] [CrossRef]
- Roche, J.R.; Kay, J.K.; Friggens, N.C.; Loor, J.J.; Berry, D.P. Assessing and Managing Body Condition Score for the Prevention of Metabolic Disease in Dairy Cows. Vet. Clin. Food Anim. Pract. 2013, 29, 323–336. [Google Scholar] [CrossRef]
- Guliński, P. Ketone Bodies—Causes and Effects of Their Increased Presence in Cows’ Body Fluids: A Review. Vet. World 2021, 14, 1492–1503. [Google Scholar] [CrossRef]
- Holzhauer, M.; Valarcher, J.-F. Literature Review and Metanalysis of Fatty Liver Syndrome in Dairy Cows and Evaluation of Reference Values of Triacyl Glycerides in Liver and NEFA, BHB, Glucose and Insulin in Serum. Curr. Trends Intern. Med. 2024, 8, 213. [Google Scholar]
- Mauvais-Jarvis, F.; Sobngwi, E.; Porcher, R.; Riveline, J.-P.; Kevorkian, J.-P.; Vaisse, C.; Charpentier, G.; Guillausseau, P.-J.; Vexiau, P.; Gautier, J.-F. Ketosis-Prone Type 2 Diabetes in Patients of Sub-Saharan African Origin: Clinical Pathophysiology and Natural History of β-Cell Dysfunction and Insulin Resistance. Diabetes 2004, 53, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Mooli, R.G.R.; Ramakrishnan, S.K. Emerging Role of Hepatic Ketogenesis in Fatty Liver Disease. Front. Physiol. 2022, 13, 1300. [Google Scholar]
- Zhang, G.; Ametaj, B.N. Ketosis an Old Story Under a New Approach. Dairy 2020, 1, 42–60. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, X.; Zheng, M.; Chen, D.; Chen, X. Altering Microbial Communities: A Possible Way of Lactic Acid Bacteria Inoculants Changing Smell of Silage. Anim. Feed Sci. Technol. 2021, 279, 114998. [Google Scholar] [CrossRef]
- Vicente, F.; Rodríguez, M.L.; Martínez-Fernández, A.; Soldado, A.; Argamentería, A.; Peláez, M.; de la Roza-Delgado, B. Subclinical Ketosis on Dairy Cows in Transition Period in Farms with Contrasting Butyric Acid Contents in Silages. Sci. World J. 2014, 2014, e279614. [Google Scholar] [CrossRef] [PubMed]
- Duffield, T. Subclinical Ketosis in Lactating Dairy Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 231–253. [Google Scholar] [CrossRef]
- Li, K.; Wang, W.; Wu, J.; Xiao, W. β-Hydroxybutyrate: A Crucial Therapeutic Target for Diverse Liver Diseases. Biomed. Pharmacother. 2023, 165, 115191. [Google Scholar] [CrossRef]
- Auerbach, H.; Nadeau, E. Effects of Additive Type on Fermentation and Aerobic Stability and Its Interaction with Air Exposure on Silage Nutritive Value. Agronomy 2020, 10, 1229. [Google Scholar] [CrossRef]
- Schmitz, R.; Schnabel, K.; Frahm, J.; von Soosten, D.; Meyer, U.; Hüther, L.; Spiekers, H.; Rehage, J.; Sauerwein, H.; Dänicke, S. Effects of Energy Supply from Roughage and Concentrates and the Occurrence of Subclinical Ketosis on Blood Chemistry and Liver Health in Lactating Dairy Cows during Early Lactation. Dairy 2021, 2, 25–39. [Google Scholar] [CrossRef]
- Issi, M.; Gül, Y.; Başbuğ, O. Evaluation of Renal and Hepatic Functions in Cattle with Subclinical and Clinical Ketosis. Turk. J. Vet. Anim. Sci. 2016, 40, 47–52. [Google Scholar] [CrossRef]
- Satoła, A.; Bauer, E.A. Predicting Subclinical Ketosis in Dairy Cows Using Machine Learning Techniques. Animals 2021, 11, 2131. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.; Gerletti, P.; Fürst, P.; Keuth, O.; Bernsmann, T.; Martin, A.; Schäfer, B.; Numata, J.; Lorenzen, M.C.; Pieper, R. Transfer of Cannabinoids into the Milk of Dairy Cows Fed with Industrial Hemp Could Lead to Δ9-THC Exposure That Exceeds Acute Reference Dose. Nat. Food 2022, 3, 921–932. [Google Scholar] [CrossRef] [PubMed]
- Cascone, G.; Licitra, F.; Stamilla, A.; Amore, S.; Dipasquale, M.; Salonia, R.; Antoci, F.; Zecconi, A. Subclinical Ketosis in Dairy Herds: Impact of Early Diagnosis and Treatment. Front. Vet. Sci. 2022, 9, 895468. [Google Scholar] [PubMed]
- Młynek, K.; Głowińska, B. The Relationship of Body Condition and Chewing Time with Body Weight, the Level of Plasma Cocaine and Amphetamine Regulated Transcript, Leptin and Energy Metabolites in Cows until Reaching the Lactation Peak. Acta Vet. Brno 2020, 89, 31–38. [Google Scholar] [CrossRef]
- Djoković, R.; Šamanc, H.; Ilić, Z.; Kurćubić, V. Blood Glucose, Insulin and Inorganic Phosphorus in Healthy and Ketotic Dairy Cows after Intravenous Infusion of Glucose Solution. Acta Vet. Brno 2009, 78, 449–453. [Google Scholar] [CrossRef]
- Krempaský, M.; Maskaľová, I.; Bujňák, L.; Vajda, V. Ketone Bodies in Blood of Dairy Cows: Prevalence and Monitoring of Subclinical Ketosis. Acta Vet. Brno 2014, 83, 411–416. [Google Scholar] [CrossRef]
- Serrenho, R.C.; Williamson, M.; Berke, O.; LeBlanc, S.J.; DeVries, T.J.; McBride, B.W.; Duffield, T.F. An Investigation of Blood, Milk, and Urine Test Patterns for the Diagnosis of Ketosis in Dairy Cows in Early Lactation. J. Dairy Sci. 2022, 105, 7719–7727. [Google Scholar] [CrossRef]
- Faruk, M.; Park, B.; Ha, S.; Lee, S.; Mamuad, L.; Cho, Y. Comparative Study on Different Field Tests of Ketosis Using Blood, Milk, and Urine in Dairy Cattle. Vet. Med. 2020, 65, 199–206. [Google Scholar] [CrossRef]
- Bellato, A.; Tondo, A.; Dellepiane, L.; Dondo, A.; Mannelli, A.; Bergagna, S. Estimates of Dairy Herd Health Indicators of Mastitis, Ketosis, Inter-Calving Interval, and Fresh Cow Replacement in the Piedmont Region, Italy. Prev. Vet. Med. 2023, 212, 105834. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cen, S.; Wang, G.; Lee, Y.; Zhao, J.; Zhang, H.; Chen, W. Acetic Acid and Butyric Acid Released in Large Intestine Play Different Roles in the Alleviation of Constipation. J. Funct. Foods 2020, 69, 103953. [Google Scholar] [CrossRef]
- Pechová, A.; Nečasová, A. The Relationship Between Subclinical Ketosis and Ruminal Dysfunction in Dairy Cows. Ann. Anim. Sci. 2018, 18, 955–971. [Google Scholar] [CrossRef]
- Dhatariya, K.K.; Glaser, N.S.; Codner, E.; Umpierrez, G.E. Diabetic Ketoacidosis. Nat. Rev. Dis. Primers 2020, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Enjalbert, F.; Nicot, M.C.; Bayourthe, C.; Moncoulon, R. Ketone Bodies in Milk and Blood of Dairy Cows: Relationship between Concentrations and Utilization for Detection of Subclinical Ketosis. J. Dairy Sci. 2001, 84, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Steen, A.; Grønstøl, H.; Torjesen, P.A. Glucose and Insulin Responses to Glucagon Injection in Dairy Cows with Ketotis and Fatty Live. J. Vet. Med. Ser. A 1997, 44, 521–530. [Google Scholar] [CrossRef]
- Borchardt, S.; Staufenbiel, R. Evaluation of the Use of Nonesterified Fatty Acids and β-Hydroxybutyrate Concentrations in Pooled Serum Samples for Herd-Based Detection of Subclinical Ketosis in Dairy Cows during the First Week after Parturition. J. Am. Vet. Med. Assoc. 2012, 240, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Gill, K.D. (Eds.) Qualitative Analysis of Ketone Bodies in Urine. In Basic Concepts in Clinical Biochemistry: A Practical Guide; Springer: Singapore, 2018; pp. 119–122. ISBN 978-981-10-8186-6. [Google Scholar]
- McArt, J.A.A.; Nydam, D.V.; Oetzel, G.R. A Field Trial on the Effect of Propylene Glycol on Displaced Abomasum, Removal from Herd, and Reproduction in Fresh Cows Diagnosed with Subclinical Ketosis. J. Dairy Sci. 2012, 95, 2505–2512. [Google Scholar] [CrossRef]
- Cervenka, M.C.; Wood, S.; Bagary, M.; Balabanov, A.; Bercovici, E.; Brown, M.-G.; Devinsky, O.; Di Lorenzo, C.; Doherty, C.P.; Felton, E.; et al. International Recommendations for the Management of Adults Treated With Ketogenic Diet Therapies. Neurol. Clin. Pract. 2021, 11, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Melendez, P.; Arévalos, A.; Duchens, M.; Pinedo, P.; Melendez, P.; Arévalos, A.; Duchens, M.; Pinedo, P. Effect of an Intraruminal Monensin Bolus on Blood β-Hydroxybutyrate, Peripartum Diseases, Milk Yield and Solids in Holstein Cows. Rev. Mex. Cienc. Pecu. 2019, 10, 84–103. [Google Scholar] [CrossRef]
- Heuer, C.; Schukken, Y.H.; Jonker, L.J.; Wilkinson, J.I.D.; Noordhuizen, J.P.T.M. Effect of Monensin on Blood Ketone Bodies, Incidenceand Recurrence of Disease and Fertility in Dairy Cows. J. Dairy Sci. 2001, 84, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Kumar Jain, V.; Kumar Nehra, A.; Kumar, M.; Sharma, M.; Kumar, A.; Gupta, S.; Singh, Y. Assessment of Haematological and Biochemical Alterations in Recumbent Buffaloes. Biol. Rhythm Res. 2022, 53, 1670–1691. [Google Scholar] [CrossRef]
- Lomb, J.; von Keyserlingk, M.A.G.; Weary, D.M. Behavioral Changes Associated with Fever in Transition Dairy Cows. J. Dairy Sci. 2020, 103, 7331–7338. [Google Scholar] [CrossRef] [PubMed]
- Felsenfeld, A.J.; Levine, B.S. Milk Alkali Syndrome and the Dynamics of Calcium Homeostasis. Clin. J. Am. Soc. Nephrol. 2006, 1, 641. [Google Scholar] [CrossRef]
- Goff, J.P. Calcium and Magnesium Disorders. Vet. Clin. Food Anim. Pract. 2014, 30, 359–381. [Google Scholar] [CrossRef]
- DeGaris, P.J.; Lean, I.J. Milk Fever in Dairy Cows: A Review of Pathophysiology and Control Principles. Vet. J. 2008, 176, 58–69. [Google Scholar] [CrossRef]
- Pechet, M.M.; Bobadilla, E.; Carroll, E.L.; Hesse, R.H. Regulation of Bone Resorption and Formation: Influences of Thyrocalcitonin, Parathyroid Hormone, Neutral Phosphate and Vitamin D3. Am. J. Med. 1967, 43, 696–710. [Google Scholar] [CrossRef]
- Kroll, M.H. Parathyroid Hormone Temporal Effects on Bone Formation and Resorption. Bull. Math. Biol. 2000, 62, 163–188. [Google Scholar] [CrossRef]
- Stevenson, M.A.; Williamson, N.B.; Hardon, D.W. The Effects of Calcium Supplementation of Dairy Cattle after Calving on Milk, Milk Fat and Protein Production, and Fertility. N. Z. Vet. J. 1999, 47, 53–60. [Google Scholar] [CrossRef]
- Goff, J.P. The Monitoring, Prevention, and Treatment of Milk Fever and Subclinical Hypocalcemia in Dairy Cows. Vet. J. 2008, 176, 50–57. [Google Scholar] [CrossRef]
- Seifi, H.A.; Kia, S. Subclinical Hypocalcemia in Dairy Cows: Pathophysiology, Consequences and Monitoring. IJVST 2017, 9, 1–15. [Google Scholar] [CrossRef]
- Rérat, M.; Schlegel, P. Effect of Dietary Potassium and Anionic Salts on Acid–Base and Mineral Status in Periparturient Cows. J. Anim. Physiol. Anim. Nutr. 2014, 98, 458–466. [Google Scholar] [CrossRef]
- Goff, J.P. Pathophysiology of Calcium and Phosphorus Disorders. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 319–337. [Google Scholar] [CrossRef]
- Kostadinović, L. Hydroponic Feed and Quality in Sustainable Dairy Animal Production. J. Agron. Technol. Eng. Manag. 2023, 6, 965–974. [Google Scholar] [CrossRef]
- Kocabagli, N. Prevention of Milk Fever: A Herd Health Approach to Dairy Cow Nutrition. Arch. Anim. Husb. Dairy Sci. 2018, 1, 2018. [Google Scholar] [CrossRef]
- Murray, R.D.; Horsfield, J.E.; McCormick, W.D.; Williams, H.J.; Ward, D. Historical and Current Perspectives on the Treatment, Control and Pathogenesis of Milk Fever in Dairy Cattle. Vet. Rec. 2008, 163, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Wu, X.; Yu, Y.; Wang, L.; Xie, D.; Zhang, Z.; Chen, L.; Lu, A.; Zhang, G.; Li, F. Disorders of Calcium and Phosphorus Metabolism and the Proteomics/Metabolomics-Based Research. Front. Cell Dev. Biol. 2020, 8, 576110. [Google Scholar]
- Reinhardt, T.A.; Lippolis, J.D.; McCluskey, B.J.; Goff, J.P.; Horst, R.L. Prevalence of Subclinical Hypocalcemia in Dairy Herds. Vet. J. 2011, 188, 122–124. [Google Scholar] [CrossRef]
- Ramberg, C.F.; Johnson, E.K.; Fargo, R.D.; Kronfeld, D.S. Calcium Homeostasis in Cows, with Special Reference to Parturient Hypocalcemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1984, 246, R698–R704. [Google Scholar] [CrossRef] [PubMed]
- Venjakob, P.L.; Borchardt, S.; Heuwieser, W. Hypocalcemia—Cow-Level Prevalence and Preventive Strategies in German Dairy Herds. J. Dairy Sci. 2017, 100, 9258–9266. [Google Scholar] [CrossRef]
- Arechiga-Flores, C.F.; Cortés-Vidauri, Z.; Hernández-Briano, P.; Lozano-Domínguez, R.R.; López-Carlos, M.A.; Macías-Cruz, U.; Avendaño-Reyes, L.; Arechiga-Flores, C.F.; Cortés-Vidauri, Z.; Hernández-Briano, P.; et al. Hypocalcemia in the Dairy Cow. Review. Rev. Mex. Cienc. Pecu. 2022, 13, 1025–1054. [Google Scholar] [CrossRef]
- Oetzel, G.R. Parturient Paresis and Hypocalcemia in Ruminant Livestock. Vet. Clin. N. Am. Food Anim. Pract. 1988, 4, 351–364. [Google Scholar] [CrossRef]
- Caixeta, L.S.; Ospina, P.A.; Capel, M.B.; Nydam, D.V. Association between Subclinical Hypocalcemia in the First 3 Days of Lactation and Reproductive Performance of Dairy Cows. Theriogenology 2017, 94, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, A.L.; Maquivar, M.G.; Bas, S.; Brick, T.A.; Weiss, W.P.; Bothe, H.; Velez, J.S.; Schuenemann, G.M. Effect of Serum Calcium Status at Calving on Survival, Health, and Performance of Postpartum Holstein Cows and Calves under Certified Organic Management. J. Dairy Sci. 2017, 100, 3059–3067. [Google Scholar] [CrossRef]
- Fehlberg, L.K.; Pineda, A.; Cardoso, F.C. Validation of 2 Urine pH Measuring Techniques in a Prepartum Negative Dietary Cation-Anion Difference Diet and the Relationship with Production Performance. JDS Commun. 2022, 3, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Amanlou, H.; Akbari, A.P.; Farsuni, N.E.; Silva-del-Río, N. Effects of Subcutaneous Calcium Administration at Calving on Mineral Status, Health, and Production of Holstein Cows. J. Dairy Sci. 2016, 99, 9199–9210. [Google Scholar] [CrossRef]
- Wilms, J.; Wang, G.; Doelman, J.; Jacobs, M.; Martín-Tereso, J. Intravenous Calcium Infusion in a Calving Protocol Disrupts Calcium Homeostasis Compared with an Oral Calcium Supplement. J. Dairy Sci. 2019, 102, 6056–6064. [Google Scholar] [CrossRef]
- Miltenburg, C.L.; Duffield, T.F.; Bienzle, D.; Scholtz, E.L.; LeBlanc, S.J. Randomized Clinical Trial of a Calcium Supplement for Improvement of Health in Dairy Cows in Early Lactation. J. Dairy Sci. 2016, 99, 6550–6562. [Google Scholar] [CrossRef]
- Oetzel, G.R. Fresh Cow Metabolic Diseases: Old Myths and New Data. In American Association of Bovine Practitioners Conference Proceedings; American Association of Bovine Practitioners: Ashland, OH, USA, 2017; pp. 70–80. [Google Scholar] [CrossRef]
- Wilkens, M.R.; Nelson, C.D.; Hernandez, L.L.; McArt, J.A.A. Symposium Review: Transition Cow Calcium Homeostasis—Health Effects of Hypocalcemia and Strategies for Prevention. J. Dairy Sci. 2020, 103, 2909–2927. [Google Scholar] [CrossRef] [PubMed]
- Martín-Tereso, J.; Verstegen, M.W.A. A Novel Model to Explain Dietary Factors Affecting Hypocalcaemia in Dairy Cattle. Nutr. Res. Rev. 2011, 24, 228–243. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tufarelli, V.; Puvača, N.; Glamočić, D.; Pugliese, G.; Colonna, M.A. The Most Important Metabolic Diseases in Dairy Cattle during the Transition Period. Animals 2024, 14, 816. https://doi.org/10.3390/ani14050816
Tufarelli V, Puvača N, Glamočić D, Pugliese G, Colonna MA. The Most Important Metabolic Diseases in Dairy Cattle during the Transition Period. Animals. 2024; 14(5):816. https://doi.org/10.3390/ani14050816
Chicago/Turabian StyleTufarelli, Vincenzo, Nikola Puvača, Dragan Glamočić, Gianluca Pugliese, and Maria Antonietta Colonna. 2024. "The Most Important Metabolic Diseases in Dairy Cattle during the Transition Period" Animals 14, no. 5: 816. https://doi.org/10.3390/ani14050816
APA StyleTufarelli, V., Puvača, N., Glamočić, D., Pugliese, G., & Colonna, M. A. (2024). The Most Important Metabolic Diseases in Dairy Cattle during the Transition Period. Animals, 14(5), 816. https://doi.org/10.3390/ani14050816