Growth Performance and Immunity of Broilers Fed Sorghum–Soybean Meal Diets Supplemented with Phytases and Β-Mannanases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bird Husbandry
2.2. Experimental Design and Diets
2.3. Productive Performance
2.4. Systemic Humoral Immune Response
2.5. Quantification of Intestinal Immunoglobulin A (IgA) Antibodies
2.6. Cellular Immune Response
2.7. Relative Weight of the Organs
2.8. Statistical Analysis
3. Results
3.1. Animal Performance
3.2. Systemic and Local Humoral Immune Response
3.3. Hematology
3.4. Relative Organ Weights
4. Discussion
4.1. Animal Performance
4.2. Systemic and Local Humoral Immune Response
4.3. Hematology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cowieson, A.J.; Wilcock, P.; Bedford, M.R. Super-dosing effects of phytase in poultry and other monogastrics. World Poult. Sci. J. 2011, 67, 225–235. [Google Scholar] [CrossRef]
- Shi, H.; Wang, J.; Teng, P.Y.; Tompkins, Y.H.; Jordan, B.; Kim, W.K. Effects of phytase and coccidial vaccine on growth performance, nutrient digestibility, bone mineralization, and intestinal gene expression of broilers. Poult. Sci. 2022, 101, 102124. [Google Scholar] [CrossRef]
- Esteve-Garcia, E.; Perez-Vendrell, A.M.; Broz, J. Phosphorus equivalence of a phytase produced by in diets for young turkeys. Arch. Anim. Nutr. 2005, 59, 53–59. [Google Scholar] [CrossRef]
- Walk, C.L.; Bedford, M.R.; Olukosi, O.A. Effect of phytase on growth performance, phytate degradation and gene expression of myo-inositol transporters in the small intestine, liver and kidney of 21 day old broilers. Poult. Sci. 2018, 97, 1155–1162. [Google Scholar] [CrossRef]
- Leyva-Jimenez, H.; Alsadwi, A.M.; Gardner, K.; Voltura, E.; Bailey, C.A. Evaluation of high dietary phytase supplementation on performance, bone mineralization, and apparent ileal digestible energy of growing broilers. Poult. Sci. 2019, 98, 811–819. [Google Scholar] [CrossRef]
- Gomez-Verduzco, G.; Cortes-Cuevas, A.; Lopez-Coello, C.; Avila-Gonzalez, E.; Nava, G.M. Dietary supplementation of mannan-oligosaccharide enhances neonatal immune responses in chickens during natural exposure to Eimeria spp. Acta Vet. Scand. 2009, 51, 11. [Google Scholar] [CrossRef]
- Saeed, M.; Ahmad, F.; Arain, M.A.; El-Hack, A.; Emam, M.; Bhutto, Z.A.; Moshaveri, A. Use of mannan-oligosaccharides (MOS) as a feed additive in poultry nutrition. J. World’s Poult. Res. 2017, 7, 94–103. [Google Scholar]
- Zanu, H.; Keerqin, C.; Kheravii, S.; Morgan, N.; Wu, S.-B.; Bedford, M.; Swick, R. Influence of meat and bone meal, phytase, and antibiotics on broiler chickens challenged with subclinical necrotic enteritis: 2. intestinal permeability, organ weights, hematology, intestinal morphology, and jejunal gene expression. Poult. Sci. 2020, 99, 2581–2594. [Google Scholar] [CrossRef] [PubMed]
- Künzel, S.; Borda-Molina, D.; Zuber, T.; Hartung, J.; Siegert, W.; Feuerstein, D.; Camarinha-Silva, A.; Rodehutscord, M. Relative phytase efficacy values as affected by response traits, including ileal microbiota composition. Poult. Sci. 2021, 100, 101133. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, S.; Kaur, J. Microbial mannanases: An overview of production and applications. Crit. Rev. Biotechnol. 2007, 27, 197–216. [Google Scholar] [CrossRef] [PubMed]
- Malgas, S.; van Dyk, J.S.; Pletschke, B.I. A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World J. Microbiol. Biotechnol. 2015, 31, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Manual, R.B. 2022. Available online: www.Aviagen.com (accessed on 26 May 2022).
- Thayer, S. Serologic procedures. Isol. Identif. Avian Pathog. 1998, 1, 176–198. [Google Scholar]
- Gomez-Verduzco, G.; Cortes-Cuevas, A.; Lopez-Coello, C.; Arce-Menocal, J.; Vasquez-Pelaez, C.; Avila-González, E. Productive performance and immune response in broilers fed a sorghum plus soy diet supplemented with yeast (Saccharomyces cerevisiae) cell walls, in the presence or absence of aflotoxin B1. Tec. Pecu. Mex. 2009, 47, 285–297. [Google Scholar]
- Campbell, T.W. Avian Hematology and Cytology; Iowa State University Press: Ames, IA, USA, 1995. [Google Scholar]
- Ding, X.; Yang, C.; Wang, P.; Yang, Z.; Ren, X. Effects of star anise (Illicium verum Hook. f) and its extractions on carcass traits, relative organ weight, intestinal development, and meat quality of broiler chickens. Poult. Sci. 2020, 99, 5673–5680. [Google Scholar] [CrossRef] [PubMed]
- Belote, B.L.; Soares, I.; Sanches, A.W.D.; de Souza, C.; Scott-Delaunay, R.; Lahaye, L.; Kogut, M.H.; Santin, E. Applying different morphometric intestinal mucosa methods and the correlation with broilers performance under Eimeria challenge. Poult. Sci. 2023, 102, 102849. [Google Scholar] [CrossRef] [PubMed]
- Novotny, M.; Sommerfeld, V.; Krieg, J.; Kühn, I.; Huber, K.; Rodehutscord, M. Comparison of mucosal phosphatase activity, phytate degradation, and nutrient digestibility in 3-week-old turkeys and broilers at different dietary levels of phosphorus and phytase. Poult. Sci. 2023, 102, 102457. [Google Scholar] [CrossRef] [PubMed]
- Rouissi, A.; Alfonso-Avila, A.; Guay, F.; Boulianne, M.; Létourneau-Montminy, M. Effects of Bacillus subtilis, butyrate, mannan-oligosaccharide, and naked oat (ß-glucans) on growth performance, serum parameters, and gut health of broiler chickens. Poult. Sci. 2021, 100, 101506. [Google Scholar] [CrossRef]
- Jackson, M.E.; Geronian, K.; Knox, A.; McNab, J.; McCartney, E. A dose-response study with the feed enzyme β-mannanase in broilers provided with corn-soybean meal based diets in the absence of antibiotic growth promoters. Poult. Sci. 2004, 83, 1992–1996. [Google Scholar] [CrossRef]
- Zou, X.T.; Qiao, X.J.; Xu, Z.R. Effect of beta-mannanase (Hemicell) on growth performance and immunity of broilers. Poult. Sci. 2006, 85, 2176–2179. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, I.H. Effects of beta-mannanase supplementation in combination with low and high energy dense diets for growing and finishing broilers. Livest Sci. 2013, 154, 137–143. [Google Scholar] [CrossRef]
- Daskiran, M.; Teeter, R.; Fodge, D.; Hsiao, H. An evaluation of endo-β-D-mannanase (Hemicell) effects on broiler performance and energy use in diets varying in β-mannan content. Poult. Sci. 2004, 83, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Shashidhara, R.G.; Devegowda, G. Effect of dietary mannan oligosaccharide on broiler breeder production traits and immunity. Poult. Sci. 2003, 82, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Ferreira Jr, H.; Hannas, M.; Albino, L.; Rostagno, H.; Neme, R.; Faria, B.; Xavier Jr, M.; Rennó, L. Effect of the addition of β-mannanase on the performance, metabolizable energy, amino acid digestibility coefficients, and immune functions of broilers fed different nutritional levels. Poult. Sci. 2016, 95, 1848–1857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hunt, H.; Kulkarni, G.; Palmquist, D.; Bacon, L. Lymphoid organ size varies among inbred lines 63 and 72 and their thirteen recombinant congenic strains of chickens with the same major histocompatibility complex. Poult. Sci. 2006, 85, 844–853. [Google Scholar] [CrossRef]
- Zangiabadi, H.; Torki, M. The effect of a beta-mannanase-based enzyme on growth performance and humoral immune response of broiler chickens fed diets containing graded levels of whole dates. Trop. Anim. Health Prod. 2010, 42, 1209–1217. [Google Scholar] [CrossRef]
- Mehri, M.; Adibmoradi, M.; Samie, A.; Shivazad, M. Effects of β-Mannanase on broiler performance, gut morphology and immune system. Afr. J. Biotechnol. 2010, 9, 6221–6228. [Google Scholar]
- Muhammad, S.L.; Sheikh, I.S.; Bajwa, M.A.; Mehmood, K.; Rashid, N.; Akhter, M.A.; Ullah Jan, S.; Rafeeq, M.; Babar, W.; Hameed, S. Effect of Mannan Oligosaccharide (MOS) on growth, physiological and immune performance parameters of broiler chickens. Pak-Euro J. Med. Life Sci. 2020, 3, 76–85. [Google Scholar]
- Halas, V.; Nochta, I. Mannan oligosaccharides in nursery pig nutrition and their potential mode of action. Animals 2012, 2, 261–274. [Google Scholar] [CrossRef]
- de Souza, M.; Eeckhaut, V.; Goossens, E.; Ducatelle, R.; Van Nieuwerburgh, F.; Poulsen, K.; Baptista, A.A.S.; Bracarense, A.P.F.R.L.; Van Immerseel, F. Guar gum as galactomannan source induces dysbiosis and reduces performance in broiler chickens and dietary β-mannanase restores the gut homeostasis. Poult. Sci. 2023, 102, 102810. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, W.; Wang, Z.; Wang, J.; Cao, Y.; Chen, Y. Comparative study of intestine length, weight and digestibility on different body weight chickens. Afr. J. Biotechnol. 2013, 12, 5097–5100. [Google Scholar]
Ingredients | Basal Diet |
---|---|
Sorghum | 571.4 |
Soybean Meal | 370.9 |
Vegetable Oil | 18.4 |
Calcium Carbonate | 14.5 |
Orthophosphate | 10.1 |
Salt | 3.5 |
DL-Methionine | 3.1 |
Vitamin Premix * | 3 |
Mineral Premix ** | 0.5 |
L-Lysine HCl | 2.8 |
L-Threonine | 0.7 |
IQ (Antioxidant) *** | 0.15 |
Cellulose | 0.45 |
Axtra® PHY | 0.1 |
Choline Chloride 60% | 0.05 |
Total | 1000 |
Calculated Analysis | |
Metabolizable Energy (Kcal/kg) | 3010 |
Crude Protein (%) | 22 |
Digestible Lysine (%) | 1.44 |
Digestible Met + Cis (%) | 0.9 |
Total Arginine (%) | 1.3 |
Sodium (%) | 0.18 |
Total Calcium (%) | 0.96 |
Available Phosphorus (%) | 0.48 |
Phytase (FTU/kg) | β-Mannanases | Weight (g) | FC (g) | DWG (g) | FCI (kg) | CV (%) |
---|---|---|---|---|---|---|
500 | 400 g/ton | 928 | 1006 | 42.1 | 1.12 | 4.78 |
0 | 857 | 996 | 38.7 | 1.2 | 8.64 | |
1500 | 400 g/ton | 954 | 1017 | 43.3 | 1.11 | 4.36 |
0 | 870 | 992 | 39.3 | 1.17 | 6.9 | |
Phytase | 500 | 892 | 1001 | 40.4 | 1.160 a | 6.71 |
1500 | 912 | 1004 | 41.3 | 1.140 b | 5.63 | |
β-mannanases | 400 g/ton | 940 a | 1011 | 42.7 a | 1.120 b | 4.57 b |
0 | 863 b | 994 | 39.1 b | 1.190 a | 7.77 a | |
p-value | ||||||
Phytase | 0.175 | 0.89 | 0.188 | 0.032 | 0.133 | |
β-mannanases | 0.001 | 0.471 | 0.001 | 0.001 | 0.001 | |
Phytase × β-mannanases | 0.63 | 0.75 | 0.645 | 0.23 | 0.379 | |
MSE | 9.8 | 16.8 | 0.46 | 0.007 | - |
Phytase (FTU/kg) | β-Mannanases | Intestinal IgA (ng/mL) | HI ND |
---|---|---|---|
OD 405 nm | Log 2 | ||
500 | 400 g/ton | 436.2 | 5.83 |
0 | 228.2 | 5 | |
1500 | 400 g/ton | 610.7 | 6.17 |
0 | 307.7 | 5.5 | |
Phytase | 500 | 332.2 | 5.42 |
1500 | 459.2 | 5.83 | |
β-mannanases | 400 g/ton | 523.5 a | 6.00 a |
0 | 267.9 b | 5.25 b | |
p-value | |||
Phytase | 0.667 | 0.223 | |
β-mannanases | 0.002 | 0.035 | |
Phytase × β-mannanases | 0.123 | 0.804 | |
MSE | 55.5 | 0.23 |
Phytase (FTU/kg) | β-Mannanases | Heterophiles (×109/L) | Lymphocytes (×109/L) | H/L Ratio |
---|---|---|---|---|
500 | 400 g/ton | 2.38 | 10.2 | 0.23 |
0 | 4.65 | 8.58 | 0.57 | |
1500 | 400 g/ton | 2.95 | 11.11 | 0.27 |
0 | 3.75 | 7.2 | 0.54 | |
Phytase | 500 | 3.52 | 9.39 | 0.4 |
1500 | 3.35 | 9.16 | 0.41 | |
β-mannanases | 400 g/ton | 2.67 a | 10.66 a | 0.25 a |
0 | 4.20 b | 7.89 b | 0.56 b | |
p-value | ||||
Phytase | 0.117 | 0.277 | 0.724 | |
β-mannanases | 0.009 | 0.001 | 0.001 | |
Phytase × β-mannanases | 0.804 | 0.804 | 0.239 | |
MSE | 0.27 | 0.77 | - |
Phytase (FTU/kg) | β-Mannanases | GW (g) | RGW (%) | SW (g) | RSW (%) | FBW (g) | RFBW (%) |
---|---|---|---|---|---|---|---|
500 | 400 g/ton | 53.67 | 5.84 | 0.98 | 0.11 | 1.9 | 0.21 |
0 | 51.33 | 6.5 | 0.48 | 0.06 | 1.4 | 0.17 | |
1500 | 400 g/ton | 56.33 | 5.77 | 1.07 | 0.11 | 2.2 | 0.22 |
0 | 52.83 | 6.05 | 0.68 | 0.08 | 1.67 | 0.19 | |
Phytase | 500 | 52.5 | 6.17 | 0.73 | 0.09 | 1.65 | 0.19 |
1500 | 54.58 | 5.91 | 0.88 | 0.09 | 1.91 | 0.21 | |
β-mannanases | 400 g/ton | 55.00 a | 5.81 a | 1.03 a | 0.11 a | 2.03 a | 0.22 a |
0 | 52.08 b | 6.28 b | 0.58 b | 0.07 b | 1.54 b | 0.18 b | |
p-value | |||||||
Phytase | 0.075 | 0.404 | 0.059 | 0.116 | 0.057 | 0.234 | |
β-mannanases | 0.003 | 0.006 | 0.001 | 0.001 | 0.001 | 0.026 | |
Phytase × β-mannanases | 0.51 | 0.14 | 0.384 | 0.285 | 0.946 | 0.947 | |
MSE | 0.61 | - | 0.044 | - | 0.086 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sastré-Calderón, N.; Gómez-Verduzco, G.; Cortés-Cuevas, A.; Juárez-Ramírez, M.; Arce-Menocal, J.; Márquez-Mota, C.C.; Sánchez-Godoy, F.; Ávila-González, E. Growth Performance and Immunity of Broilers Fed Sorghum–Soybean Meal Diets Supplemented with Phytases and Β-Mannanases. Animals 2024, 14, 924. https://doi.org/10.3390/ani14060924
Sastré-Calderón N, Gómez-Verduzco G, Cortés-Cuevas A, Juárez-Ramírez M, Arce-Menocal J, Márquez-Mota CC, Sánchez-Godoy F, Ávila-González E. Growth Performance and Immunity of Broilers Fed Sorghum–Soybean Meal Diets Supplemented with Phytases and Β-Mannanases. Animals. 2024; 14(6):924. https://doi.org/10.3390/ani14060924
Chicago/Turabian StyleSastré-Calderón, Nicolás, Gabriela Gómez-Verduzco, Arturo Cortés-Cuevas, Mireya Juárez-Ramírez, José Arce-Menocal, Claudia Cecilia Márquez-Mota, Félix Sánchez-Godoy, and Ernesto Ávila-González. 2024. "Growth Performance and Immunity of Broilers Fed Sorghum–Soybean Meal Diets Supplemented with Phytases and Β-Mannanases" Animals 14, no. 6: 924. https://doi.org/10.3390/ani14060924
APA StyleSastré-Calderón, N., Gómez-Verduzco, G., Cortés-Cuevas, A., Juárez-Ramírez, M., Arce-Menocal, J., Márquez-Mota, C. C., Sánchez-Godoy, F., & Ávila-González, E. (2024). Growth Performance and Immunity of Broilers Fed Sorghum–Soybean Meal Diets Supplemented with Phytases and Β-Mannanases. Animals, 14(6), 924. https://doi.org/10.3390/ani14060924