Model Adaptation and Validation for Estimating Methane and Ammonia Emissions from Fattening Pig Houses: Effect of Manure Management System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Global Description of the Model
2.2. MESPRO Module
2.3. ANIPRO Module
2.4. Extended MESPRO Module
2.5. Model Application
2.6. Data Analysis
2.7. Model Validation
3. Results and Discussion
3.1. Indoor Climate Parameters
3.2. Methane Emission
3.3. Ammonia Emission
3.4. Model Parameters and Implications for the Predicted Emission
4. Conclusions
- The average calculated CH4 and NH3 emissions on an annual basis correspond well with measured values for the examined measures.
- The measurements confirmed the reduction potential of the studied measures for CH4 and NH3 emissions from pig houses. The model could predict these effects with an acceptable degree of accuracy.
- The obtained results suggest that improving the calculation rules of the model for better estimation of variables affecting ammonia emission, such as the pH, temperature, and air velocity, will lead to a better prediction of emissions.
- The model attributes provide valuable means for assessing the impact of mitigation measures on CH4 and NH3 emissions. This provides a robust basis for assessing the impact of management and housing strategies on CH4 and NH3 emissions from pig houses, which, in turn, helps support more sustainable practices in pig farming.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zong, C.; Li, H.; Zhang, G. Ammonia and greenhouse gas emissions from fattening pig house with two types of partial pit ventilation systems. Agric. Ecosyst. Environ. 2015, 208, 94–105. [Google Scholar] [CrossRef]
- de Vries, W. Impacts of nitrogen emissions on ecosystems and human health: A mini review. Curr. Opin. Environ. Sci. Health 2021, 21, 100249. [Google Scholar] [CrossRef]
- Le Dinh, P.; van der Peet-Schwering, C.M.C.; Ogink, N.W.M.; Aarnink, A.J.A. Effect of Diet Composition on Excreta Composition and Ammonia Emissions from Growing-Finishing Pigs. Animals 2022, 12, 229. [Google Scholar] [CrossRef] [PubMed]
- Myhre, G.; Shindell, D.; Pongratz, J. Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- O’Mara, F.P. The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future. Anim. Feed Sci. Technol. 2011, 166, 7–15. [Google Scholar] [CrossRef]
- van der Zee, T.; Bannink, A.; van Bruggen, C.; Groenestein, K.; Huijsmans, J.; van der Kolk, J.; Lagerwerf, L.; Luesink, H.; Velthof, G.; Vonk, J. Methodology for Estimating Emissions from Agriculture in the Netherlands. Calculations for CH4, NH3, N2O, NOx, NMVOC, PM10, PM2.5 and CO2 Using the National Emission Model for Agriculture (NEMA)–Update 2021; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2021.
- Jørgensen, H.; Knudsen, K.E.B.; Theil, P.K. Enteric Methane Emission from Pigs; INTECH Open Access Publisher: London, UK, 2011. [Google Scholar]
- Van Damme, M.; Clarisse, L.; Whitburn, S.; Hadji-Lazaro, J.; Hurtmans, D.; Clerbaux, C.; Coheur, P.-F. Industrial and agricultural ammonia point sources exposed. Nature 2018, 564, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef] [PubMed]
- Aarnink, A.J.A. Factors affecting ammonia concentration in slurry from fattening pigs. In Proceedings of the First International Symposium on Nitrogen Flow in Pig Production and Environmental Consequences, Wageningen, The Netherlands, 8–11 June 1993; pp. 413–420. [Google Scholar]
- Webb, J.; Misselbrook, T.H. A mass-flow model of ammonia emissions from UK livestock production. Atmos. Environ. 2004, 38, 2163–2176. [Google Scholar] [CrossRef]
- Groenestein, C.M. Environmental Aspects of Improving Sow Welfare with Group Housing and Straw Bedding; Wageningen University and Research: Wageningen, The Netherlands, 2006. [Google Scholar]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.; Holland, E.A. Nitrogen cycles: Past, present, and future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Anonymous. Emissies Van de Luchtverontreinigende Stoffen Per Sector [Emission of Air Pollutants Per Sector]. Emissieregistratie, Rijksoverheid [National government, Emission registration]. Available online: https://www.emissieregistratie.nl/data/overzichtstabellen-lucht/luchtverontreinigende-emissies (accessed on 20 November 2023).
- van Bruggen, C.; Bannink, A.; Bleeker, A.; Bussink, D.; van Dooren, H.; Groenestein, C.; Huijsmans, J.; Kros, J.; Lagerwerf, L.; Oltmer, K. Emissies Naar Lucht Uit de Landbouw Berekend met NEMA voor 1990–2021; Wettelijke Onderzoekstaken Natuur & Milieu: Wageningen, The Netherlands, 2023. [Google Scholar]
- De Vries, J.W.; Aarnink, A.J.A.; Groot Koerkamp, P.W.G.; De Boer, I.J.M. Life cycle assessment of segregating fattening pig urine and feces compared to conventional liquid manure management. Environ. Sci. Technol. 2013, 47, 1589–1597. [Google Scholar] [CrossRef]
- Amon, B.; Kryvoruchko, V.; Fröhlich, M.; Amon, T.; Pöllinger, A.; Mösenbacher, I.; Hausleitner, A. Ammonia and greenhouse gas emissions from a straw flow system for fattening pigs: Housing and manure storage. Livest. Sci. 2007, 112, 199–207. [Google Scholar] [CrossRef]
- Groenestein, C.M.; Smits, M.C.J.; Huijsmans, J.F.M.; Oenema, O. Measures to Reduce Ammonia Emissions from Livestock Manures: Now, Soon and Later; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2011. [Google Scholar]
- Philippe, F.-X.; Nicks, B. Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agric. Ecosyst. Environ. 2015, 199, 10–25. [Google Scholar] [CrossRef]
- Feng, L.; Guldberg, L.B.; Hansen, M.J.; Ma, C.; Ohrt, R.V.; Møller, H.B. Impact of slurry removal frequency on CH4 emission and subsequent biogas production; a one-year case study. Waste Manag. 2022, 149, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Vechi, N.T.; Jensen, N.S.; Scheutz, C. Methane emissions from five Danish pig farms: Mitigation strategies and inventory estimated emissions. J. Environ. Manag. 2022, 317, 115319. [Google Scholar] [CrossRef] [PubMed]
- Canh, T.T. Ammonia Emission from Excreta of Growing-Finishing Pigs as Affected by Dietary Composition; Grafisch Service Centrum: Wageningen, The Netherlands, 1998. [Google Scholar]
- Cortus, E.L.; Lemay, S.P.; Barber, E.M.; Hill, G.A.; Godbout, S. A dynamic model of ammonia emission from urine puddles. Biosyst. Eng. 2008, 99, 390–402. [Google Scholar] [CrossRef]
- Cai, Y.; Gallegos, D.; Zheng, Z.; Stinner, W.; Wang, X.; Pröter, J.; Schäfer, F. Exploring the combined effect of total ammonia nitrogen, pH and temperature on anaerobic digestion of chicken manure using response surface methodology and two kinetic models. Bioresour. Technol. 2021, 337, 125328. [Google Scholar] [CrossRef] [PubMed]
- Aarnink, A.J.A.; Demeyer, P.; Rong, L.; Aarnink, A.J.A.; Demeyer, P.; Rong, L. A Simple Model as Design Tool for Low-Ammonia Emission Pig Housing. In Technology for Environmentally Friendly Livestock Production; Springer: Berlin/Heidelberg, Germany, 2023; pp. 11–21. [Google Scholar]
- Bjerg, B.; Cascone, G.; Lee, I.-B.; Bartzanas, T.; Norton, T.; Hong, S.-W.; Seo, I.-H.; Banhazi, T.; Liberati, P.; Marucci, A. Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 3: CFD modelling. Biosyst. Eng. 2013, 116, 259–275. [Google Scholar] [CrossRef]
- Bjerg, B.; Norton, T.; Banhazi, T.; Zhang, G.; Bartzanas, T.; Liberati, P.; Cascone, G.; Lee, I.B.; Marucci, A. Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 1: Ammonia release modelling. Biosyst. Eng. 2013, 116, 232–245. [Google Scholar] [CrossRef]
- Dalby, F.R.; Hafner, S.D.; Petersen, S.O.; Vanderzaag, A.; Habtewold, J.; Dunfield, K.; Chantigny, M.H.; Sommer, S.G. A mechanistic model of methane emission from animal slurry with a focus on microbial groups. PLoS ONE 2021, 16, e0252881. [Google Scholar] [CrossRef]
- Sommer, S.G.; Petersen, S.O.; Møller, H.B. Algorithms for calculating methane and nitrous oxide emissions from manure management. Nutr. Cycl. Agroecosyst. 2004, 69, 143–154. [Google Scholar] [CrossRef]
- Li, C.; Salas, W.; Zhang, R.; Krauter, C.; Rotz Al Mitloehner, F. Manure-DNDC: A biogeochemical process model for quantifying greenhouse gas and ammonia emissions from livestock manure systems. Nutr. Cycl. Agroecosyst. 2012, 93, 163–200. [Google Scholar] [CrossRef]
- Aarnink, A.J.A.; Van Ouwerkerk, E.N.J.; Verstegen, M.W.A. A mathematical model for estimating the amount and composition of slurry from fattening pigs. Livest. Prod. Sci. 1992, 31, 133–147. [Google Scholar] [CrossRef]
- Petersen, S.O.; Olsen, A.B.; Elsgaard, L.; Triolo, J.M.; Sommer, S.G. Estimation of methane emissions from slurry pits below pig and cattle confinements. PLoS ONE 2016, 11, e0160968. [Google Scholar] [CrossRef] [PubMed]
- Aarnink, A.J.A.; Elzing, A. Dynamic model for ammonia volatilization in housing with partially slatted floors, for fattening pigs. Livest. Prod. Sci. 1998, 53, 153–169. [Google Scholar] [CrossRef]
- Aarnink, A.J.A.; Van de Pas, P.A.; Van der Peet-Schwering, C.M.C.; Hol, A.; Binnendijk, G.P.; Le Dinh, P.; Hafner, S.D.; Ogink, N.W.M. Rekentool Voor Het Bepalen van de Effecten van Voer- En Management-Maatregelen op de Ammoniakemissie bij Varkens: Ontwikkeling en Validatie [Calculation Tool to Estimate the Effects of Feeding and Management Measures on Ammonia Emission in Pigs]; Report 1086; Wageningen Livestock Research: Wageningen, The Netherlands, 2018; p. 118. [Google Scholar]
- Wellock, I.J.; Emmans, G.C.; Kyriazakis, I. Describing and predicting potential growth in the pig. Anim. Sci. 2004, 78, 379–388. [Google Scholar] [CrossRef]
- Aarnink, A.J.A.; Huynh, T.T.T.; Bikker, P. Modelling heat production and heat loss in growing-finishing pigs. In Proceedings of the CIGR-AgEng Conference, Aarhus, Denmark, 26–29 June 2016; pp. 26–29. [Google Scholar]
- Elsgaard, L.; Olsen, A.B.; Petersen, S.O. Temperature response of methane production in liquid manures and co-digestates. Sci. Total Environ. 2016, 539, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Groenestein, C.M.; Mosquera Losada, J.; Ogink, N.W.M. Protocol Voor Meting van Methaanemissie uit Huisvestingssystemen in de Veehouderij 2010 = Measurement Protocol for Methane Emission from Housing Systems in Livestock Production 2010; Report Wageningen UR Livestock Research; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2011; p. 32. [Google Scholar]
- Ogink, N.; Mosquera Losada, J.; Hol, A. Protocol Voor Meting van Ammoniakemissie uit Huisvestingssystemen in de Veehouderij 2013a= Measurement Protocol for Ammonia Emission from Housing Systems in Livestock Production 2013a; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Booijen, M.; Wagensveld, J.; van Riel, J.; de Mol, R.; Aarnink, A. Emissiereductie Methaan, Ammoniak en Geur in Varkensstallen Met Dagontmesting; Wageningen Livestock Research: Wageningen, The Netherlands, 2023. [Google Scholar]
- Mosquera Losada, J.; Hol, J.M.G.; Winkel, A.; Lovink, E.; Ogink, N.W.M.; Aarnink, A.J.A. Fijnstofemissie Uit Stallen: Vleesvarkens = Dust Emission from Animal Houses: Growing and Finishing Pigs; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2010. [Google Scholar]
- Mosquera Losada, J.; Hol, J.M.G.; Groenestein, C.M. Emissies Uit de Biologische Veehouderij: Processen en Factoren; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2012. [Google Scholar]
- Habtewold, J.; Gordon, R.; Sokolov, V.; VanderZaag, A.; Wagner-Riddle, C.; Dunfield, K. Targeting bacteria and methanogens to understand the role of residual slurry as an inoculant in stored liquid dairy manure. Appl. Environ. Microbiol. 2018, 84, e02830-17. [Google Scholar] [CrossRef] [PubMed]
- Monteny, G.J.; Groenestein, C.M.; Hilhorst, M.A. Interactions and coupling between emissions of methane and nitrous oxide from animal husbandry. Nutr. Cycl. Agroecosystems 2001, 60, 123–132. [Google Scholar] [CrossRef]
- Koerkamp, P.W.G.G.; Metz, J.H.M.; Uenk, G.H.; Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L.; White, R.P.P.; Hartung, J.; Seedorf, J. Concentrations and emissions of ammonia in livestock buildings in Northern Europe. J. Agric. Eng. Res. 1998, 70, 79–95. [Google Scholar] [CrossRef]
- Sun, G.; Guo, H.; Peterson, J.; Predicala, B.; Laguë, C. Diurnal odor, ammonia, hydrogen sulfide, and carbon dioxide emission profiles of confined swine grower/finisher rooms. J. Air Waste Manag. Assoc. 2008, 58, 1434–1448. [Google Scholar] [CrossRef]
- Philippe, F.-X.; Cabaraux, J.-F.; Nicks, B. Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agric. Ecosyst. Environ. 2011, 141, 245–260. [Google Scholar] [CrossRef]
- Albright, L.D. Environment Control for Animals and Plants. American Society of Agricultural Engineers: St. Joseph, MN, USA, 1990. [Google Scholar]
- Beeking, F.F.E.; Ingelaat, F.B.J.M.; van Beek, G. De Specifieke Vochtafgifte Van Leghennenmest [Specific Moisture Production from Layer Litter]; Report 607; COVP-DLO: Beekbergen, The Netherlands, 1994; 29p. [Google Scholar]
- Soest, P.V. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J. Assoc. Off. Agric. Chem. 1963, 46, 829–835. [Google Scholar] [CrossRef]
- Triolo, J.M.; Sommer, S.G.; Møller, H.B.; Weisbjerg, M.R.; Jiang, X.Y. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresour. Technol. 2011, 102, 9395–9402. [Google Scholar] [CrossRef]
- Rigolot, C.; Espagnol, S.; Robin, P.; Hassouna, M.; Béline, F.; Paillat, J.-M.; Dourmad, J.-Y. Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part II: Effect of animal housing, manure storage and treatment practices. Animal 2010, 4, 1413–1424. [Google Scholar] [CrossRef]
Parameter 1 | Weight | Feed Intake | Drinking Water Intake |
---|---|---|---|
A | 0 2 | −41.9 (13.1) | −149 (108) |
Wm/FIm/DWIm 3, 4 | 164.2 (3.9) | 608 (48.3) | 1432 (115.1) |
B | 0.0146 (0.0010) | 0.0111 (0.0017) | 0.0103 (0.0042) |
t* 5 | 110.4 (4.3) | 154.7 (10.8) | 147.4 (23.9) |
Parameter | Petersen et al. (2016) [32] | This Study |
---|---|---|
VSd (kg kg−1 VS) | 0.51 | 0.83 |
Ea (kJ mol−1) | 81.0 * | 81.0 * |
lnA (g CH4 kg−1 vs. h−1) | 31.3 | 31.3 ** |
Characteristics | LS 1 | SS 2 |
---|---|---|
No. of animal places | 54 | 78 |
Growth range (kg) | 23.6–115.6 | 22.6–114.0 |
Room length (m) × width (m) | 11.28 × 5.90 | 15.55 × 6.00 |
No. of pens | 6 | 6 |
Pen length (m) × width (m) | 5.10 × 1.88 | 5.22 × 2.59 |
Depth of manure pit | 1.20 | 0.50 |
Area per animal (m2 pig−1) | 1.00 | 1.00 |
Material slatted floor (back-front slatted floor) | Metal triangular—Concrete | Metal triangular—Concrete |
Material solid floor | Concrete | Concrete |
Slatted floor/Solid floor (%) | 60/40 | 38/62 |
Slope of manure pit wall (°) | 90 | 45 |
Manure removal interval (d) | 45 3 | 1 |
Feeding/Drinking system | Dry feeder/Nipple | Dry feeder/Nipple |
Variable | MMS | Calculated (Model) | Measured (Continuous) | Measured (Discrete) 3 | MAE 4 | RMSE 5 | R2 |
---|---|---|---|---|---|---|---|
Room temperature (°C) | LS 1 | 22.3 (1.6) | 23.0 (1.8) | - | 1.5 | 4.0 | 0.80 |
SS 2 | 21.4 (2.7) | 21.0 (2.6) | - | 1.1 | 3.8 | 0.92 | |
Manure temperature (°C) | LS | 19.5 (1.3) | - | 24.5 (1.7) | 6.7 | 6.5 | <1 |
SS | 18.7 (2.2) | - | 22.3 (2.4) | 6.8 | 7.5 | <1 | |
Relative humidity (%) | LS | 59.7 (4.1) | 67.6 (4.4) | - | 9.4 | 13.1 | 0.57 |
SS | 56.1 (5.3) | 67.9 (5.0) | - | 13.1 | 15.5 | 0.63 |
Variable | MMS | Calculated (Model) | Measured (Continuous) | Measured (Discrete) 3 | MAE 4 | RMSE 5 | R2 |
---|---|---|---|---|---|---|---|
Volatile solids-manure (g kg−1) | LS 1 | 68.5 (5.9) | - | 76.2 (11.5) | 2.6 | 12.5 | 0.16 |
SS 2 | 68.0 (7.3) | - | 77.4 (9.0) | 2.8 | 11.2 | 0.21 | |
CH4 emission(kg yr−1 per pig place) | LS | 18.5 (5.3) | 15.9 (7.9) | 22.0 (5.0) | 3.1 | 4.6/2.8 | 0.64 |
SS | 4.3 (2.4) | 5.6 (3.7) | 3.1 (1.3) | 1.9 | 3.3/3.0 | 0.13 |
Variable | MMS | Calculated- Model | Measured - Continuous | Measured - Discrete 3 | MAE 4 | RMSE 5 | R2 |
---|---|---|---|---|---|---|---|
NH3 emission—Floor (kg yr−1 per pig place) | LS 1 | 0.5 (0.3) | - | - | - | - | - |
SS 2 | 0.5 (0.3) | - | - | - | - | - | |
NH3 emission—Manure pit (kg yr−1 per pig place) | LS | 2.2 (0.9) | - | - | - | - | - |
SS | 0.9 (0.6) | - | - | - | - | - | |
Total NH3 emission (kg yr−1 per pig place) | LS | 2.6 (1.0) | 2.6 (0.9) | 2.71 (0.4) | 0.8 | 1.2/1.1 | 0.45 |
SS | 1.4 (0.7) | 1.2 (0.9) | 1.01 (0.2) | 0.5 | 0.8/0.3 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sefeedpari, P.; Pishgar-Komleh, S.H.; Aarnink, A.J.A. Model Adaptation and Validation for Estimating Methane and Ammonia Emissions from Fattening Pig Houses: Effect of Manure Management System. Animals 2024, 14, 964. https://doi.org/10.3390/ani14060964
Sefeedpari P, Pishgar-Komleh SH, Aarnink AJA. Model Adaptation and Validation for Estimating Methane and Ammonia Emissions from Fattening Pig Houses: Effect of Manure Management System. Animals. 2024; 14(6):964. https://doi.org/10.3390/ani14060964
Chicago/Turabian StyleSefeedpari, Paria, Seyyed Hassan Pishgar-Komleh, and Andre J. A. Aarnink. 2024. "Model Adaptation and Validation for Estimating Methane and Ammonia Emissions from Fattening Pig Houses: Effect of Manure Management System" Animals 14, no. 6: 964. https://doi.org/10.3390/ani14060964
APA StyleSefeedpari, P., Pishgar-Komleh, S. H., & Aarnink, A. J. A. (2024). Model Adaptation and Validation for Estimating Methane and Ammonia Emissions from Fattening Pig Houses: Effect of Manure Management System. Animals, 14(6), 964. https://doi.org/10.3390/ani14060964