Successful Control of Mycobacterium avium Subspecies paratuberculosis Infection in a Dairy Herd within a Decade—A Case Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Farm
2.2. Initial Situation Regarding Paratuberculosis and Program Enrolment
2.3. Sampling and Testing
2.4. On-Farm Management Measures for Mitigating the Risk of Spreading MAP
2.4.1. Hygienic Measures Regarding Calving, Colostrum Supply, and Calf Rearing
- Separate calving pen for MAP shedders;
- Separation of calves from their dam immediately after calving;
- Keeping calves outside the premises for adult cows in individual igloos;
- Separate tools (broom, shovel, fork, bucket) for the calf area;
- Separate room for preparing milk for calves and cleaning the teat buckets, with entry only by calf carers and no entry with dirty boots;
- Careful milking of first colostrum using a clean separate milking machine, strictly avoiding faecal contamination of colostrum;
- In-line feeding of first colostrum (only from the own dam);
- Disposal of non-saleable milk from MAP-positive cows (1–5 days in milk) via liquid manure into the biogas plant;
- Mixed colostrum only from MAP-negative cows.
2.4.2. Management Measures Regarding Animal Movement and the Handling of MAP Shedders
- Closing of the herd so that exclusively heifers raised on the farm were included in the dairy herd;
- Marking of MAP-positive cows and cows with MAP-specific antibodies using a separate neckband;
- Documentation of test results within the herd management software;
- Exclusion of MAP-positive cows and cows with MAP-specific antibodies from further breeding;
- Immediate culling of high or very high shedders.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Predictors | Estimates | Confidence Interval | p-Value | Wald-Test p-Value | |
---|---|---|---|---|---|
(Intercept) | 293.43 | 288.82–298.05 | <0.001 | ||
Faecal culture | negative | reference | |||
positive | −9.16 | −16.68–−1.64 | 0.017 | ||
Parity | 1 | reference | |||
2 | 62.63 | 58.02–67.24 | <0.001 | <0.001 | |
3+ | 62.56 | 57.78–67.35 | <0.001 | ||
Year | 2012 | reference | |||
2013 | 7.97 | 2.11–13.82 | 0.008 | <0.001 | |
2014 | 4.15 | −1.76–10.06 | 0.169 | ||
2015 | −7.14 | −12.95–−1.32 | 0.016 | ||
2016 | 2.56 | −4.21–9.32 | 0.458 | ||
Observations | n = 2312 | ||||
R2/R2 adjusted | 0.321/0.319 |
Predictors | Estimates | Confidence Interval | p-Value | Wald-Test p-Value | |
---|---|---|---|---|---|
(Intercept) | 337.71 | 332.11–343.31 | <0.001 | ||
Faecal culture | negative | reference | |||
positive | −5.63 | −14.75–3.49 | 0.226 | ||
Parity | 1 | reference | |||
2 | 70.88 | 65.29–76.47 | <0.001 | <0.001 | |
3+ | 81.74 | 75.94–87.54 | <0.001 | ||
Year | 2012 | reference | |||
2013 | 7.67 | 0.57–14.77 | 0.034 | 0.001 | |
2014 | 1.97 | −5.20–9.14 | 0.590 | ||
2015 | −6.82 | −13.87–0.22 | 0.058 | ||
2016 | 1.22 | −6.98–9.42 | 0.770 | ||
Observations | n = 2312 | ||||
R2/R2 adjusted | 0.322/0.320 |
ELISA Test | Individual Faecal Culture | Culture of Environ-mental Samples 1 | PCR of Environmental Samples 1 | Total | |
---|---|---|---|---|---|
2012 | 1954.65 | 10,620.00 | 198.00 | 0.00 | 12,772.65 |
2013 | 1900.70 | 11,016.00 | 36.00 | 0.00 | 12,952.70 |
2014 | 1904.85 | 9360.00 | 36.00 | 0.00 | 11,300.85 |
2015 | 1809.40 | 10,368.00 | 54.00 | 64.00 | 12,295.40 |
2016 | 1813.55 | 6920.00 | 40.00 | 60.00 | 8833.55 |
2017 | 1805.25 | 8660.00 | 40.00 | 60.00 | 10,565.25 |
2018 | 2294.90 | 10,725.00 | 50.00 | 0.00 | 13,069.90 |
2019 | 2173.00 | 10,325.00 | 0.00 | 0.00 | 12,498.00 |
2020 | 2188.90 | 11,774.00 | 0.00 | 0.00 | 13,962.90 |
2021 | 0.00 | 12,528.00 | 0.00 | 0.00 | 12,528.00 |
2022 | 0.00 | 12,876.00 | 58.00 | 58.00 | 12,992.00 |
Total | 17,845.20 | 115,172.00 | 512.00 | 242.00 | 133,771.20 |
References
- Manning, E.; Collins, M. Mycobacterium avium subsp. paratuberculosis: Pathogen, pathogenesis and diagnosis. Rev. Sci. Tech. (Int. Off.Epizoot.) 2001, 20, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.B.; Shalloo, L. Invited review: The economic impact and control of paratuberculosis in cattle. J. Dairy Sci. 2015, 98, 5019–5039. [Google Scholar] [CrossRef] [PubMed]
- Whittington, R.; Donat, K.; Weber, M.F.; Kelton, D.; Nielsen, S.S.; Eisenberg, S.; Arrigoni, N.; Juste, R.; Sáez, J.L.; Dhand, N. Control of paratuberculosis: Who, why and how. A review of 48 countries. BMC Vet. Res. 2019, 15, 198. [Google Scholar] [CrossRef] [PubMed]
- Waddell, L.; Rajić, A.; Stärk, K.; McEwen, S. The zoonotic potential of Mycobacterium avium ssp. paratuberculosis: A systematic review and meta-analyses of the evidence. Epidemiol. Infect. 2015, 143, 3135–3157. [Google Scholar] [CrossRef] [PubMed]
- Waddell, L.; Rajić, A.; Stärk, K.; McEwen, S. The potential public health impact of Mycobacterium avium ssp. paratuberculosis: Global opinion survey of topic specialists. Zoonoses Public Health 2016, 63, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Groenendaal, H.; Nielen, M.; Jalvingh, A.W.; Horst, S.H.; Galligan, D.T.; Hesselink, J.W. A simulation of Johne’s disease control. Prev. Vet. Med. 2002, 54, 225–245. [Google Scholar] [CrossRef] [PubMed]
- Gavin, W.G.; Porter, C.A.; Hawkins, N.; Schofield, M.J.; Pollock, J.M. Johne’s disease: A successful eradication programme in a dairy goat herd. Vet. Rec. 2018, 182, 483. [Google Scholar] [CrossRef] [PubMed]
- Donat, K. The Thuringian bovine paratuberculosis control programme-results and experiences. Berl. Münch. Tierärztl. Wochenschr. 2017, 130, 42–49. [Google Scholar]
- Donat, K.; Einax, E.; Klassen, A. Evaluation of the Thuringian Bovine Johne’s Disease Control Program-A Case Study. Animals 2022, 12, 493. [Google Scholar] [CrossRef]
- Eisenberg, T.; Wolter, W.; Lenz, M.; Schlez, K.; Zschöck, M. Boot swabs to collect environmental samples from common locations in dairy herds for Mycobacterium avium ssp. paratuberculosis (MAP) detection. J. Dairy Res. 2013, 80, 485–489. [Google Scholar] [CrossRef]
- FLI. Test Characteristics of the Authorised ELISA Tests for the Detection of Antibodies against Mycobacterium avium subsp. paratuberculosis in Cattle Measured against the Reference Panels Serum and Milk of the NRL (as of 04/2021). Available online: https://www.fli.de/fileadmin/FLI/IMP/Testcharakteristika_D_2021-04-01_bf.pdf (accessed on 21 December 2023).
- Donat, K.; Hahn, N.; Eisenberg, T.; Schlez, K.; Köhler, H.; Wolter, W.; Rohde, M.; Pützschel, R.; Rösler, U.; Failing, K.; et al. Within-herd prevalence thresholds for the detection of Mycobacterium avium subspecies paratuberculosis-positive dairy herds using boot swabs and liquid manure samples. Epidemiol. Infect. 2016, 144, 413–424. [Google Scholar] [CrossRef]
- Englund, S.; Ballagi-Pordány, A.; Bölske, G.; Johansson, K.-E. Single PCR and nested PCR with a mimic molecule for detection of Mycobacterium avium subsp. paratuberculosis. Diagn. Microbiol. Infect. Dis. 1999, 33, 163–171. [Google Scholar] [CrossRef]
- R Core Team. R. A Language and Environment for Statistical Computing, version 4.1.2; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 21 December 2023).
- Devleesschauwer, B.; Torgerson, P.; Charlier, J.; Levecke, B.; Praet, N.; Roelandt, S.; Smit, S.; Dorny, P.; Berkvens, D.; Speybroeck, N. Prevalence: Tools for Prevalence Assessment Studies. R Package Version 0.4.1. 2022. Available online: https://cran.r-project.org/package=prevalence (accessed on 21 December 2023).
- Gray, B. cmprsk: Subdistribution Analysis of Competing Risks. R Package version 2.2-11. 2022. Available online: https://CRAN.R-project.org/package=cmprsk (accessed on 21 December 2023).
- Signorell, A. DescTools: Tools for Descriptive Statistic. R Package Version 0.99.47. 2022. Available online: https://cran.r-project.org/package=DescTools. (accessed on 21 December 2023).
- Grouven, U.; Bender, R.; Ziegler, A.; Lange, S. Der Kappa-Koeffizient. DMW-Dtsch. Med. Wochenschr. 2007, 132, e65–e68. [Google Scholar] [CrossRef] [PubMed]
- Therneau, T.M.; Grambsch, P.M. odeling Survival Data: Extending the Cox Model. R Package Version 3.5-5. 2000. Available online: https://CRAN.R-project.org/package=survival (accessed on 21 December 2023).
- Barkema, H.W.; Orsel, K.; Nielsen, S.S.; Koets, A.P.; Rutten, V.P.; Bannantine, J.P.; Keefe, G.P.; Kelton, D.F.; Wells, S.J.; Whittington, R.J.; et al. Knowledge gaps that hamper prevention and control of Mycobacterium avium subspecies paratuberculosis infection. Transbound. Emerg. Dis. 2018, 65 (Suppl. S1), 125–148. [Google Scholar] [CrossRef] [PubMed]
- Al-Mamun, M.A.; Smith, R.L.; Schukken, Y.; Gröhn, Y. Use of an Individual-based Model to Control Transmission Pathways of Mycobacterium avium Subsp. paratuberculosis Infection in Cattle Herds. Sci. Rep. 2017, 7, 11845. [Google Scholar] [CrossRef] [PubMed]
- Ferrouillet, C.; Wells, S.; Hartmann, W.; Godden, S.; Carrier, J. Decrease of Johne’s disease prevalence and incidence in six Minnesota, USA, dairy cattle herds on a long-term management program. Prev. Vet. Med. 2009, 88, 128–137. [Google Scholar] [CrossRef]
- Collins, M.; Eggleston, V.; Manning, E. Successful control of Johne’s disease in nine dairy herds: Results of a six-year field trial. J. Dairy Sci. 2010, 93, 1638–1643. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, S.; Krieger, M.; Campe, A.; Lorenz, I.; Einax, E.; Donat, K. Herd prevalence estimation of Mycobacterium avium subspecies paratuberculosis burden in the three main dairy production regions of Germany (PraeMAP). Animals 2022, 12, 447. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.M.; Schukken, Y.; Koets, A.; Weber, M.; Bakker, D.; Stabel, J.; Whitlock, R.H.; Louzoun, Y. Differences in intermittent and continuous fecal shedding patterns between natural and experimental Mycobacterium avium subspecies paratuberculosis infections in cattle. Vet. Res. 2015, 46, 66. [Google Scholar] [CrossRef]
- Kudahl, A.; Nielsen, S.; Østergaard, S. Strategies for time of culling in control of paratuberculosis in dairy herds. J. Dairy Sci. 2011, 94, 3824–3834. [Google Scholar] [CrossRef]
- Donat, K.; Schau, U.; Soschinka, A.; Koehler, H. Herd prevalence studies of Mycobacterium avium ssp. paratuberculosis (MAP) in cattle using serological tests: Opportunities, limitations and costs. Berl. Munch. Tierarztl. Wochenschr. 2012, 125, 361–370. [Google Scholar]
- Pinedo, P.; Rae, D.; Williams, J.; Donovan, G.; Melendez, P.; Buergelt, C. Association among results of serum ELISA, faecal culture and nested PCR on milk, blood and faeces for the detection of paratuberculosis in dairy cows. Transbound. Emerg. Dis. 2008, 55, 125–133. [Google Scholar] [CrossRef]
- Pradhan, A.; Van Kessel, J.; Karns, J.; Wolfgang, D.; Hovingh, E.; Nelen, K.; Smith, J.; Whitlock, R.; Fyock, T.; Ladely, S. Dynamics of endemic infectious diseases of animal and human importance on three dairy herds in the northeastern United States. J. Dairy Sci. 2009, 92, 1811–1825. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, R.; Wells, S.; Sweeney, R.W.; Van Tiem, J. ELISA and fecal culture for paratuberculosis (Johne’s disease): Sensitivity and specificity of each method. Vet. Microbiol. 2000, 77, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.T.; Wells, S.J.; Petrini, K.R.; Collins, J.E.; Schultz, R.D.; Whitlock, R.H. Evaluation of five antibody detection tests for diagnosis of bovine paratuberculosis. Clin. Vaccine Immunol. 2005, 12, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, R.H.; Buergelt, C. Preclinical and clinical manifestations of paratuberculosis (including pathology). Vet. Clin. N. Am. Food Anim. Pract. 1996, 12, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.; Toft, N. Age-specific characteristics of ELISA and fecal culture for purpose-specific testing for paratuberculosis. J. Dairy Sci. 2006, 89, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Sockett, D.; Carr, D.; Collins, M. Evaluation of conventional and radiometric fecal culture and a commercial DNA probe for diagnosis of Mycobacterium paratuberculosis infections in cattle. Can. J. Vet. Res. 1992, 56, 148. [Google Scholar]
- McKenna, S.; Keefe, G.P.; Barkema, H.; Sockett, D. Evaluation of three ELISAs for Mycobacterium avium subsp. paratuberculosis using tissue and fecal culture as comparison standards. Vet. Microbiol. 2005, 110, 105–111. [Google Scholar] [CrossRef]
- Kirkeby, C.; Græsbøll, K.; Nielsen, S.S.; Christiansen, L.E.; Toft, N.; Rattenborg, E.; Halasa, T. Simulating the epidemiological and economic impact of paratuberculosis control actions in dairy cattle. Front. Vet. Sci. 2016, 3, 90. [Google Scholar] [CrossRef]
- Lu, Z.; Mitchell, R.; Smith, R.; Van Kessel, J.; Chapagain, P.; Schukken, Y.; Grohn, Y. The importance of culling in Johne’s disease control. J. Theor. Biol. 2008, 254, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.L.; Schukken, Y.H.; Gröhn, Y.T. A new compartmental model of Mycobacterium avium subsp. paratuberculosis infection dynamics in cattle. Prev. Vet. Med. 2015, 122, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Camanes, G.; Joly, A.; Fourichon, C.; Ben Romdhane, R.; Ezanno, P. Control measures to prevent the increase of paratuberculosis prevalence in dairy cattle herds: An individual-based modelling approach. Vet. Res. 2018, 49, 60. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Al-Mamun, M.; Gröhn, Y. Economic consequences of paratuberculosis control in dairy cattle: A stochastic modeling study. Prev. Vet. Med. 2017, 138, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.M.; Whitlock, R.H.; Gröhn, Y.T.; Schukken, Y.H. Back to the real world: Connecting models with data. Prev. Vet. Med. 2015, 118, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Kudahl, A.; Nielsen, S.; Østergaard, S. Economy, efficacy, and feasibility of a risk-based control program against paratuberculosis. J. Dairy Sci. 2008, 91, 4599–4609. [Google Scholar] [CrossRef] [PubMed]
- Doré, E.; Paré, J.; Côté, G.; Buczinski, S.; Labrecque, O.; Roy, J.; Fecteau, G. Risk factors associated with transmission of M ycobacterium avium subsp. paratuberculosis to calves within dairy herd: A systematic review. J. Vet. Intern. Med. 2012, 26, 32–45. [Google Scholar] [CrossRef]
- Whittington, R.J.; Windsor, P.A. In utero infection of cattle with Mycobacterium avium subsp. paratuberculosis: A critical review and meta-analysis. Vet. J. 2009, 179, 60–69. [Google Scholar] [CrossRef]
- Pillars, R.; Grooms, D.; Gardiner, J.; Kaneene, J. Association between risk-assessment scores and individual-cow Johne’s disease-test status over time on seven Michigan, USA dairy herds. Prev. Vet. Med. 2011, 98, 10–18. [Google Scholar] [CrossRef]
- Dieguez, F.; Arnaiz, I.; Sanjuan, M.; Vilar, M.; Yus, E. Management practices associated with Mycobacterium avium subspecies paratuberculosis infection and the effects of the infection on dairy herds. Vet. Rec. 2008, 162, 614–617. [Google Scholar] [CrossRef]
- Kennedy, A.E.; Byrne, N.; Garcia, A.; O’Mahony, J.; Sayers, R. Analysis of Johne’s disease ELISA status and associated performance parameters in Irish dairy cows. BMC Vet. Res. 2016, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.J.; Wagner, B.A. Herd-level risk factors for infection with Mycobacterium paratuberculosis in US dairies and association between familiarity of the herd manager with the disease or prior diagnosis of the disease in that herd and use of preventive measures. J. Am. Vet. Med. Assoc. 2000, 216, 1450–1457. [Google Scholar] [CrossRef] [PubMed]
- Wolf, R.; Barkema, H.; De Buck, J.; Orsel, K. Sampling location, herd size, and season influence Mycobacterium avium ssp. paratuberculosis environmental culture results. J. Dairy Sci. 2015, 98, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Arango-Sabogal, J.C.; Fecteau, G.; Doré, E.; Côté, G.; Roy, J.-P.; Wellemans, V.; Buczinski, S. Bayesian accuracy estimates of environmental sampling for determining herd paratuberculosis infection status and its association with the within-herd individual fecal culture prevalence in Quebec dairies. Prev. Vet. Med. 2021, 197, 105510. [Google Scholar] [CrossRef]
- Donat, K.; Eisenberg, S.; Einax, E.; Reinhold, G.; Zoche-Golob, V. Reduction of viable Mycobacterium avium ssp. paratuberculosis in slurry subjected to anaerobic digestion in biogas plants. J. Dairy Sci. 2019, 102, 6485–6494. [Google Scholar] [CrossRef] [PubMed]
- McAloon, C.G.; Whyte, P.; More, S.J.; Green, M.J.; O’Grady, L.; Garcia, A.; Doherty, M.L. The effect of paratuberculosis on milk yield—A systematic review and meta-analysis. J. Dairy Sci. 2016, 99, 1449–1460. [Google Scholar] [CrossRef]
- Slater, N.; Mitchell, R.M.; Whitlock, R.H.; Fyock, T.; Pradhan, A.K.; Knupfer, E.; Schukken, Y.H.; Louzoun, Y. Impact of the shedding level on transmission of persistent infections in Mycobacterium avium subspecies paratuberculosis (MAP). Vet. Res. 2016, 47, 38. [Google Scholar] [CrossRef]
- Klawonn, W.; Cussler, K.; Dräger, K.; Gyra, H.; Köhler, H.; Zimmer, K.; Hess, R. The importance of allergic skin test with Johnin, antibody ELISA, cultural fecal test as well as vaccination for the sanitation of three chronically paratuberculosis-infected dairy herds in Rhineland-Palatinate. DTW. Dtsch. Tierarztl. Wochenschr. 2002, 109, 510–516. [Google Scholar]
- Ritter, C.; Jansen, J.; Roth, K.; Kastelic, J.; Adams, C.; Barkema, H. Dairy farmers’ perceptions toward the implementation of on-farm Johne’s disease prevention and control strategies. J. Dairy Sci. 2016, 99, 9114–9125. [Google Scholar] [CrossRef]
- Zoche-Golob, V.; Pützschel, R.; Einax, E.; Donat, K. Identification of different attitudes towards paratuberculosis control using cluster analysis applied on data from an anonymous survey among German cattle farmers. Ir. Vet. J. 2021, 74, 24. [Google Scholar] [CrossRef]
Faecal Culture | |||||||||
---|---|---|---|---|---|---|---|---|---|
Year | Totally Tested [n] | Positively Tested [n] | Negatively Tested [n] | Not Valid [n] | Apparent Prevalence [%] | True Prevalence [%] | Confidence Interval [%] | ||
2012 | 601 | 107 | 493 | 1 | 17.83 | 24.20 | 20.20 | – | 28.50 |
2013 | 614 | 50 | 501 | 63 | 9.07 | 12.30 | 9.30 | – | 15.90 |
2014 | 522 | 45 | 477 | 0 | 8.62 | 11.70 | 8.70 | – | 15.30 |
2015 | 579 | 36 | 543 | 0 | 6.22 | 8.40 | 6.00 | – | 11.30 |
2016 | 348 | 5 | 338 | 5 | 1.46 | 2.10 | 0.70 | – | 4.50 |
2017 | 435 | 2 | 340 | 93 | 0.58 | 0.90 | 0.10 | – | 2.70 |
2018 | 431 | 7 | 424 | 0 | 1.62 | 2.30 | 0.90 | – | 4.40 |
2019 | 413 | 1 | 412 | 0 | 0.24 | 0.40 | 0.00 | – | 1.70 |
2020 | 478 | 0 | 478 | 0 | 0.00 | Not calculated | |||
2021 | 432 | 0 | 432 | 0 | 0.00 | ||||
2022 | 446 | 0 | 446 | 0 | 0.00 | ||||
Total | 5299 | 253 | 4884 | 162 |
MAP-Antibody ELISA | |||||||||
---|---|---|---|---|---|---|---|---|---|
Year | Totally Tested [n] | Positively Tested [n] | Negatively Tested [n] | Suspicious [n] | Apparent Prevalence [%] | True Prevalence [%] | Confidence Interval [%] | ||
2012 | 490 | 38 | 451 | 1 | 7.76 | 12.80 | 9.00 | – | 17.50 |
2013 | 526 | 31 | 488 | 7 | 5.89 | 9.50 | 6.20 | – | 13.50 |
2014 | 488 | 38 | 446 | 4 | 7.79 | 13.50 | 9.00 | – | 17.70 |
2015 | 481 | 11 | 470 | 0 | 2.29 | 3.10 | 1.10 | – | 6.10 |
2016 | 437 | 10 | 424 | 3 | 2.29 | 3.10 | 1.00 | – | 6.30 |
2017 | 435 | 10 | 425 | 0 | 2.30 | 3.10 | 1.00 | – | 6.20 |
2018 | 433 | 8 | 424 | 1 | 1.85 | 2.30 | 0.50 | – | 5.20 |
2019 | 410 | 4 | 405 | 1 | 0.98 | 1.00 | 0.10 | – | 3.20 |
2020 | 413 | 6 | 407 | 0 | 1.45 | 1.70 | 0.20 | – | 4.30 |
Total | 4113 | 156 | 3940 | 17 | Not calculated |
Year | Cohen’s Kappa Coefficient | |||
---|---|---|---|---|
κ | 95% CI (κ) | |||
2012 | 0.46 | 0.36 | – | 0.58 |
2013 | 0.29 | 0.15 | – | 0.44 |
2014 | 0.33 | 0.19 | – | 0.48 |
2015 | 0.33 | 0.16 | – | 0.51 |
2016 | 0.42 | 0.09 | – | 0.74 |
2017 | 0.19 | −0.14 | – | 0.52 |
2018 | 0.12 | −0.12 | – | 0.36 |
2019 | 0.40 | −0.14 | – | 0.94 |
Age [Years] | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|
2 | 21 | 12 | 3 | 3 | 2 | 0 | 0 | 0 |
3 | 23 | 8 | 16 | 14 | 0 | 1 | 0 | 0 |
4 | 34 | 12 | 6 | 10 | 0 | 0 | 3 | 0 |
5 | 10 | 13 | 13 | 5 | 1 | 1 | 3 | 0 |
6 | 5 | 2 | 4 | 2 | 2 | 0 | 0 | 0 |
7 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 1 |
8 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
9+ | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Date of Sampling | Liquid Manure Samples before Fermentation | Biomass Samples after Fermentation | ||||||
---|---|---|---|---|---|---|---|---|
Culture | Growth | PCR | Ct-Value | Culture | Growth | PCR | Ct-Value | |
6 March 2012 | Pos. | moderate | Not applied | Neg. | - | Not applied | ||
21 September 2012 | Pos. | low | Not applied | Neg. | - | Not applied | ||
15 May 2013 | Pos. | low | Not applied | Neg. | - | Not applied | ||
4 March 2014 | Pos. | moderate | Not applied | Neg. | - | Not applied | ||
27 April 2015 | Pos. | low | Pos. | 36.6 | Neg. | - | Pos. | 36.6 |
1 March 2016 | Neg. | - | Susp. | 39.3 | Neg. | - | Neg. | - |
1 March 2017 | Neg. | - | Pos. | 36.7 | Neg. | - | Pos. | 37.0 |
1 March 2018 | Neg. | - | Not applied | Neg. | - | Not applied | ||
22 February 2022 | Neg. | - | Neg. | - | Neg. | - | Neg. | - |
Predictors | Estimates | Confidence Interval | p-Value | Wald-Test p-Value | |
---|---|---|---|---|---|
(Intercept) | 8507.04 | 8356.72–8657.35 | <0.001 | ||
Faecal culture | negative | reference | |||
positive | −266.57 | −511.30–−21.84 | 0.033 | ||
Parity | 1 | reference | |||
2 | 1721.70 | 1571.64–1871.77 | <0.001 | <0.001 | |
3+ | 1918.84 | 1763.10–2074.58 | <0.001 | ||
Year | 2012 | reference | |||
2013 | 188.55 | −2.02–379.11 | 0.052 | 0.001 | |
2014 | 303.87 | 111.51–496.23 | 0.002 | ||
2015 | 66.17 | −122.95–255.30 | 0.493 | ||
2016 | 266.11 | 46.03–486.20 | 0.018 | ||
Observations | n = 2312 | ||||
R2/R2 adjusted | 0.275/0.272 |
Milk Yield [kg] (SE) | Milk Protein [kg] (SE) | Milk Fat [kg] (SE) | ||||
---|---|---|---|---|---|---|
Parity | FC (+) | FC (−) | FC (+) | FC (−) | FC (+) | FC (−) |
1 | 8405 (130.4) | 8672 (45.7) | 286 (4.01) | 295 (1.54) | 333 (4.86) | 339 (1.7) |
2 | 10,127 (128.4) | 10,394 (62.1) | 348 (3.94) | 358 (1.91) | 404 (4.78) | 409 (2.31) |
3+ | 10,324 (126.0) | 10,591 (65.5) | 348 (3.87) | 358 (2.01) | 415 (4.69) | 420 (2.44) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donat, K.; Einax, E.; Rath, D.; Klassen, A. Successful Control of Mycobacterium avium Subspecies paratuberculosis Infection in a Dairy Herd within a Decade—A Case Study. Animals 2024, 14, 984. https://doi.org/10.3390/ani14060984
Donat K, Einax E, Rath D, Klassen A. Successful Control of Mycobacterium avium Subspecies paratuberculosis Infection in a Dairy Herd within a Decade—A Case Study. Animals. 2024; 14(6):984. https://doi.org/10.3390/ani14060984
Chicago/Turabian StyleDonat, Karsten, Esra Einax, Doreen Rath, and Anne Klassen. 2024. "Successful Control of Mycobacterium avium Subspecies paratuberculosis Infection in a Dairy Herd within a Decade—A Case Study" Animals 14, no. 6: 984. https://doi.org/10.3390/ani14060984
APA StyleDonat, K., Einax, E., Rath, D., & Klassen, A. (2024). Successful Control of Mycobacterium avium Subspecies paratuberculosis Infection in a Dairy Herd within a Decade—A Case Study. Animals, 14(6), 984. https://doi.org/10.3390/ani14060984