Effects of Nutrient Source, Temperature, and Salinity on the Growth and Survival of Three Giant Clam Species (Tridacnidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Source, Transportation, and Acclimation
2.2. Experimental Water and Environment
2.3. Effects of Various Factors on Growth Performance and SR
2.3.1. Effects of Nutrient on Juvenile T. noae
2.3.2. Effects of Temperature on Adult T. crocea
2.3.3. Effects of Salinity on Subadult T. derasa
2.4. Measurement of Growth Performance and SR
2.4.1. Length Gain
2.4.2. SR
2.4.3. Specific Growth Rate
2.5. Statistical Analysis
3. Results
3.1. Effects of Various Nutrient Sources on the Growth Performance and SR of Juvenile T. noae
3.2. Effects of Various Temperatures on the Growth Performance and SR of Adult T. crocea
3.3. Effects of Various Salinity Levels on the Growth Performance and SR of Subadult T. derasa
4. Discussion
4.1. Nutrient Sources
4.2. Temperatures
4.3. Salinity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Copland, J.W.; Lucas, J.S. Giant Clams in Asia and the Pacific; Craftsman Press Pty Ltd.: Burwood, Australia, 1988. [Google Scholar]
- Lucas, J.S. The biology, exploitation, and mariculture of giant clams (Tridacnidae). Rev. Fish. Sci. 1994, 2, 181–223. [Google Scholar] [CrossRef]
- Wabnitz, C. From Ocean to Aquarium: The Global Trade in Marine Ornamental Species; UNEP/Earthprint: Nairobi, Republic of Kenya, 2003. [Google Scholar]
- Van Wynsberge, S.; Andréfouët, S.; Gaertner-Mazouni, N.; Wabnitz, C.C.; Gilbert, A.; Remoissenet, G.; Payri, C.; Fauvelot, C. Drivers of density for the exploited giant clam Tridacna maxima: A meta-analysis. Fish Fish. 2016, 17, 567–584. [Google Scholar] [CrossRef]
- Neo, M.L.; Wabnitz, C.C.C.; Braley, R.D.; Heslinga, G.A.; Fauvelot, C.; Van Wynsberge, S.; Andrefouet, S.; Waters, C.; Tan, A.S.H.; Gomez, E.D.; et al. Giant Clams (Bivalvia: Cardiidae: Tridacninae): A Comprehensive Update of Species and Their Distribution, Current Threats and Conservation Status. Oceanogr. Mar. Biol. 2017, 55, 87–387. [Google Scholar]
- Braley, R.D. A population study of giant clams (Tridacninae) on the Great Barrier Reef over three-decades. Molluscan Res. 2023, 43, 77–95. [Google Scholar] [CrossRef]
- Reuter, M.; Spreter, P.M.; Brachert, T.C.; Mertz-Kraus, R.; Wrozyna, C. Giant clam (Tridacna) distribution in the Gulf of Oman in relation to past and future climate. Sci. Rep. 2022, 12, 16506. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.A.; Neo, M.L. Conserving threatened species during rapid environmental change: Using biological responses to inform management strategies of giant clams. Conserv. Physiol. 2021, 9, coab082. [Google Scholar] [CrossRef] [PubMed]
- Van Wynsberge, S.; Andrefouet, S. The Future of Giant Clam-Dominated Lagoon Ecosystems Facing Climate Change. Curr. Clim. Chang. Rep. 2017, 3, 261–270. [Google Scholar] [CrossRef]
- Apte, D.; Narayana, S.; Dutta, S. Impact of sea surface temperature anomalies on giant clam population dynamics in Lakshadweep reefs: Inferences from a fourteen years study. Ecol. Indic. 2019, 107, 105604. [Google Scholar] [CrossRef]
- Rehm, L.; Marino, L.L.; Jonathan, R.; Holt, A.L.; McCourt, R.M.; Sweeney, A.M. Population structure of giant clams (subfamily: Tridacninae) across Palau: Implications for conservation. Aquat. Conserv. 2022, 32, 617–632. [Google Scholar] [CrossRef]
- Mies, M. Evolution, diversity, distribution and the endangered future of the giant clam-Symbiodiniaceae association. Coral Reefs 2019, 38, 1067–1084. [Google Scholar] [CrossRef]
- Patthanasiri, K.; Lirtwitayaprasit, T.; Yeemin, T. Comparative Growth Rates of Cultured Zooxanthellae and the Effects of Temperature and Salinity. J. Fish. Environ. 2022, 46, 136–144. [Google Scholar]
- Armstrong, E.J.; Roa, J.N.; Stillman, J.H.; Tresguerres, M. Symbiont photosynthesis in giant clams is promoted by V-type H+-ATPase from host cells. J. Exp. Biol. 2018, 221, jeb177220. [Google Scholar] [CrossRef] [PubMed]
- Milke, L.M.; Bricelj, V.M.; Parrish, C.C. Comparison of early life history stages of the bay scallop, Argopecten irradians: Effects of microalgal diets on growth and biochemical composition. Aquaculture 2006, 260, 272–289. [Google Scholar] [CrossRef]
- Gouda, R.; Kenchington, E.; Hatcher, B.; Vercaemer, B. Effects of locally-isolated micro-phytoplankton diets on growth and survival of sea scallop (Placopecten magellanicus) larvae. Aquaculture 2006, 259, 169–180. [Google Scholar] [CrossRef]
- Neo, M.L.; Todd, P.A.; Teo, S.L.M.; Chou, L.M. The Effects of Diet, Temperature and Salinity on Survival of Larvae of the Fluted Giant Clam, Tridacna squamosa. J. Conchol. 2013, 41, 369–376. [Google Scholar]
- Fitt, W.K.; Rees, T.A.V.; Yellowlees, D. Relationship between Ph and the Availability of Dissolved Inorganic Nitrogen in the Zooxanthella-Giant Clam Symbiosis. Limnol. Oceanogr. 1995, 40, 976–982. [Google Scholar] [CrossRef]
- Ellis, S.C. Spawning and Early Larval Rearing of Giant Clams (Bivalvia: Tridacnidae); Center for Tropical and Subtropical Aquaculture: Waimanalo, HI, USA, 1997. [Google Scholar]
- Estacion, J.; Solis, E.; Fabro, L. A preliminary study of the effect of supplementary feeding on the growth of Tridacna maxima (Roding) (Bivalvia: Tridacnidae). Silliman J. 1986, 33, 111–116. [Google Scholar]
- Buck, B.H.; Rosenthal, H.; Saint-Paul, U. Effect of increased irradiance and thermal stress on the symbiosis of Symbiodinium microadriaticum and Tridacna gigas. Aquat. Living Resour. 2002, 15, 107–117. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Z.Q.; Wang, L.G.; Luo, J.; Li, H.L. Oxidative stress, apoptosis activation and symbiosis disruption in giant clam Tridacna crocea under high temperature. Fish Shellfish Immunol. 2019, 84, 451–457. [Google Scholar] [CrossRef]
- Enricuso, O.B.; Conaco, C.; Sayco, S.L.G.; Neo, M.L.; Cabaitan, P.C. Elevated seawater temperatures affect embryonic and larval development in the giant clam Tridacna gigas (Cardiidae: Tridacninae). J. Molluscan Stud. 2019, 85, 66–72. [Google Scholar] [CrossRef]
- Warner, M.; Fitt, W.; Schmidt, G. The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: A novel approach. Plant Cell Environ. 1996, 19, 291–299. [Google Scholar] [CrossRef]
- Navarro, J.M. The effects of salinity on the physiological ecology of Choromytilus chorus (Molina, 1782) (Bivalvia: Mytilidae). J. Exp. Mar. Biol. Ecol. 1988, 122, 19–33. [Google Scholar] [CrossRef]
- Pourmozaffar, S.; Tamadoni Jahromi, S.; Rameshi, H.; Sadeghi, A.; Bagheri, T.; Behzadi, S.; Gozari, M.; Zahedi, M.R.; Abrari Lazarjani, S. The role of salinity in physiological responses of bivalves. Rev. Aquac. 2020, 12, 1548–1566. [Google Scholar] [CrossRef]
- Tan, K.; Yan, X.; Julian, R.; Lim, L.; Peng, X.; Fazhan, H.; Kwan, K.Y. Effects of climate change induced hyposalinity stress on marine bivalves. Estuar. Coast. Shelf Sci. 2023, 294, 108539. [Google Scholar] [CrossRef]
- Zhou, C.; Song, H.; Feng, J.; Hu, Z.; Yang, M.J.; Shi, P.; Li, Y.R.; Guo, Y.J.; Li, H.Z.; Zhang, T. Metabolomics and biochemical assays reveal the metabolic responses to hypo-salinity stress and osmoregulatory role of cAMP-PKA pathway in Mercenaria mercenaria. Comput. Struct. Biotechnol. J. 2022, 20, 4110–4121. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Fu, W.; Zhang, H.; Ma, H.; Li, S.; Zheng, H. Intraspecific hybridization as a mitigation strategy of low salinity in marine bivalve noble scallop Chlamys nobilis. Aquaculture 2022, 552, 738037. [Google Scholar] [CrossRef]
- Militz, T.A.; Southgate, P.C. Salinity influences hatchery production of the giant clam Tridacna crocea. Aquac. Res. 2021, 52, 5105–5108. [Google Scholar] [CrossRef]
- Eckman, W.; Vicentuan, K.; Todd, P.A. Effects of low light and high temperature on pediveligers of the fluted giant clam Tridacna squamosa. Mar. Freshw. Behav. Physiol. 2019, 52, 255–264. [Google Scholar] [CrossRef]
- Sayco, S.L.G.; Conaco, C.; Neo, M.L.; Cabaitan, P.C. Reduced salinities negatively impact fertilization success and early larval development of the giant clam Tridacna gigas (Cardiidae: Tridacninae). J. Exp. Mar. Biol. Ecol. 2019, 516, 35–43. [Google Scholar] [CrossRef]
- Maboloc, E.A.; Mingoa-Licuanan, S.S.; Villanueva, R.D. Effects of Reduced Salinity on the Heterotrophic Feeding of the Juvenile Giant Clam Tridacna gigas. J. Shellfish Res. 2014, 33, 373–379. [Google Scholar] [CrossRef]
- Eckman, W.; Vicentuan-Cabaitan, K.; Todd, P.A. Observations on the hyposalinity tolerance of fluted giant clam (Tridacna squamosa, Lamarck 1819) larvae. Nat. Singap. 2014, 7, 111–116. [Google Scholar]
- Maboloc, E.A.; Villanueva, R.D. Effects of salinity variations on the rates of photosynthesis and respiration of the juvenile giant clam (Tridacna gigas, Bivalvia, Cardiidae). Mar. Freshw. Behav. Physiol. 2017, 50, 273–284. [Google Scholar] [CrossRef]
- Koehn, R.K.; Bayne, B.L. Towards a physiological and genetical understanding of the energetics of the stress response. Biol. J. Linn. Soc. 1989, 37, 157–171. [Google Scholar] [CrossRef]
Groups | IL 3 (mm) | FL 3 (mm) | IW 3 (g) | FW 3 (g) | LG 3 (%) | SGR 3 (%) | SR 3 (%) |
---|---|---|---|---|---|---|---|
Control 3 | 1.52 ± 0.68 a,1,2 | 6.96 ± 1.00 a,1,2 | 1.12 ± 0.03 a,1,2 | 2.33 ± 0.03 a,1,2 | 359.08 ± 4.04 a,1,2 | 1.21 ± 0.01 a,1,2 | 40 ± 4.08 a,1,2 |
Chaetoceros muelleri | 1.53 ± 0.70 a,1,2 | 7.85 ± 1.05 a,1,2 | 1.23 ± 0.05 a,1,2 | 2.50 ± 0.14 a,1,2 | 400.69 ± 56.26 a,1,2 | 1.27 ± 0.09 a,1,2 | 40 ± 4.08 a,1,2 |
HW nano tip | 1.53 ± 0.70 a,1,2 | 7.96 ± 1.09 a,1,2 | 1.11 ± 0.02 a,1,2 | 2.42 ± 0.10 a,1,2 | 424.72 ± 54.18 a,1,2 | 1.31 ± 0.08 a,1,2 | 41 ± 0 a,1,2 |
Weeks/SR(%) | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|
Groups | Survival Rate (%) | |||||||||
Control | 76 ± 6 a,1,2 | 61 ± 6 a,1,2 | 46 ± 4 a,1,2 | 43 ± 6 a,1,2 | 41 ± 4 a,1,2 | 40 ± 4 a,1,2 | 40 ± 4 a,1,2 | 40 ± 4 a,1,2 | 40 ± 4 a,1,2 | |
Chaetoceros muelleri | 66 ± 4 a,1,2 | 68 ± 4 a,1,2 | 58 ± 2 a,1,2 | 51 ± 2 a,1,2 | 46 ± 4 a,1,2 | 41 ± 4 a,1,2 | 40 ± 4 a,1,2 | 40 ± 4 a,1,2 | 40 ± 4 a,1,2 | |
HW nano tip | 73 ± 6 a,1,2 | 63 ± 2 a,1,2 | 58 ± 2 a,1,2 | 53 ± 2 a,1,2 | 46 ± 2 a,1,2 | 41 ± 2 a,1,2 | 41 ± 2 a,1,2 | 41 ± 2 a,1,2 | 41 ± 0 a,1,2 |
Groups | IL 3 (mm) | FL 3 (mm) | IW 3 (g) | FW 3 (g) | LG 3 (%) | SGR 3 (%) | SR 3 (%) |
---|---|---|---|---|---|---|---|
19 °C | 67.15 ± 5.25 a,1,2 | 67.15 ± 5.25 b,1,2 | 37.16 ± 8.52 a,1,2 | 37.16 ± 8.52 b,1,2 | 0 ± 0 b,1,2 | 0.08 ± 0.14 b,1,2 | 0 b,1,2 |
27 °C | 67.79 ± 3.15 a,1,2 | 80.22 ± 3.91 a,1,2 | 33.9 ± 5.16 a,1,2 | 36.98 ± 5.48 a,1,2 | 12.27 ± 2.52 a,1,2 | 3.08 ± 0.34 a,1,2 | 100 ± 0 a,1,2 |
31 °C | 68.99 ± 6.75 a,1,2 | 68.99 ± 6.75 b,1,2 | 39.33 ± 6.05 a,1,2 | 39.33 ± 6.05 b,1,2 | 0 ± 0 b,1,2 | 0 ± 0 b,1,2 | 0 b,1,2 |
Weeks/SR(%) | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|
Groups | Survival Rate (%) | |||||||||
19 °C | 100 ± 0 a,1,2 | 33 ± 28 b,1,2 | - | - | - | - | - | - | - | |
27 °C | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
31 °C | 100 ± 0 a,1,2 | 16 ± 28 b,1,2 | - | - | - | - | - | - | - |
Groups | IL 3 (mm) | FL 3 (mm) | IW 3 (g) | FW 3 (g) | LG 3 (%) | SGR 3 (%) | SR 3 (%) |
---|---|---|---|---|---|---|---|
20‰ | 61.41 ± 9.91 a,1,2 | 62.08 ± 10.16 b,1,2 | 32.9 ± 12.72 a,1,2 | 34.2 ± 11.74 b,1,2 | 0.67 ± 0.52 b,1,2 | 1.3 ± 0.24 b,1,2 | 100 ± 0 a,1,2 |
25‰ | 59.36 ± 12.6 a,1,2 | 62.46 ± 12.51 b,1,2 | 38.6 ± 18.68 a,1,2 | 39.93 ± 19.01 b,1,2 | 3.1 ± 0.23 b,1,2 | 1.34 ± 0.38 b,1,2 | 100 ± 0 a,1,2 |
34‰ | 52.71 ± 12.79 a,1,2 | 65.17 ± 11.44 a,1,2 | 32.66 ± 10.78 a,1,2 | 35.73 ± 10.71 a,1,2 | 12.46 ± 2.5 a,1,2 | 3.07 ± 0.31 a,1,2 | 100 ± 0 a,1,2 |
Weeks/SR(%) | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|
Groups | Survival Rate (%) | |||||||||
20‰ | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | |
25‰ | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | |
34‰ | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 | 100 ± 0 a,1,2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, R.P.-T.; Lin, Y.-R.; Huang, C.-Y.; Nan, F.-H. Effects of Nutrient Source, Temperature, and Salinity on the Growth and Survival of Three Giant Clam Species (Tridacnidae). Animals 2024, 14, 1054. https://doi.org/10.3390/ani14071054
Lee RP-T, Lin Y-R, Huang C-Y, Nan F-H. Effects of Nutrient Source, Temperature, and Salinity on the Growth and Survival of Three Giant Clam Species (Tridacnidae). Animals. 2024; 14(7):1054. https://doi.org/10.3390/ani14071054
Chicago/Turabian StyleLee, Rod Ping-Tsan, Yu-Ru Lin, Chih-Yang Huang, and Fan-Hua Nan. 2024. "Effects of Nutrient Source, Temperature, and Salinity on the Growth and Survival of Three Giant Clam Species (Tridacnidae)" Animals 14, no. 7: 1054. https://doi.org/10.3390/ani14071054
APA StyleLee, R. P. -T., Lin, Y. -R., Huang, C. -Y., & Nan, F. -H. (2024). Effects of Nutrient Source, Temperature, and Salinity on the Growth and Survival of Three Giant Clam Species (Tridacnidae). Animals, 14(7), 1054. https://doi.org/10.3390/ani14071054