Use of Stable Isotopes (δ13C and δ15N) to Infer Post-Breeding Dispersal Strategies in Iberian Populations of the Kentish Plover
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.3. Isotopic Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delany, S.; Scott, D.A.; Dodman, T.; Stroud, D.A. An Atlas of Wader Populations in Africa and Western Eurasia; Wetlands International: Wageningen, The Netherlands, 2009; ISBN 9789058820471. [Google Scholar]
- Rocha, A.D.; Fonseca, D.; Masero, J.A.; Ramos, J.A. Coastal saltpans are a good alternative breeding habitat for Kentish plover Charadrius alexandrinus when umbrella species are present. J. Avian Biol. 2016, 47, 824–833. [Google Scholar] [CrossRef]
- Robin, F.; Delaporte, P.; Rousseau, P.; Meunier, F.; Bocher, P. Tracing changes in the diet and habitat use of black-tailed godwits in Western France, using a stable isotope approach. Isot. Environ. Health Stud. 2018, 54, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.C.; McLachlan, A. The Ecology of Sandy Shores; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 978-0-12-372569-1. [Google Scholar]
- Defeo, O.; Mclachlan, A.; Schoeman, D.S.; Schlacher, T.A.; Dugan, J.; Jones, A.; Lastra, M.; Scapini, F. Threats to sandy beach ecosystems: A review. Estuar. Coast. Shelf Sci. 2009, 81, 1–12. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Change 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Dangendorf, S.; Hay, C.; Calafat, F.M.; Marcos, M.; Piecuch, C.G.; Berk, K.; Jensen, J. Persistent acceleration in global sea-level rise since the 1960s. Nat. Clim. Change 2019, 9, 705–710. [Google Scholar] [CrossRef]
- Galbraith, H.; Jones, R.; Park, R.; Clough, J.; Herrod-Julius, S.; Harrington, B.; Page, G. Global climate change and sea level rise: Potential losses of intertidal habitat for shorebirds. Waterbirds 2002, 25, 173–183. [Google Scholar] [CrossRef]
- Ferreira, Ó.; Kupfer, S.; Costas, S. Implications of sea-level rise for overwash enhancement at South Portugal. Nat. Hazards 2021, 109, 2221–2239. [Google Scholar] [CrossRef]
- Smart, J.; Gill, J.A. Non-intertidal habitat use by shorebirds: A reflection of inadequate intertidal resources? Biol. Conserv. 2003, 111, 359–369. [Google Scholar] [CrossRef]
- Yasué, M.; Patterson, A.; Dearden, P. Are saltflats suitable supplementary nesting habitats for Malaysian Plovers Charadrius peronii threatened by beach habitat loss in Thailand? Bird Conserv. Int. 2007, 17, 211–223. [Google Scholar] [CrossRef]
- Jackson, M.V.; Choi, C.Y.; Amano, T.; Estrella, S.M.; Lei, W.; Moores, N.; Mundkur, T.; Rogers, D.I.; Fuller, R.A. Navigating coasts of concrete: Pervasive use of artificial habitats by shorebirds in the Asia-Pacific. Biol. Conserv. 2020, 247, 108–591. [Google Scholar] [CrossRef]
- Lei, W.; Masero, J.A.; Dingle, C.; Liu, Y.; Chai, Z.; Zhu, B.; Peng, H.; Zhang, Z.; Piersma, T. The value of coastal saltpans for migratory shorebirds: Conservation insights from a stable isotope approach based on feeding guild and body size. Anim. Conserv. 2021, 24, 1071–1083. [Google Scholar] [CrossRef]
- Jourdan, C.; Fort, J.; Robin, F.; Pinaud, D.; Delaporte, P.; Desmots, D.; Gentric, A.; Lagrange, P.; Gernigon, J.; Jomat, L.; et al. Combination of marine and artificial freshwater habitats provides wintering Black-tailed Godwits with landscape supplementation. Wader Study 2022, 129, 86–99. [Google Scholar] [CrossRef]
- Iwamura, T.; Possingham, H.P.; Chadès, I.; Minton, C.; Murray, N.J.; Rogers, D.I.; Treml, E.A.; Fuller, R.A. Migratory connectivity magnifies the consequences of habitat loss from sea-level rise for shorebird populations. Proc. R. Soc. B Biol. Sci. 2013, 280, 20130325. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.M.; Kim, K.; Ki, J.; Kim, H.; Yoo, J.C. Use of stable isotopes (δ2H, δ13C and δ15N) to infer the migratory connectivity of Terek Sandpipers (Xenus cinereus) at stopover sites in the East Asian-Australasian Flyway. Avian Biol. Res. 2020, 13, 10–17. [Google Scholar] [CrossRef]
- Catry, T.; Lourenco, P.M.; Lopes, R.J.; Bocher, P.; Carneiro, C.; Alves, J.A.; Delaporte, P.; Bearhop, S.; Piersma, T.; Granadeiro, J.P. Use of stable isotope fingerprints to assign wintering origin and trace shorebird movements along the East Atlantic Flyway. Basic Appl. Ecol. 2016, 17, 177–187. [Google Scholar] [CrossRef]
- Ulman, S.E.; Van Wilgenburg, S.L.; Morton, J.M.; Williams, C.K. Geographic Origins of Shorebirds Using an Alaskan Estuary during Migration. Waterbirds 2023, 46, 47–56. [Google Scholar] [CrossRef]
- Hobson, K.A. Isotopic ornithology: A perspective. J. Ornithol. 2011, 152, 49–66. [Google Scholar] [CrossRef]
- Bronskov, O.; Keller, V. Charadrius alexandrinus, Kentish Plover. In European Breeding Bird Atlas 2: Distribution, Abundance and Change; Keller, V., Herrando, S., Voříšek, P., Franch, M., Kipson, M., Milanesi, P., Martí, D., Anton, M., Klvaňová, A., Kalyakin, M.V., et al., Eds.; European Bird Census Council & Lynx Edicions: Barcelona, Spain, 2020; pp. 300–301. ISBN 978-84-16728-38-1. [Google Scholar]
- Meininger, P.; Székely, T.; Scott, D.A. Kentish Plover (Charadrius alexandrinus). In An Atlas of Wader Populations in Africa and Western Eurasia; Delany, S., Scott, D., Dodman, T., Stroud, S., Eds.; Wetlands International: Wageningen, The Netherlands, 2009; pp. 230–235. ISBN 9789058820471. [Google Scholar]
- De Juana, E.; García, E. The Birds of the Iberian Peninsula; Christopher Helm: London, UK, 2015; ISBN 978-1-4081-2480-2. [Google Scholar]
- Gómez-Serrano, M.A.; Hortas, F. Chorlitejo patinegro Charadrius alexandrinus. In III Atlas de las Aves en Época de Reproducción en España; Molina, B., Nebreda, A., Muñoz, R.A., Seoane, J., Real, R., Bustamante, J., Del Moral, J.C., Eds.; SEO/BirdLife: Madrid, Spain, 2022; ISBN 978-84-126555-6-8. [Google Scholar]
- Rocha, A. Censo nacional de Borrelho-de-coleira-interrompida. In O Estado das Aves em Portugal, 2022; Alonso, H., Andrade, J., Teodósio, J., Lopes, A., Eds.; Sociedade Portuguesa para o Estudo das Aves: Lisboa, Portugal, 2022; pp. 70–75. [Google Scholar]
- Catry, P.; Costa, H.; Elias, G.; Matías, R. Aves de Portugal. Ornitología do Território Continental; Assirio & Alvim: Lisboa, Portugal, 2010; ISBN 978-84-16728-11-4. [Google Scholar]
- Toral, G.M.; Figuerola, J. Nest success of Black-winged Stilt Himantopus himantopus and Kentish Plover Charadrius alexandrinus in rice fields, southwest Spain. Ardea 2012, 100, 29–36. [Google Scholar] [CrossRef]
- Amat, J.A. Chorlitejo patinegro. In Enciclopedia Virtual de los Vertebrados Españoles; Salvador, A., Morales, M.B., Eds.; Museo Nacional de Ciencias Naturales: Madrid, Spain, 2016. [Google Scholar]
- Gómez-Serrano, M.Á.; Castro, E.M.; Domínguez, J.; Pérez-Hurtado, A.; Tejera, G.; Vidal, M. Chorlitejo patinegro Charadrius alexandrinus. In Libro Rojo de las Aves de España; López-Jiménez, A.N., Ed.; SEO/Birdlife: Madrid, Spain, 2021; pp. 375–385. ISBN 978-84-124888-2-1. [Google Scholar]
- Molina, B. Chorlitejo Patinegro. In Aves acuáticas reproductoras. Población en 2007 y Método de Censo; Palomino, D., Molina, B., Eds.; SEO/BirdLife: Madrid, Spain, 2009; pp. 115–125. ISBN 9788493644192. [Google Scholar]
- Cramp, S.; Simmons, K.E.L. The Birds of the Western Palearctic, Vol. III; Oxford University Press: Oxford, UK, 1982; ISBN 019857506. [Google Scholar]
- Pienkowski, M.; Knight, P.; Stanyard, D.; Argyle, F. The primary moult of waders on the Atlantic coast of Morocco. IBIS 1976, 118, 347–365. [Google Scholar] [CrossRef]
- Blasco-Zumeta, J.; Heinze, G.M. Chorlitejo patinegro. Sociedad de Ciencias Aranzadi. 2023. Available online: http://blascozumeta.com/?page_id=19 (accessed on 14 February 2024).
- Pinheiro, J.C.; Bates, D.M. Linear mixed-effects models: Basic concepts and examples. In Mixed-effects models in S and S-Plus; Springer: New York, NY, USA, 2000; pp. 3–56. ISBN 978-0387989570. [Google Scholar]
- Sabat, P.; Martínez del Rio, C. Inter-and intraspecific variation in the use of marine food resources by three Cinclodes (Furnariidae, Aves) species: Carbon isotopes and osmoregulatory physiology. Zoology 2002, 105, 247–256. [Google Scholar] [CrossRef]
- Martínez del Rio, C.; Sabat, P.; Anderson-Sprecher, R.; Gonzalez, S.P. Dietary and isotopic specialization: The isotopic niche of three Cinclodes ovenbirds. Oecologia 2009, 161, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Schoeninger, M.J.; DeNiro, M.J.; Tauber, H. Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science 1983, 220, 1381–1383. [Google Scholar] [CrossRef] [PubMed]
- Chmura, G.; Aharon, P. Stable carbon isotope signatures of sedimentary carbon in coastal wetlands as indicators of salinity regime. J. Coast. Res. 1995, 11, 124–135. [Google Scholar]
- Jiménez-Morillo, N.T.; Moreno, J.; Moreno, F.; Fatela, F.; Leorri, E.; De la Rosa, J.M. Composition and sources of sediment organic matter in a western Iberian salt marsh: Developing a novel prediction model of the bromine sedimentary pool. Sci. Total Environ. 2024, 907, 167931. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, S.; Dehairs, F.; Velimirov, B.; Abril, G.; Borges, A.V. Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya). J. Geophys. Res-Biogeosci. 2007, 112. [Google Scholar] [CrossRef]
- Gonçalves, M.S.S.; Gil-Delgado, J.A.; Gosalvez, R.U.; Lopez-Iborra, G.M.; Ponz, A.; Velasco, A. Spatial synchrony of wader populations in inland lakes of the Iberian Peninsula. Ecol. Res. 2016, 31, 947–956. [Google Scholar] [CrossRef]
- De Souza, J.A.; Caeiro, M.L.; Rosende, F.; Monteagudo, A.; Fafián, J.M. Estacionamientos, estructura y patrones de residencia de la población invernante del Chorlitejo patinegro (Charadrius alexandrinus) en Galicia: Un análisis preliminar. Chioglossa 1999, 1, 23–45. [Google Scholar]
- Sardá, R.; Ariza, E.; Jimenez, J.A. Buscando el uso sostenible de las playas. In La Gestión Integrada de Playas y Dunas: Experiencias en Latinoamérica, Norte de Africa y Europa; Rodríguez-Perea, A., Pons, G.X., Roig-Munar, F.X., Martín-Prieto, J.A., Mir-Gual, M., Cabrera, J.A., Eds.; Sociedad Historia Natural Balears: Palma de Mallorca, Spain, 2012; Volume 19, pp. 33–44. ISBN 978-84-616-2240-5. [Google Scholar]
- Losada, I.J.; Méndez, F.J.; Olabarrieta, M.; Liste, M.; Menéndez, M.; Tomás, A.; Abascal, A.J.; Agudelo, P.; Guanche, R. Fase II: Evaluación de efectos en la costa española. In Impactos en la Costa Española por Efecto del Cambio Climático; Ministerio de Medio Ambiente: Madrid, Spain, 2004. [Google Scholar]
- Caetano, E.; Innocentini, V.; Magaña, V.; Martins, S.; Méndez, B. Cambio climático y el aumento del nivel del mar. In Vulnerabilidad de las Zonas Costeras Mexicanas Ante el Cambio Climático; Botello, A.V., Villanueva-Fragoso, S., Gutiérrez, J., Rojas-Galaviz, J.L., Eds.; Semarnat-INE, UNAM-ICMYL, Universidad Autónoma de Campeche: México, Spain, 2011; pp. 283–304. ISBN 978-92-0-053196-5. [Google Scholar]
- Cooley, S.; Schoeman, D.; Bopp, L.; Boyd, P.; Donner, S.; Ito, S.-I.; Kiessling, W.; Martinetto, P.; Ojea, E.; Racault, M.-F.; et al. Oceans and coastal ecosystems and their services. In Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Melet, A.; Van de Wal, R.; Amores, A.; Arns, A.; Chaigneau, A.A.; Dinu, I.; Haigh, I.D.; Hermans, T.H.; Lionello, P.; Marcos, M. Sea level rise in Europe: Observations and projections. State Planet Discuss. 2023, preprint. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Feyen, L. Extreme sea levels on the rise along Europe’s coasts. Earth’s Future 2017, 5, 304–323. [Google Scholar] [CrossRef]
- Phillips, R.A.; Bearhop, S.; Mcgill, R.A.; Dawson, D.A. Stable isotopes reveal individual variation in migration strategies and habitat preferences in a suite of seabirds during the nonbreeding period. Oecologia 2009, 160, 795–806. [Google Scholar] [CrossRef]
- Dias, M.P.; Granadeiro, J.P.; Phillips, R.A.; Alonso, H.; Catry, P. Breaking the routine: Individual Cory’s shearwaters shift winter destinations between hemispheres and across ocean basins. Proc. R. Soc. B Biol. Sci. 2011, 278, 1786–1793. [Google Scholar] [CrossRef] [PubMed]
- Navarro, A.B.; Magioli, M.; Bogoni, J.A.; Moreira, M.Z.; Silveira, L.F.; Alexandrino, E.R.; da Luz, D.T.A.; Pizo, M.A.; Silva, W.R.; de Oliveira, V.C. Human-modified landscapes narrow the isotopic niche of neotropical birds. Oecologia 2021, 196, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, J.; Vidal, M. Plan de Conservación del Chorlitejo Patinegro (Charadrius alexandrinus) en Galicia; Consellería de Medio Ambiente e Desenvolvemento Sostible: Santiago de Compostela, Spain, 2008. [Google Scholar]
- Vidal, M.; Domínguez, J. Long-term population trends of breeding Kentish Plovers (Charadrius alexandrinus) in Northwestern Spain under the effects of a major oil spill. Bird Conserv. Int. 2013, 23, 386–397. [Google Scholar] [CrossRef]
- AlRashidi, M.; Shobrak, M.; Al-Eissa, M.S.; Székely, T. Integrating spatial data and shorebird nesting locations to predict the potential future impact of global warming on coastal habitats: A case study on Farasan Islands, Saudi Arabia. Saudi J. Biol. Sci. 2012, 19, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Aiello-Lammens, M.E.; Chu-Agor, M.L.; Convertino, M.; Fischer, R.A.; Linkov, I.; Akcakaya, H.R. The impact of sea-level rise on Snowy Plovers in Florida: Integrating geomorphological, habitat, and metapopulation models. Glob. Change Biol. 2011, 17, 3644–3654. [Google Scholar] [CrossRef]
Predictors | δ13C | δ15N |
---|---|---|
Coastal section | 0.325 | 0.013 |
Sex | 0.612 | 2.322 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gestoso, A.; Vidal, M.; Domínguez, J. Use of Stable Isotopes (δ13C and δ15N) to Infer Post-Breeding Dispersal Strategies in Iberian Populations of the Kentish Plover. Animals 2024, 14, 1208. https://doi.org/10.3390/ani14081208
Gestoso A, Vidal M, Domínguez J. Use of Stable Isotopes (δ13C and δ15N) to Infer Post-Breeding Dispersal Strategies in Iberian Populations of the Kentish Plover. Animals. 2024; 14(8):1208. https://doi.org/10.3390/ani14081208
Chicago/Turabian StyleGestoso, Andrea, María Vidal, and Jesús Domínguez. 2024. "Use of Stable Isotopes (δ13C and δ15N) to Infer Post-Breeding Dispersal Strategies in Iberian Populations of the Kentish Plover" Animals 14, no. 8: 1208. https://doi.org/10.3390/ani14081208
APA StyleGestoso, A., Vidal, M., & Domínguez, J. (2024). Use of Stable Isotopes (δ13C and δ15N) to Infer Post-Breeding Dispersal Strategies in Iberian Populations of the Kentish Plover. Animals, 14(8), 1208. https://doi.org/10.3390/ani14081208