Isobutyramide and Slow-Release Urea as Substitutes for Soybean Meal in the Finishing Diet of Beef Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Experiment
2.1.1. Experimental Design, Treatments and Donor Animals
2.1.2. Incubation and Sampling
2.1.3. Chemical Analysis
2.2. In Vivo Experiment
2.2.1. Animal, Management and Experimental Design
2.2.2. Sampling
2.2.3. Chemical Analysis
2.3. Calculation and Statistical Analysis
3. Results
3.1. In Vitro Experiment
3.2. In Vivo Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Bureau of Statistics of China. Online Statistical Database: Soybean Import. Available online: http://data.stats.gov.cn/ (accessed on 27 March 2024).
- Guo, X.; Shao, X.; Trishna, S.M.; Marinova, D.; Hossain, A. Soybeans consumption and production in China: Sustainability perspective. In Research Anthology on Food Waste Reduction and Alternative Diets for Food and Nutrition Security; IGI Global: Hershey, PA, USA, 2021; pp. 1256–1275. [Google Scholar]
- Yang, S.H.; Cui, X.F. Large-scale production: A possible way to the balance between feed grain security and meat security in China. J. Agric. Food Res. 2023, 14, 100745. [Google Scholar] [CrossRef]
- Zurak, D.; Kljak, K.; Aladrović, J. Metabolism and utilisation of non-protein nitrogen compounds in ruminants: A review. J. Cent. Eur. Agric. 2023, 24, 1–14. [Google Scholar] [CrossRef]
- Hailemariam, S.; Zhao, S.G.; He, Y.; Wang, J.Q. Urea transport and hydrolysis in the rumen: A review. Anim. Nutr. 2021, 7, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Benedeti, P.D.B.; Paulino, P.V.R.; Marcondes, M.I.; Valadares Filho, S.D.C.; Martins, T.S.; Lisboa, E.F.; Silva, E.F.; Teixeira, C.R.V.; Duarte, M.S. Soybean meal replaced by slow release urea in finishing diets for beef cattle. Livest. Sci. 2014, 165, 51–60. [Google Scholar] [CrossRef]
- Gardinal, R.; Gandra, J.R.; Calomeni, G.D.; Vendramini, T.H.A.; Takiya, C.S.; De Freitas Júnior, J.E.; De Souza, H.N.; Rennó, F.P. Effects of polymer coated slow-release urea on ruminal fermentation and nutrient total tract digestion of beef steers. Rev. Bras. Zootecn. 2016, 45, 63–70. [Google Scholar] [CrossRef]
- Salami, S.A.; Devant, M.; Apajalahti, J.; Holder, V.; Salomaa, S.; Keegan, J.D.; Moran, C.A. Slow-release urea as a sustainable alternative to soybean meal in ruminant nutrition. Sustainability 2021, 13, 2464. [Google Scholar] [CrossRef]
- Flores, D.A. Issues with tropical and temperate ensilage protein and amino acid feeds utilization: A research note. Agric. Sci. 2022, 13, 1177–1185. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Q.; Zhang, Y.L.; Pei, C.X.; Zhang, S.L.; Wang, Y.X.; Yang, W.Z.; Bai, Y.S.; Shi, Z.G.; Liu, X.N. Effects of isobutyrate supplementation on ruminal microflora, rumen enzyme activities and methane emissions in Simmental steers. J. Anim. Physiol. Anim. Nutr. 2015, 99, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, Y.L.; Pei, C.X.; Zhang, S.L. Effects of rumen-protected folic acid and branched-chain volatile fatty acids supplementation on lactation performance, ruminal fermentation, nutrient digestion and blood metabolites in dairy cows. Anim. Feed Sci. Technol. 2019, 247, 157–165. [Google Scholar] [CrossRef]
- Salami, S.A.; Moran, C.A.; Warren, H.E.; Taylor-Pickard, J. A meta-analysis of the effects of slow-release urea supplementation on the performance of beef cattle. Animals 2020, 10, 657. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage fiber analyses: Apparatus, reagents, procedures, and some applications. In Agriculture Handbook No. 379. Agricultural Research Service; U.S. Department of Agriculture: Washington, DC, USA, 1970. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.L. The Nutrient Requirements and Feeding Standards of Beef Cattle; China Agricultural University Press: Beijing, China, 2000; pp. 22–23. [Google Scholar]
- Hristov, A.N.; McAllister, T.A.; Cheng, K.J. Effect of dietary or abomasal supplementation of exogenous polysaccharide-degrading enzymes on rumen fermentation and nutrient digestibility. J. Anim. Sci. 1998, 76, 3146–3156. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.R.; Qin, T.; Wang, C. Effects of artemisinine on the rumen fermentation and microbial nitrogen recycling rate in goats. Sci. Agric. Sin. 2014, 47, 4904–4914. (In Chinese) [Google Scholar]
- Patra, A.K.; Kamra, D.N.; Agarwal, N. Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed Sci. Technol. 2006, 128, 276–291. [Google Scholar] [CrossRef]
- Denman, S.E.; McSweeney, C.S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 2006, 58, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.F.; Cao, W.W.; Cerniglia, C.E. PCR detection of Ruminococcus spp. in human and animal faecal samples. Mol. Cell Probes 1997, 11, 259–265. [Google Scholar] [CrossRef]
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 2009, 83, 987–988. [Google Scholar] [CrossRef]
- Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owem, E.; Channa, K.S.; Theodorou, M.K. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim. Feed Sci. Technol. 1999, 79, 321–330. [Google Scholar] [CrossRef]
- France, J.; Dijkstra, J.; Dhanoa, M.S.; Lopez, S.; Bannink, A. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: Derivation of models and other mathematical considerations. Br. J. Nutr. 2000, 83, 143–150. [Google Scholar] [CrossRef]
- Cherdthong, A.; Metha, W. Development of urea products as rumen slow-release feed for ruminant production: A review. Aust. J. Basic Appl. Sci. 2010, 4, 2232–2241. [Google Scholar]
- Fotouhi, N.; Jenkins, T.C. Resistance of fatty acyl amides to degradation and hydrogenation by ruminal microorganisms. J. Dairy Sci. 1992, 75, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Allison, M.J. Biosynthesis of amino acids by ruminal microorganisms. J. Anim. Sci. 1969, 29, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Andries, J.I.; Buysse, F.X.; De Brabander, D.L.; Cottyn, B.G. Isoacids in ruminant nutrition: Their role in ruminal and intermediary metabolism and possible influences on performances-a review. Anim. Feed Sci. Technol. 1987, 18, 169–180. [Google Scholar] [CrossRef]
- Roman-Garcia, Y.; Denton, B.L.; Mitchell, K.E.; Lee, C.; Socha, M.T.; Firkins, J.L. Conditions stimulating neutral detergent fiber degradation by dosing branched-chain volatile fatty acids. I: Comparison with branched-chain amino acids and forage source in ruminal batch cultures. J. Dairy Sci. 2021, 104, 6739–6755. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, C.; Huang, Y.; Dong, K.; Wang, H.; Yang, W. Effects of isobutyrate on rumen fermentation, urinary excretion of purine derivatives and digestibility in steers. Arch. Anim. Nutr. 2008, 62, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Cummins, K.A.; Papas, A.H. Effect of isocarbon-4 and isocarbon-5 volatile fatty acids on microbial protein synthesis and dry matter digestibility in vitro. J. Dairy Sci. 1985, 68, 2588–2595. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Q.; Zhang, Y.L.; Pei, C.X.; Zhang, S.L.; Guo, G.; Huo, W.J.; Yang, W.Z.; Wang, H. Effects of isobutyrate supplementation in pre-and post-weaned dairy calves diet on growth performance, rumen development, blood metabolites and hormone secretion. Animal 2017, 11, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Krause, K.M.; Oetzel, G.R. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim. Feed Sci. Technol. 2006, 126, 215–236. [Google Scholar] [CrossRef]
- Nozière, P.; Ortigues-Marty, I.; Loncke, C.; Sauvant, D. Carbohydrate quantitative digestion and absorption in ruminants: From feed starch and fibre to nutrients available for tissues. Animal 2010, 4, 1057–1074. [Google Scholar] [CrossRef]
- Russell, J.B.; Rychlik, J.L. Factors that alter rumen microbial ecology. Science 2001, 292, 1119–1122. [Google Scholar] [CrossRef]
- Fry, S.C. Cell wall polysaccharide composition and covalent crosslinking. Annu. Plant Rev. 2011, 41, 1–42. [Google Scholar]
- Colombatto, D.; Mould, F.L.; Bhat, M.K.; Morgavi, D.P.; Beauchemin, K.A.; Owen, E. Influence of fibrolytic enzymes on the hydrolysis and fermentation of pure cellulose and xylan by mixed ruminal microorganisms in vitro. J. Anim. Sci. 2003, 81, 1040–1050. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Song, Z.H.; Cao, L.T.; Wang, Y.; Zhou, W.Z.; Zhou, P.; Zuo, F.Y. Effects of traditional Chinese medicine formula on ruminal fermentation, enzyme activities and nutrient digestibility of beef cattle. Anim. Sci. J. 2018, 89, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.L.; Thomson, J.A. An analysis of the extracellular xylanases and cellulases of Butyrivibrio fibrisolvens H17c. FEMS Microbiol. Lett. 1991, 84, 197–203. [Google Scholar] [CrossRef]
- Coroian, C.O.; Mireşan, V.; Coroian, A.; Răducu, C.; Andronie, L.; Marchişm, Z.; Terheş, S.; Muntean, M.V. Biochemical and haematological blood parameters at different stages of lactation in cows. Bull UASVM Anim. Sci. Biotechnol. 2017, 74, 31–36. [Google Scholar] [CrossRef]
- Hungate, R.E. The rumen microbial ecosystem. Annu. Rev. Ecol. Syst. 1975, 6, 39–66. [Google Scholar] [CrossRef]
- Russell, K.E.; Roussel, A.J. Evaluation of the ruminant serum chemistry profile. Vet. Clin. N. Am.-Food A 2007, 23, 403–426. [Google Scholar] [CrossRef]
- Ringseis, R.; Gessner, D.K.; Eder, K. The gut–liver axis in the control of energy metabolism and food intake in animals. Annu. Rev. Anim. Biosci. 2020, 8, 295–319. [Google Scholar] [CrossRef]
Items 1 | Control | SRU | SRU-I | IBA-S | IBA |
---|---|---|---|---|---|
Ingredients, g/kg | |||||
Corn | 270 | 270 | 270 | 270 | 270 |
SBM | 150 | 91 | 102.5 | 113.5 | 125 |
Wheat bran | 50 | 100 | 88.5 | 77.5 | 66 |
SRU | 0 | 9 | 6 | 3 | 0 |
IBA | 0 | 0 | 3 | 6 | 9 |
NaCl | 10 | 10 | 10 | 10 | 10 |
Sodium bicarbonate | 10 | 10 | 10 | 10 | 10 |
Premix 2 | 10 | 10 | 10 | 10 | 10 |
Whole corn silage | 300 | 300 | 300 | 300 | 300 |
Wheat straw | 200 | 200 | 200 | 200 | 200 |
Nutrient levels | |||||
DM (g/kg) | 716 | 717 | 716 | 715 | 715 |
OM (g/kg DM) | 937 | 938 | 938 | 936 | 936 |
EE (g/kg DM) | 23.5 | 23.9 | 23.6 | 23.7 | 23.9 |
CP (g/kg DM) | 131 | 131 | 131 | 131 | 131 |
NDF (g/kg DM) | 365 | 379 | 376 | 372 | 370 |
ADF (g/kg DM) | 204 | 211 | 210 | 209 | 207 |
Target Species | Forward/Reverse | Primer Sequence | References |
---|---|---|---|
Total bacteria | F R | CGGCAACGAGCGCAACCC CCATTGTAGCACGTGTGTAGCC | Denman and McSweeney [21] |
Fungi | F R | GAGGAAGTAAAAGTCGTAACAAGGTTTC CAAATTCACAAAGGGTAGGATGATT | Denman and McSweeney [21] |
R. albus | F R | CCCTAAAAGCAGTCTTAGTTCG CCTCCTTGCGGTTAGAACA | Wang et al. [22] |
R. flavefaciens | F R | CGAACGGAGATAATTTGAGTTTACTTAGG CGGTCTCTGTATGTTATGAGGTATTACC | Denman and McSweeney [21] |
F. succinogenes | F R | GTTCGGAATTACTGGGCGTAAA CGCCTGCCCCTGAACTATC | Denman and McSweeney [21] |
B. fibrisolvens | F R | ACCGCATAAGCGCACGGA CGGGTCCATCTTGTACCGATAAAT | Stevenson and Weimer [23] |
Prevotella | F R | GGTTCTGAGAGGAAGGTCCCC TCCTGCACGCTACTTGGCTG | Stevenson and Weimer [23] |
Items 1 | Control | SRU | SRU-I | IBA-S | IBA | SEM | p-Value |
---|---|---|---|---|---|---|---|
Nutrient disappearance, % | |||||||
DM | 58.9 c | 59.3 c | 61.2 b | 62.6 a | 62.5 a | 0.27 | <0.01 |
CP | 46.5 c | 50.9 a | 49.4 b | 46.6 c | 45.4 d | 0.23 | <0.01 |
NDF | 28.9 c | 29.3 c | 32.6 b | 37.0 a | 36.2 a | 1.07 | <0.01 |
ADF | 24.2 b | 25.0 b | 26.8 ab | 28.7 a | 28.9 a | 1.26 | 0.05 |
Total gas (mL/g DM) | 131.4 c | 131.5 c | 133.9 b | 139.3 a | 139.1 a | 0.70 | <0.01 |
Vmax (mL/g DM) | 185.9 c | 189.2 c | 198.3 b | 211.5 a | 208.4 a | 3.59 | 0.02 |
S (/h) | 0.050 | 0.049 | 0.047 | 0.050 | 0.051 | 0.004 | 0.74 |
L (h) | 0.07 | 0.16 | 0.13 | 0.10 | 0.10 | 0.05 | 0.28 |
Fermentation parameters | |||||||
pH | 6.68 a | 6.68 a | 6.67 ab | 6.66 b | 6.66 b | 0.01 | <0.01 |
NH3-N (mM) | 4.74 c | 5.08 a | 4.93 b | 4.72 c | 4.59 d | 0.05 | <0.01 |
TVFA (mM) | 27.8 c | 27.6 c | 28.9 b | 30.2 a | 30.1 a | 0.12 | <0.01 |
VFA (mM) | |||||||
Acetate | 15.2 c | 15.1 c | 16.2 b | 17.2 a | 17.1 a | 0.10 | <0.01 |
Propionate | 7.05 | 7.00 | 7.08 | 7.20 | 7.10 | 0.11 | 0.34 |
Butyrate | 3.98 | 4.05 | 4.11 | 4.13 | 4.18 | 0.06 | 0.09 |
Isobutyrate | 0.57 d | 0.55 d | 0.65 c | 0.74 b | 0.81 a | 0.03 | 0.01 |
Valerate | 0.66 | 0.67 | 0.65 | 0.66 | 0.66 | 0.03 | 0.97 |
Isovalerate | 0.31 | 0.20 | 0.27 | 0.29 | 0.23 | 0.06 | 0.67 |
A:P ratio | 2.16 c | 2.17 c | 2.29 b | 2.39 a | 2.40 a | 0.04 | 0.01 |
Items 1 | Control | SRU | SRU-I | IBA-S | SEM | p-Value |
---|---|---|---|---|---|---|
DMI, kg/d | 12.2 | 12.5 | 12.5 | 12.3 | 0.26 | 0.71 |
ADG, kg/d | 0.96 | 0.95 | 1.00 | 1.07 | 0.04 | 0.09 |
Nutrient apparent digestibility, % | ||||||
DM | 76.1 c | 75.8 c | 77.1 b | 79.1 a | 0.32 | 0.03 |
OM | 77.5 c | 77.3 c | 79.3 b | 81.2 a | 0.30 | 0.01 |
CP | 72.0 | 72.3 | 71.6 | 71.5 | 0.70 | 0.49 |
NDF | 64.9 c | 64.9 c | 67.2 b | 69.1 a | 0.34 | <0.01 |
ADF | 53.7 c | 53.2 c | 56.6 b | 58.5 a | 0.44 | <0.01 |
Items 1 | Control | SRU | SRU-I | IBA-S | SEM | p-Value |
---|---|---|---|---|---|---|
pH | 6.49 a | 6.51 a | 6.37 b | 6.34 b | 0.02 | 0.02 |
NH3-N (mM) | 12.9 c | 13.9 a | 13.5 b | 12.9 c | 0.11 | <0.01 |
TVFA (mM) | 96.1 c | 95.4 c | 99.6 b | 103.5 a | 1.29 | 0.02 |
VFA (mM) | ||||||
Acetate | 60.9 c | 60.4 c | 63.0 b | 65.8 a | 0.73 | 0.04 |
Propionate | 20.1 | 19.9 | 19.8 | 20.0 | 0.32 | 0.90 |
Butyrate | 11.5 c | 11.5 c | 12.3 b | 13.2 a | 0.39 | 0.03 |
Isobutyrate | 0.91 c | 0.87 c | 1.21 b | 1.45 a | 0.10 | 0.01 |
Valerate | 1.25 | 1.28 | 1.18 | 1.31 | 0.09 | 0.52 |
Isovalerate | 1.78 | 1.69 | 1.78 | 1.91 | 0.15 | 0.77 |
A:P ratio | 3.01 c | 3.01 c | 3.21 b | 3.28 a | 0.02 | 0.01 |
MCP (mg/mL) | 0.78 c | 0.78 c | 0.82 b | 0.84 a | 0.01 | <0.01 |
Protozoa (log10/mL) | 5.86 | 5.84 | 5.85 | 5.83 | 0.02 | 0.16 |
Enzyme | ||||||
Carboxymethyl cellulase (μmol glucose/h/mL) | 3.53 c | 3.54 c | 3.67 b | 3.79 a | 0.04 | <0.01 |
Xylanase (μmol xylose/min/mL) | 1.42 c | 1.41 c | 1.47 b | 1.52 a | 0.01 | <0.01 |
Items 1 | Control | SRU | SRU-I | IBA-S | SEM | p-Value |
---|---|---|---|---|---|---|
Fungi | 0.11 | 0.09 | 0.10 | 0.10 | 0.01 | 0.73 |
R. albus × 10−2 | 1.12 | 1.15 | 0.97 | 0.97 | 0.11 | 0.76 |
R. flavefaciens × 10−3 | 5.69 | 5.53 | 5.56 | 5.55 | 0.69 | 0.99 |
F. succinogenes | 6.45 | 5.61 | 5.87 | 5.99 | 0.52 | 0.82 |
B. fibrisolvens × 10−2 | 0.93 c | 0.84 c | 1.21 b | 1.45 a | 0.06 | <0.01 |
Prevotella | 55.1 | 55.6 | 56.7 | 57.4 | 3.34 | 0.96 |
Items 1 | Control | SRU | SRU-I | IBA-S | SEM | p-Value |
---|---|---|---|---|---|---|
Nutrient index | ||||||
BUN (mmol/L) | 4.21 b | 4.61 a | 4.49 a | 4.19 b | 0.11 | 0.03 |
TP (g/L) | 62.7 | 62.7 | 62.5 | 63.2 | 2.54 | 1.00 |
GLU (mmol/L) | 3.54 b | 3.50 b | 3.73 a | 3.69 a | 0.05 | 0.03 |
TG (mmol/L) | 0.08 | 0.07 | 0.08 | 0.08 | 0.01 | 1.00 |
CHO (mmol/L) | 2.09 | 2.14 | 2.13 | 2.12 | 0.27 | 0.99 |
Health index | ||||||
CREA (μg/L) | 7463 | 7670 | 7463 | 7648 | 544.91 | 0.99 |
UA (μmol/L) | 14.7 | 14.5 | 14.9 | 14.6 | 1.90 | 1.00 |
TMAO (µmol/L) | 41.0 | 42.5 | 43.3 | 42.8 | 2.17 | 0.75 |
ALT (U/L) | 19.5 | 20.7 | 20.6 | 20.4 | 0.87 | 0.79 |
AST (U/L) | 62.1 | 60.6 | 62.6 | 62.9 | 2.10 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, C.; Tao, H.; Liu, G.; Tian, K. Isobutyramide and Slow-Release Urea as Substitutes for Soybean Meal in the Finishing Diet of Beef Cattle. Animals 2024, 14, 1321. https://doi.org/10.3390/ani14091321
Wei C, Tao H, Liu G, Tian K. Isobutyramide and Slow-Release Urea as Substitutes for Soybean Meal in the Finishing Diet of Beef Cattle. Animals. 2024; 14(9):1321. https://doi.org/10.3390/ani14091321
Chicago/Turabian StyleWei, Chen, Haiying Tao, Guifen Liu, and Kechuan Tian. 2024. "Isobutyramide and Slow-Release Urea as Substitutes for Soybean Meal in the Finishing Diet of Beef Cattle" Animals 14, no. 9: 1321. https://doi.org/10.3390/ani14091321
APA StyleWei, C., Tao, H., Liu, G., & Tian, K. (2024). Isobutyramide and Slow-Release Urea as Substitutes for Soybean Meal in the Finishing Diet of Beef Cattle. Animals, 14(9), 1321. https://doi.org/10.3390/ani14091321