Strand-Specific RNA Sequencing Reveals Gene Expression Patterns in F1 Chick Breast Muscle and Liver after Hatching
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sample Collection
2.2. RNA Isolation and ssRNA-Seq
2.3. Transcriptomic Analysis
2.4. Gene Expression Pattern Analysis
3. Results
3.1. Analysis of Sequencing Data
3.2. Top 10 Genes in Breast Muscle and Liver Expression Profile
3.3. Analysis of Differentially Expressed Genes
3.4. Analysis of Gene Expression Pattern
3.5. Enrichment Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peters, J.; Lebrasseur, O.; Irving-Pease, E.K.; Paxinos, P.D.; Best, J.; Smallman, R.; Callou, C.; Gardeisen, A.; Trixl, S.; Frantz, L.; et al. The biocultural origins and dispersal of domestic chickens. Proc. Natl. Acad. Sci. USA 2022, 119, e2121978119. [Google Scholar] [CrossRef] [PubMed]
- Rubin, C.J.; Zody, M.C.; Eriksson, J.; Meadows, J.R.S.; Sherwood, E.; Webster, M.T.; Jiang, L.; Ingman, M.; Sharpe, T.; Ka, S.; et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010, 464, 587–591. [Google Scholar] [CrossRef]
- Koenen, M.E.; Boonstra-Blom, A.G.; Jeurissen, S.H.M. Immunological differences between layer-and broiler-type chickens. Vet. Immunol. Immunopathol. 2002, 89, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Birchler, J.A.; Yao, H.; Chudalayandi, S. Unraveling the genetic basis of hybrid vigor. Proc. Natl. Acad. Sci. USA 2006, 103, 12957–12958. [Google Scholar] [CrossRef] [PubMed]
- Krieger, U.; Lippman, Z.B.; Zamir, D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 2010, 42, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.H.; Yang, S.H.; Gong, J.Y.; Zhao, Y.; Feng, Q.; Gong, H.; Li, W.J.; Zhan, Q.L.; Cheng, B.Y.; Xia, J.H.; et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat. Commun. 2015, 6, 6258. [Google Scholar] [CrossRef] [PubMed]
- Hanot, P.; Herrel, A.; Guintard, C.; Cornette, R. Unravelling the hybrid vigor in domestic equids: The effect of hybridization on bone shape variation and covariation. BMC Evol. Biol. 2019, 19, 188. [Google Scholar] [CrossRef] [PubMed]
- Heins, B.J.; Hansen, L.B.; Seykora, A.J.; Johnson, D.G.; Linn, J.G.; Romano, J.E.; Hazel, A.R. Crossbreds of Jersey × Holstein compared with pure Holsteins for production, fertility, and body and udder measurements during first lactation. J. Dairy Sci. 2008, 91, 1270–1278. [Google Scholar] [CrossRef] [PubMed]
- Davenport, C.B. Degeneration, albinism and inbreeding. Science 1908, 28, 454–455. [Google Scholar] [CrossRef]
- Jain, S.K. Evolution of over-dominance during the initial spread of new alleles. Nature 1966, 209, 429–431. [Google Scholar] [CrossRef]
- Minvielle, F. Dominance is not necessary for heterosis: A two-locus model. Genet. Res. 1987, 49, 245–247. [Google Scholar] [CrossRef]
- Schnell, F.W.; Cockerham, C.C. Multiplicative vs. arbitrary gene action in heterosis. Genetics 1992, 131, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.S.; Li, J.; Zhang, J.J.; Liang, X.; Zhang, X.Y.; Wang, T.; Yin, S.W. Integrated analysis of transcriptomic, miRNA and proteomic changes of a novel hybrid yellow catfish uncovers key roles for miRNAs in Heterosis. Mol. Cell. Proteom. 2019, 18, 1437–1453. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Zhou, Y.; Zhang, H.; Xiao, W. DNA methylation pattern is associated with elevated expression of DGAT2 in hybrid tilapia. Aquacult. Nutr. 2021, 27, 1750–1760. [Google Scholar] [CrossRef]
- Hubner, N.; Wallace, C.A.; Zimdahl, H.; Petretto, E.; Schulz, H.; Maciver, F.; Mueller, M.; Hummel, O.; Monti, J.; Zidek, V.; et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 2005, 37, 243–253. [Google Scholar] [CrossRef]
- Paschold, A.; Jia, Y.; Marcon, C.; Lund, S.; Larson, N.B.; Yeh, C.T.; Ossowski, S.; Lanz, C.; Nettleton, D.; Schnable, P.S.; et al. Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents. Genome Res. 2012, 22, 2445–2454. [Google Scholar] [CrossRef]
- Song, G.S.; Zhai, H.L.; Peng, Y.G.; Zhang, L.; Wei, G.; Chen, X.Y.; Xiao, Y.G.; Wang, L.L.; Chen, Y.J.; Wu, B.; et al. Comparative transcriptional profiling and preliminary study on heterosis mechanism of super-hybrid rice. Mol. Plant 2010, 3, 1012–1025. [Google Scholar] [CrossRef]
- Groszmann, M.; Dennis, E.S. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc. Natl. Acad. Sci. USA 2011, 108, 2617–2622. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, H.; Gao, Q.; Wang, L.L.; Zhang, F.C.; Siva, V.S.; Zhou, Z.; Song, L.S.; Zhang, S.C. Transcriptome Analysis of Artificial Hybrid Pufferfish Jiyan-1 and Its Parental Species: Implications for Pufferfish Heterosis. PLoS ONE 2013, 8, e58453. [Google Scholar] [CrossRef]
- Wang, H.; Fang, Y.; Wang, L.P.; Zhu, W.J.; Ji, H.P.; Wang, H.Y.; Xu, S.Q.; Sima, Y.H. Heterosis and differential gene expression in hybrids and parents in Bombyx mori by digital gene expression profiling. Sci. Rep. 2015, 5, 8750. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Zhang, W.; Xiao, L.X.; Sun, Q.; Wu, F.; Liu, G.L.; Wang, Y.; Pan, Y.C.; Wang, Q.S.; Zhang, J.Z. Multi-Omics Reveals the Effect of Crossbreeding on Some Precursors of Flavor and Nutritional Quality of Pork. Foods 2023, 12, 3237. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.Y.; Yue, Y.J.; Li, J.Y.; Yang, B.H.; Chen, B.W.; Liu, J.B.; Lu, Z.K. Transcriptomics and metabolomics reveal improved performance of Hu sheep on hybridization with Southdown sheep. Food Res. Int. 2023, 173, 113240. [Google Scholar] [CrossRef] [PubMed]
- Mai, C.N.; Wen, C.L.; Sun, C.J.; Xu, Z.Y.; Chen, S.R.; Yang, N. Implications of Gene Inheritance Patterns on the Heterosis of Abdominal Fat Deposition in Chickens. Genes 2019, 10, 824. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Deng, F.L.; Wang, Y.; Ran, J.S.; Li, J.J.; Yin, L.Q.; Liu, X.Q.; Chen, S.Y.; Yang, C.W.; Jiang, X.S.; et al. Genome-wide analysis of spatiotemporal allele-specific expression in F1 hybrids of meat-and egg-type chickens. Gene 2020, 747, 144671. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Deng, F.L.; Chen, S.Y.; Ran, J.S.; Li, J.J.; Yin, L.Q.; Wang, Y.; Yin, H.D.; Zhu, Q.; Liu, Y.P. Whole-genome resequencing reveals loci with allelic transmission ratio distortion in F 1 chicken population. Mol. Genet. Genom. 2021, 296, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Liu, J.B.; Zhang, D.H.; Yang, C.W.; Yu, C.L.; Chen, M.Y.; Lin, Z.Z.; Liu, Y.P. Transcriptome analysis of breast muscle and liver in full-sibling hybrid broilers at different ages. Gene 2022, 842, 146801. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.Y.; You, Y.M.; Wang, X.L.; Yi, C.; Zhang, W.; Xie, Y.X.; Xiu, L.; Luo, F.; Lu, Y.; Wang, J.P.; et al. Dynamic profiles of lncRNAs reveal a functional natural antisense RNA that regulates the development of Schistosoma japonicum. PLoS Pathog. 2024, 20, e1011949. [Google Scholar] [CrossRef] [PubMed]
- Oono, Y.; Yazawa, T.; Kanamori, H.; Sasaki, H.; Mori, S.; Matsumoto, T. Genome-wide analysis of rice cis-natural antisense transcription under cadmium exposure using strand-specific RNA-Seq. BMC Genom. 2017, 18, 761. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Chen, M.Y.; Li, J.J.; Lin, Z.Z.; Yang, C.W.; Yu, C.L.; Zhang, D.H.; Liu, Y.P. MYH1F promotes the proliferation and differentiation of chicken skeletal muscle satellite cells into myotubes. Anim. Biotechnol. 2023, 34, 3074–3084. [Google Scholar] [CrossRef]
- Tang, D.D.; Chen, M.J.; Huang, X.H.; Zhang, G.C.; Zeng, L.; Zhang, G.S.; Wu, S.J.; Wang, Y.W. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
- Gu, H.C.; Qi, X.; Jia, Y.X.; Zhang, Z.B.; Nie, C.S.; Li, X.H.; Li, J.Y.; Jiang, Z.H.; Wang, Q.; Qu, L.J. Inheritance patterns of the transcriptome in hybrid chickens and their parents revealed by expression analysis. Sci. Rep. 2019, 9, 5750. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Zhang, G.X.; Li, T.T.; Ling, J.J.; Zhang, X.Q.; Wang, J.Y. Transcriptomic profile of leg muscle during early growth in chicken. PLoS ONE 2017, 12, e0173824. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.H.; Ran, J.S.; Li, J.J.; Yu, C.L.; Cui, Z.F.; Amevor, F.K.; Wang, Y.; Jiang, X.S.; Qiu, M.H.; Du, H.R.; et al. miR-21-5p regulates the proliferation and differentiation of skeletal muscle satellite cells by targeting KLF3 in chicken. Genes 2021, 12, 814. [Google Scholar] [CrossRef] [PubMed]
- Grüning, N.M.; Rinnerthaler, M.; Bluemlein, K.; Mülleder, M.; Wamelink, M.M.C.; Lehrach, H.; Jakobs, C.; Breitenbach, M.; Ralser, M. Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab. 2011, 14, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.L.; Wu, N.; Zhu, Q.; Gaur, U.; Gu, T.; Li, D.Y. High-altitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective. Mitochondrial DNA A 2016, 27, 3280–3288. [Google Scholar] [CrossRef] [PubMed]
- Geiger, O.; Sanchez-Flores, A.; Padilla-Gomez, J.; Degli Esposti, M. Multiple approaches of cellular metabolism define the bacterial ancestry of mitochondria. Sci. Adv. 2023, 9, eadh0066. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.G.; Xu, G.Y.; Wang, D.H.; Ma, J.S.; Wan, L. Molecular cloning, sequence identification and expression analysis of novel caprine MYLPF gene. Mol. Biol. Rep. 2013, 40, 2565–2572. [Google Scholar] [CrossRef]
- Ryan, M.T.; O’Halloran, A.M.; Hamill, R.M.; Davey, G.C.; Gil, M.; Southwood, O.I.; Sweeney, T. Polymorphisms in the regulatory region of the porcine MYLPF gene are related to meat quality traits in the Large White breed. Meat Sci. 2016, 113, 104–106. [Google Scholar] [CrossRef]
- Swanson-Wagner, R.A.; DeCook, R.; Borsuk, L.A.; Nettleton, D.; Schnable, P.S. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc. Natl. Acad. Sci. USA 2006, 103, 6805–6810. [Google Scholar] [CrossRef]
- Li, L.Z.; Lu, K.Y.; Chen, Z.M.; Mu, T.M.; Hu, Z.L.; Li, X.Q. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 2008, 180, 1725–1742. [Google Scholar] [CrossRef]
- Zhou, Y.; Ren, L.; Xiao, J.; Zhong, H.; Wang, J.; Hu, J.; Yu, F.; Tao, M.; Zhang, C.; Liu, Y.; et al. Global transcriptional and miRNA insights into bases of heterosis in hybridization of Cyprinidae. Sci. Rep. 2015, 5, 13847. [Google Scholar] [CrossRef] [PubMed]
- Hennighausen, L.; Robinson, G.W. Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. Genes Dev. 2008, 22, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.W.; Guo, D.C.; Zhang, Y.K.; Chen, Z.H.; Gao, X.W.; Xing, G.L.; Yang, X.Q.; Wang, X.B.; Di, S.W.; Cai, J.C.; et al. Identification of mutations in porcine STAT5A that contributes to the transcription of CISH. Front. Vet. Sci. 2023, 9, 1090833. [Google Scholar] [CrossRef]
- Cooley, J.R.; Yatskievych, T.A.; Antin, P.B. Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken. Dev. Dyn. 2014, 243, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Bartram, U.; Molin, D.G.M.; Wisse, L.J.; Mohamad, A.; Sanford, L.P.; Doetschman, T.; Speer, C.P.; Poelmann, R.E.; Gittenberger-de Groot, A.C. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in Tgf-β2-knockout mice. Circulation 2001, 103, 2745–2752. [Google Scholar] [CrossRef] [PubMed]
- Darzi, N.M.; Masoudi, A.A.; Vaez, T.R. Association of single nucleotide polymorphism of GHSR and TGFB2 genes with growth and body composition traits in sire and dam lines of a broiler chicken. Anim. Biotechnol. 2014, 25, 13–22. [Google Scholar] [CrossRef]
- Jing, Y.; Cheng, B.H.; Wang, H.Y.; Bai, X.; Zhang, Q.; Wang, N.; Li, H.; Wang, S.Z. The landscape of the long non-coding RNAs and circular RNAs of the abdominal fat tissues in the chicken lines divergently selected for fatness. BMC Genom. 2022, 23, 790. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, D.H.; Li, F.; Sun, J.W.; Jiang, R.R.; Li, Z.J.; Han, R.L.; Li, G.X.; Liu, X.J.; Kang, X.T.; et al. Integrated analysis of MiRNA and genes associated with meat quality reveals that Gga-MiR-140-5p affects intramuscular fat deposition in chickens. Cell. Physiol. Biochem. 2018, 46, 2421–2433. [Google Scholar] [CrossRef]
- Aslan, O.; Hamill, R.M.; Davey, G.; McBryan, J.; Mullen, A.M.; Gispert, M.; Sweeney, T. Variation in the IGF2 gene promoter region is associated with intramuscular fat content in porcine skeletal muscle. Mol. Biol. Rep. 2012, 39, 4101–4110. [Google Scholar] [CrossRef]
- Amills, M.; Jiménez, N.; Villalba, D.; Tor, M.; Molina, E.; Cubiló, D.; Marcos, C.; Francesch, A.; Sànchez, A.; Estany, J. Identification of three single nucleotide polymorphisms in the chicken insulin-like growth factor 1 and 2 genes and their associations with growth and feeding traits. Poult. Sci. 2003, 82, 1485–1493. [Google Scholar] [CrossRef]
- Lei, M.M.; Nie, Q.H.; Peng, X.; Zhang, D.X.; Zhang, X.Q. Single nucleotide polymorphisms of the chicken insulin-like factor binding protein 2 gene associated with chicken growth and carcass traits. Poult. Sci. 2005, 84, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Lestari, D.; Murtini, S.; Ulupi, N.; Sumantri, C. Polymorphism and association of DMA gene with total IgY concentration and ND antibody titer in IPB-D2 chicken line. Trop. Anim. Sci. J. 2022, 45, 1–8. [Google Scholar] [CrossRef]
- Yang, W.L.; Yu, S.Q.; Peng, J.Z.; Chang, P.H.; Chen, X.Y. FGF12 regulates cell cycle gene expression and promotes follicular granulosa cell proliferation through ERK phosphorylation in geese. Poult. Sci. 2023, 102, 102937. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Liang, J.J.; Lin, Y.Q.; Zhu, J.J.; Ma, J.Q.; Wang, Y. Molecular characterization of fibroblast growth factor-16 and its role in promoting the differentiation of intramuscular preadipocytes in goat. Animal 2020, 14, 2351–2362. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.D.; Zhao, J.; Han, S.S.; Cui, C.; Wang, Y.; Li, D.Y.; Zhu, Q. Molecular characterization, tissue distribution, and functional analysis of the STAC3 gene in chicken. 3 Biotech 2020, 10, 171. [Google Scholar] [CrossRef]
- Reinholt, B.M.; Ge, X.M.; Cong, X.F.; Gerrard, D.E.; Jiang, H.L. Stac3 is a novel regulator of skeletal muscle development in mice. PLoS ONE 2013, 8, e62760. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.D.; Li, R.N.; Wang, L.Q.; Zheng, Y.; Hoque, A.M.S.D.; Lv, Y.H.; Zeng, W.X. Glycogen synthase kinase-3 regulates sperm motility and acrosome reaction via affecting energy metabolism in goats. Front. Physiol. 2019, 10, 464009. [Google Scholar] [CrossRef]
- Ward, A.C.; Smith, L.; de Koning, J.P.; van Aesch, Y.; Touw, I.P. Multiple signals mediate proliferation, differentiation, and survival from the granulocyte colony-stimulating factor receptor in myeloid 32D cells. J. Biol. Chem. 1999, 274, 14956–14962. [Google Scholar] [CrossRef]
- Radtke, D.; Lacher, S.M.; Szumilas, N.; Sandrock, L.; Ackermann, J.; Nitschke, L.; Zinser, E. Grb2 is important for T cell development, Th cell differentiation, and induction of experimental autoimmune encephalomyelitis. J. Immunol. 2016, 196, 2995–3005. [Google Scholar] [CrossRef]
- Liu, L.; Liu, X.J.; Cui, H.X.; Liu, R.R.; Zhao, G.P.; Wen, J. Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC Genom. 2019, 20, 863. [Google Scholar] [CrossRef]
- Xiao, R.; Power, R.F.; Mallonee, D.; Routt, K.; Spangler, L.; Pescatore, A.J.; Cantor, A.H.; Ao, T.; Pierce, J.L.; Dawson, K.A. Effects of yeast cell wall-derived mannan-oligosaccharides on jejunal gene expression in young broiler chickens. Poult. Sci. 2012, 91, 1660–1669. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.M.; Wu, J.P.; Zhang, D.Y.; Liu, T.; Zhao, S.G.; Wang, J.F.; Zhang, X.X. Proteomic analysis of beef tenderloin and flank assessed using an isobaric tag for relative and absolute quantitation (iTRAQ). Animals 2020, 10, 150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.T.; Elsayed, A.K.; Shi, Q.Q.; Zhang, Y.N.; Zuo, Q.S.; Li, D.; Lian, C.; Tang, B.B.; Xiao, T.R.; Xu, Q.; et al. Crucial genes and pathways in chicken germ stem cell differentiation. J. Biol. Chem. 2015, 290, 13605–13621. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Q.S.; Jin, K.; Zhang, Y.N.; Song, J.Z.; Li, B.C. Dynamic expression and regulatory mechanism of TGF-β signaling in chicken embryonic stem cells differentiating into spermatogonial stem cells. Biosci. Rep. 2017, 37, BSR20170179. [Google Scholar] [CrossRef] [PubMed]
- Hao, E.Y.; Wang, D.H.; Chen, Y.F.; Zhou, R.Y.; Chen, H.; Huang, R.L. The relationship between the mTOR signaling pathway and ovarian aging in peak-phase and late-phase laying hens. Poult. Sci. 2021, 100, 334–347. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.Y.; Xiong, Y.Z.; Lei, M.G.; Li, F.E.; Zuo, B. Genetic polymorphisms and preliminary association analysis with production traits of the porcine SLC27A4 gene. Mol. Biol. Rep. 2009, 36, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Zhang, J.Q.; Cao, C.; Cai, Y.J.; Li, Y.X.; Song, Y.P.; Bao, X.Y.; Zhang, J.Q. Effects of different rearing systems on Lueyang black-bone chickens: Meat quality, amino acid composition, and breast muscle transcriptome. Genes 2022, 13, 1898. [Google Scholar] [CrossRef]
- Voronova, A.; Kazantseva, J.; Tuuling, M.; Sokolova, N.; Sillard, R.; Palumaa, P. Cox17, a copper chaperone for cytochrome c oxidase: Expression, purification, and formation of mixed disulphide adducts with thiol reagents. Protein Expr. Purif. 2007, 53, 138–144. [Google Scholar] [CrossRef]
Gene Set | Term ID | Term | p-Value | Genes |
---|---|---|---|---|
Maternal line vs. F1 cross | GO:0006869 | lipid transport | 0.017905476 | ENSGALG00010018145, APOA1, APOA4, ABCA3, GM2A, SPNS2, ABCA5 |
GO:0070328 | triglyceride homeostasis | 0.025746286 | LPL, RORA, APOA1, HNF4A | |
GO:0006939 | smooth muscle contraction | 0.032805327 | ROCK2, CHRNB4, FKBP1B, HTR7 | |
Paternal line vs. F1 cross | GO:0008284 | positive regulation of cell proliferation | 0.004132833 | STAT5A, ERBB2, EXFABP, COPS9, MEIS2, S100B, MARCKSL1, TGFA, TGFB2, BAMBI, PRLR, FGF1, CDCA7L, CNOT6L, INSR, TBX6, HSP90AA1, IGF2 |
GO:0008219 | cell death | 0.020674525 | BRINP1, CATH1, CTSD, TGFB2 | |
Paternal line vs. maternal line | GO:0051482 | positive regulation of cytosolic calcium ion concentration involved in phospholipase C-activating G-protein coupled signaling pathway | 0.003182625 | GPR55, LPAR4, DRD3, GPR65, LPAR6 |
GO:0019886 | antigen processing and presentation of exogenous peptide antigen via MHC class II | 0.011956304 | IGLL1, CD74, DMB2, DMA | |
Suppressing dominance | GO:0008284 | positive regulation of cell proliferation | 8.83 × 10−4 | BAMBI, GREM1, PRLR, FGF16, FGF12, TGFB2 |
Under-dominance | GO:0003009 | skeletal muscle contraction | 0.005685356 | TNNC2, STAC3, TNNC1 |
GO:0070507 | regulation of microtubule cytoskeleton organization | 0.022384332 | GSK3A, TRAF3IP1, RHOA | |
GO:0008286 | insulin receptor signaling pathway | 0.029955405 | GSK3A, GRB2, EIF4EBP2 |
Gene Set | Pathway | p-Value | Genes |
---|---|---|---|
Maternal line vs. F1 cross | PPAR signaling pathway | 0.046223775 | FABP6, LPL, HMGCS2, APOA1, FABP1, ACOX2, EHHADH, PLIN1, CD36 |
Paternal line vs. F1 cross | PPAR signaling pathway | 0.010920518 | FABP6, SLC27A1, SCD5, CYP27A1, FABP1, FABP7, SCD, ACSBG2, EHHADH, SLC27A4 |
Paternal line vs. maternal line | Metabolic pathways | 0.005143418 | CYP2W1, HAO1, ENSGALG00010028858, CTH, CYP27A1, SHPK, SMPD3, FLAD1, IL4I1, KHK, CMPK2, GLUL, KYNU, GYS2, BTD, CA3A, CHIA, GATM, SGPP2, ENSGALG00010004334, TBXAS1, GCDH, ACOX2, GPX2, MAN1A1, DCT, AOC1, UGT8, ENSGALG00010029214, ACACB, ENSGALG00010011814, B3GNT2, UROC1, SMYD2, SGMS1, GLYCTK, ENSGALG00010020715, HKDC1, PDE10A, PYCR1, MGAT5B, VNN2, CNDP1, PIPOX, ENSGALG00010011927, INPP5J, PPOX, ENSGALG00010017668, ADCY7, AKR1D1, CDA, ADH6, PTGS2, HAAO, DEGS2, SCD5, CHKA, PLD4, RFKL, ALDH8A1, CSGALNACT1, ASNS, CYP21A1, ENSGALG00010011278, PAH, HAO2 |
Suppressing dominance | TGF-beta signaling pathway | 0.025495457 | BAMBI, GREM1, ID3, TGFB2 |
Under-dominance | Oxidative phosphorylation | 1.10 × 10−6 | ENSGALG00010027713, SDHB, NDUFAB1, NDUFA12, COX17, NDUFB4, NDUFA13, ATP5E, COX6A1, NDUFB3, NDUFS5 |
mTOR signaling pathway | 0.048844595 | GSK3A, EIF4B, RHOA, LAMTOR2, GRB2, HRAS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Chen, M.; Luo, Z.; Cui, P.; Ren, P.; Wang, Y. Strand-Specific RNA Sequencing Reveals Gene Expression Patterns in F1 Chick Breast Muscle and Liver after Hatching. Animals 2024, 14, 1335. https://doi.org/10.3390/ani14091335
Zhao J, Chen M, Luo Z, Cui P, Ren P, Wang Y. Strand-Specific RNA Sequencing Reveals Gene Expression Patterns in F1 Chick Breast Muscle and Liver after Hatching. Animals. 2024; 14(9):1335. https://doi.org/10.3390/ani14091335
Chicago/Turabian StyleZhao, Jianfei, Meiying Chen, Zhengwei Luo, Pengxin Cui, Peng Ren, and Ye Wang. 2024. "Strand-Specific RNA Sequencing Reveals Gene Expression Patterns in F1 Chick Breast Muscle and Liver after Hatching" Animals 14, no. 9: 1335. https://doi.org/10.3390/ani14091335
APA StyleZhao, J., Chen, M., Luo, Z., Cui, P., Ren, P., & Wang, Y. (2024). Strand-Specific RNA Sequencing Reveals Gene Expression Patterns in F1 Chick Breast Muscle and Liver after Hatching. Animals, 14(9), 1335. https://doi.org/10.3390/ani14091335