Application of Epidemiological Methods in a Large-Scale Cross-Sectional Study in 765 German Dairy Herds—Lessons Learned
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.1.1. Sample Size of Farms per Region
2.1.2. Farm Size as Stratifier
2.1.3. Sampling Procedure
- Region North (N): The farm size classes were recalculated using the DHI information on farm sizes in Lower Saxony and Schleswig-Holstein and applied to the HIT data. The farm size information came from DHI data, while the address data drawing continued to be collected in HIT.
- Region East (E): Here, too, new farm size classes were determined using DHI data from Brandenburg, Saxony-Anhalt, Thuringia, and Mecklenburg-Western Pomerania. The address data were then also drawn from DHI data. A change in the address data source in the region East was justified by the fact that a very high proportion of dairy cow farmers (mean: 55%) and dairy cows (mean: 90%) were also members of a state control association in the states concerned. The advantage of writing exclusively to dairy cow farmers thus outweighed the disadvantage of not reaching those dairy cow farmers who were not members of the state control association. Due to the change in address data management in region East, it was unavoidable that farms were contacted twice with the second sampling. However, the DHI excluded those farms that had already participated in the study in advance.
- Region South (S): The calculation of the farm size classes was based on the data of the MPR. First and second data draws were made from the address data of the MPR, since access to address data from HIT had not been granted in Bavaria.
2.1.4. Sampling of Animals per Farm
2.2. Questionnaires and Survey Forms
2.3. Database and Homepage
2.4. Farm Recruitment
2.5. Quality Assurance Measures
2.5.1. Sampling of Animals per Farm
2.5.2. Training to Enhance Interobserver Reliability (IOR)
2.5.3. SOP Manual
2.5.4. Leaders Video Conferences and Collaborative Meetings
2.6. Data Analysis
2.6.1. Feedback Letters to Farmers
2.6.2. Plausibility Controls
2.6.3. Multivariable Regression Analyses
- Udder Health;
- Reproduction;
- Metabolism;
- Limb health and lameness;
- Technopathies such as skin lesions;
- Calves/young cattle;
- Feeding;
- Infectious diseases/biosecurity.
Example Clinical udder Infections
- Step 1: Define the animal group under consideration, e.g., lactating.
- Step 2: Definition of the hierarchical level, e.g., at the plant level, at least one compartment with the grade “soiled” [yes/no].
- Step 3: Description of influencing variable, e.g., farm has at least one dirty compartment with lactating dairy cows yes/no.
2.6.4. Statistical Analyses
- Potential association with target variable, expressed as
- ○
- Correlation coefficient > 0.1; or
- ○
- p-value < 0.2.
- Factors indispensable to the content.
Multivariable Analyses
- indispensable factors in terms of content;
- factors with p < 0.2;
- their confounders from the causal diagram;
- interactions between two factors with p < 0.05.
3. Results
3.1. Study Population
3.2. Baseline Results
3.2.1. Study Population
3.2.2. Farm Structure
3.2.3. Information on the Interview Partners
3.2.4. Animal Health and Animal Health Management
4. Discussion
4.1. Sample Size
4.2. Representativeness of the Study Population
4.3. Prevalence Estimation
4.4. Risk Factor Models
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffmann, W.; Latza, U.; Baumeister, S.E.; Brünger, M.; Buttmann-Schweiger, N.; Hardt, J.; Hoffmann, V.; Karch, A.; Richter, A.; Schmidt, C.O.; et al. Guidelines and recommendations for ensuring Good Epidemiological Practice (GEP): A guideline developed by the German Society for Epidemiology. Eur. J. Epidemiol. 2019, 34, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Sargeant, J.M.; O’Connor, A.M.; Dohoo, I.R.; Erb, H.N.; Cevallos, M.; Egger, M.; Ersbøll, A.K.; Martin, S.W.; Nielsen, L.R.; Pearl, D.L.; et al. Methods and processes of developing the strengthening the reporting of observational studies in epidemiology − veterinary (STROBE-Vet) statement. Prev. Vet. Med. 2016, 134, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Merle, R.; Busse, M.; Rechter, G.; Meer, U. Regionalisierung Deutschlands anhand landwirtschaftlicher Strukturdaten: Regionalisation of Germany by data of agricultural structures. Berl. Munch. Tierärztl. Wochenschr. 2012, 125, 52–59. [Google Scholar] [PubMed]
- Glaser, S.; Kreienbrock, L. Stichprobenplanung bei veterinärmedizinischen Studien: Ein Leitfaden zur Bestimmung des Untersuchungsumfangs, 1st ed.; Schlütersche: Hannover, Germany, 2011; ISBN 978-3-89993-078-8. [Google Scholar]
- Bayrisches Staatsministerium für Ernährung, Land- und Forstwirtschaft. Herkunftssicherungs- und Informationssystem für Tiere. Available online: https://www.hi-tier.de/default.htm (accessed on 21 August 2023).
- Jensen, K.C.; Frömke, C.; Schneider, B.; Do Duc, P.; Gundling, F.; Birnstiel, K.; Schönherr, F.; Scheu, T.; Kaiser-Wichern, A.; Woudstra, S.; et al. Case-control study on factors associated with a decreased milk yield and a depressed health status of dairy herds in northern Germany. BMC Vet. Res. 2019, 15, 442. [Google Scholar] [CrossRef] [PubMed]
- State Control Association Berlin-Brandenburg e.V. Annual Report 2019. Available online: https://www.lkvbb.de/fileadmin/Redaktion/Publikationen/2020/Bericht/Jahresbericht-2019-Onlineausgabe.pdf (accessed on 31 August 2023).
- Dachrodt, L.; Arndt, H.; Bartel, A.; Kellermann, L.M.; Tautenhahn, A.; Volkmann, M.; Birnstiel, K.; Do Duc, P.; Hentzsch, A.; Jensen, K.C.; et al. Prevalence of disorders in preweaned dairy calves from 731 dairies in Germany: A cross-sectional study. J. Dairy Sci. 2021, 104, 9037–9051. [Google Scholar] [CrossRef] [PubMed]
- Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A Body Condition Scoring Chart for Holstein Dairy Cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Sprecher, D.J.; Hostetler, D.E.; Kaneene, J.B. A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance. Theriogenology 1997, 47, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Leach, K.A.; Dippel, S.; Huber, J.; March, S.; Winckler, C.; Whay, H.R. Assessing lameness in cows kept in tie-stalls. J. Dairy Sci. 2009, 92, 1567–1574. [Google Scholar] [CrossRef]
- Cook, N.B.; Reinemann, D. A Tool Box for Assessing Cow, Udder and Teat Hygiene; University of Wisconsin-Madison: Madison, Wisconsin, 2007. [Google Scholar]
- Kellermann, L.M.; Rieger, A.; Knubben-Schweizer, G.; Metzner, M. Short communication: Design and validation of a hygiene score for calves. J. Dairy Sci. 2020, 103, 3622–3627. [Google Scholar] [CrossRef]
- Lower Saxony Chamber of Agriculture. Performance and Quality Audits and Projects in Animal Husbandry—Annual Report 2018; Willers Druck GmbH & Co KG: Oldenburg, Germany, 2020; ISBN 978-3-9818882-2-5. [Google Scholar]
- Ruddat, I.; Scholz, B.; Bergmann, S.; Buehring, A.-L.; Fischer, S.; Manton, A.; Prengel, D.; Rauch, E.; Steiner, S.; Wiedmann, S.; et al. Statistical tools to improve assessing agreement between several observers. Animal 2014, 8, 643–649. [Google Scholar] [CrossRef]
- Textor, J.; van der Zander, B.; Gilthorpe, M.S.; Liśkiewicz, M.; Ellison, G.T.H. Robust causal inference using directed acyclic graphs: The R package ‘dagitty’. Int. J. Epidemiol. 2016, 45, 1887–1894. [Google Scholar] [CrossRef] [PubMed]
- Dohoo, I.R.; Martin, W.; Stryhn, H. Methods in Epidemiologic Research; VER: Charlottetown, PE, Canada, 2012; ISBN 978-0-919013-73-5. [Google Scholar]
- Statistisches Bundesamt. Land- und Forstwirtschaft, Fischerei: Viehbestand. Fachserie 3 Reihe 4.1 [Excel-Table]; Wiesbaden, 2014 (Artikelnummer: 2030410145315). Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Tiere-Tierische-Erzeugung/Publikationen/Downloads-Tiere-und-tierische-Erzeugung/viehbestand-2030410225324.html (accessed on 15 October 2019).
- Thrusfield, M.; Ortega, C.; de Blas, I.; Noordhuizen, J.P.; Frankena, K. WIN EPISCOPE 2.0: Improved epidemiological software for veterinary medicine. Vet. Rec. 2001, 148, 567–572. [Google Scholar] [CrossRef]
- Ranjbar, S.; Rabiee, A.R.; Ingenhoff, L.; House, J.K. Farmers’ perceptions and approaches to detection, treatment and prevention of lameness in pasture-based dairy herds in New South Wales, Australia. Aust. Vet. J. 2020, 6, 264–269. [Google Scholar] [CrossRef]
- Denis-Raubichaud, J.; Kelton, D.; Fauteux, V.; Villettaz-Robichaud, M.; Dubuc, J. Short communication: Accuracy of estimation of lameness, injury, and cleanliness prevalence by dairy farmers and veterinarians. J. Dai. Sci. 2020, 103, 10696–10702. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, P.T.; Shearer, J.K.; Houe, H. Prevalence of lameness in dairy cows: A literature review. Vet. J. 2023, 295, 105975. [Google Scholar] [CrossRef]
- Loiklung, C.; Sukon, P.; Thamrongyoswittayakul, C. Global prevalence of subclinical ketosis in dairy cows: A systematic review and meta-analysis. Res. Vet. Sci. 2022, 144, 66–76. [Google Scholar] [CrossRef]
- Boulton, A.C.; Rushton, J.; Wathes, D.C. An empirical analysis of the cost of rearing dairy heifers from birth to first calving and the time taken to repay these costs. Animal 2017, 11, 1372–1380. [Google Scholar] [CrossRef] [PubMed]
- Fetrow, J.; Nordlund, K.V.; Norman, H.D. Invited review: Culling: Nomenclature, definitions, and recommendations. J. Dairy Sci. 2006, 89, 1896–1905. [Google Scholar] [CrossRef] [PubMed]
- Compton, C.W.R.; Heuer, C.; Thomsen, P.T.; Carpenter, T.E.; Phyn, C.V.C.; McDougall, S. Invited review: A systematic literature review and meta-analysis of mortality and culling in dairy cattle. J. Dairy Sci. 2017, 100, 1–16. [Google Scholar] [CrossRef]
- Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. KTBL-Jahresbericht 2020, Darmstadt, 2021. Available online: https://www.ktbl.de/fileadmin/user_upload/Allgemeines/Jahresbericht/2020/KTBL-Jahresbericht_2020.pdf (accessed on 17 February 2024).
- Pannwitz, G. Standardized analysis of German cattle mortality using national register data. Prev. Vet. Med. 2015, 118, 260–270. [Google Scholar] [CrossRef]
- Alvåsen, K.; Jansson Mörk, M.; Dohoo, I.R.; Sandgren, C.H.; Thomsen, P.T.; Emanuelson, U. Risk factors associated with on-farm mortality in Swedish dairy cows. Prev. Vet. Med. 2014, 117, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Hernán, M.A.; Robins, J.M. Causal Inference: What If; Chapman & Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar]
- Oehm, A.W.; Merle, R.; Tautenhahn, A.; Jensen, K.C.; Mueller, K.-E.; Feist, M.; Zablotski, Y. Identifying cow—Level factors and farm characteristics associated with locomotion scores in dairy cows using cumulative link mixed models. PLoS ONE 2022, 17, e0263294. [Google Scholar] [CrossRef] [PubMed]
- Böker, A.R.; Bartel, A.; Do Duc, P.; Hentzsch, A.; Reichmann, F.; Merle, R.; Arndt, H.; Dachrodt, L.; Woudstra, S.; Hoedemaker, M. Status of udder health performance indicators and implementation of on farm monitoring on German dairy cow farms: Results from a large scale cross-sectional study. Front. Vet. Sci. 2023, 10, 1193301. [Google Scholar] [CrossRef] [PubMed]
- Abele, G.E.; Zablotski, Y.; Feist, M.; Jensen, K.C.; Stock, A.; Campe, A.; Merle, R.; Oehm, A.W. Prevalence of and factors associated with swellings of the ribs in tie stall housed dairy cows in Germany. PLoS ONE 2022, 17, e0269726. [Google Scholar] [CrossRef] [PubMed]
Cut-Off | |||
---|---|---|---|
Region | Small | Medium | Large |
North | 1–64 | 65–113 | ≥114 |
East | 1–160 | 161–373 | ≥374 |
South | 1–29 | 30–52 | ≥53 |
Number of Small Farms | Number of Medium-Sized Farms | Number of Large Farms | Total | |||||
---|---|---|---|---|---|---|---|---|
Invited | Visits | Invited | Visits | Invited | Visits | Invited | Visits | |
Schleswig- Holstein | 330 | 13 | 210 | 31 | 110 | 25 | 650 | 69 |
Lower Saxony | 1334 | 70 | 464 | 59 | 339 | 55 | 2137 | 184 |
North | 1664 | 83/5% | 674 | 90/13% | 449 | 80/18% | 2787 | 253/9% |
Mecklenburg- Western Pomerania | 189 | 18 | 123 | 26 | 264 | 22 | 576 | 66 |
Saxony-Anhalt | 156 | 20 | 131 | 26 | 82 | 26 | 369 | 72 |
Brandenburg | 109 | 24 | 103 | 22 | 173 | 19 | 385 | 65 |
Thuringia | 247 | 20 | 76 | 13 | 86 | 16 | 409 | 49 |
East | 701 | 82/12% | 433 | 87/20% | 605 | 83/5% | 1739 | 252/9% |
Bavaria | 1345 | 92 | 2015 | 84 | 1058 | 84 | 4418 | 260 |
South | 1345 | 92/7% | 2015 | 84/4% | 1058 | 84/8% | 4418 | 260/6% |
Number of Examined Calves | Number of Examined Cows | Number of Examined Young Stock | ||||
---|---|---|---|---|---|---|
Average/ Farm | Total | Average/ Farm | Total | Average/Farm | Total | |
North | 15 | 3741 | 99 | 24,980 | 77 | 19,571 |
East | 37 | 9188 | 198 | 49,936 | 222 | 56,058 |
South | 8 | 2074 | 44 | 11,388 | 35 | 9224 |
Total | 20 | 15,003 | 113 | 86,304 | 111 | 84,853 |
Number of Farms | Number of Cows | % of Farms in Study | % of Cows in Study | Average Farm Size | Distribution of Farms in Region (%) | Distribution of Cows in Region (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genesis | PraeRi | Genesis | PraeRi | PraeRi | PraeRi | Genesis | PraeRi | Genesis | PraeRi | Genesis | PraeRi | |
Lower Saxony | 10,080 | 184 | 864,750 | 18,188 | 2 | 2 | 86 | 99 | 71 | 73 | 69 | 70 |
Schleswig- Holstein | 4180 | 69 | 396,358 | 7829 | 2 | 2 | 95 | 113 | 29 | 27 | 31 | 30 |
North | 14,260 | 253 | 1,261,108 | 26,017 | 2 | 2 | 88 | 103 | ||||
Brandenburg | 539 | 66 | 159,964 | 24,884 | 12 | 16 | 297 | 377 | 24 | 26 | 28 | 29 |
Mecklenburg-Western Pomerania | 712 | 72 | 180,918 | 25,504 | 10 | 14 | 254 | 354 | 32 | 29 | 31 | 29 |
Saxony-Anhalt | 520 | 65 | 123,405 | 22,352 | 13 | 18 | 237 | 344 | 23 | 26 | 21 | 26 |
Thuringia | 485 | 49 | 110,502 | 14,098 | 10 | 13 | 228 | 288 | 21 | 19 | 19 | 16 |
East | 2256 | 252 | 574,789 | 86,838 | 11 | 15 | 255 | 345 | ||||
Bavaria | 32,564 | 260 | 1,208,640 | 11,539 | 1 | 1 | 37 | 44 | 100 | 100 | 100 | 100 |
South | 32,564 | 260 | 1,208,640 | 11,539 | 1 | 1 | 37 | 44 |
Region | ||||||
---|---|---|---|---|---|---|
Other Cattle Holdings | North | East | South | |||
n | % | n | % | n | % | |
Rearing calves | 242 | 95.7 | 249 | 98.8 | 255 | 98.1 |
Breeding young cattle | 239 | 94.8 | 237 | 94.0 | 243 | 91.9 |
Stud bulls | 90 | 35.6 | 94 | 37.3 | 26 | 10.0 |
Bull fattening | 79 | 31.2 | 57 | 22.6 | 27 | 10.5 |
Heifer fattening | 23 | 9.1 | 19 | 7.5 | 13 | 5.0 |
Calf fattening | 6 | 2.4 | 20 | 7.9 | 12 | 4.6 |
Suckler cow husbandry | 9 | 3.6 | 51 | 20.2 | 3 | 1.2 |
Rearing calves from other farms of origin | 29 | 11.5 | 13 | 5.2 | 10 | 3.8 |
Rearing young cattle from other farms of origin | 26 | 10.3 | 16 | 6.3 | 10 | 3.8 |
No answer selected/does not apply | 11 | 4.4 | 4 | 1.6 | 0 | 0.0 |
Total number of farms | 253 | 252 | 260 |
Variable | Region | Number of Farms | Mean | Standard Deviation | Me-Dian | 25%- Quantile | 75%- Quantile | Missing Values |
---|---|---|---|---|---|---|---|---|
Milk fever | North | 250 | 10.6 | 10.0 | 7.4 | 4.3 | 14.5 | 2 |
East | 240 | 6.7 | 7.2 | 5.0 | 2.3 | 9.5 | 12 | |
South | 257 | 5.8 | 5.7 | 4.7 | 1.7 | 8.3 | 3 | |
Retained placenta | North | 251 | 11.4 | 8.8 | 9.7 | 5.8 | 14.8 | 1 |
East | 236 | 10.2 | 8.1 | 9.2 | 5.0 | 13.3 | 5 | |
South | 258 | 8.2 | 5.9 | 7.3 | 4.5 | 11.0 | 1 | |
Uterine inflammation | North | 252 | 8.8 | 10.3 | 5.4 | 2.6 | 11.1 | 1 |
East | 235 | 12.0 | 12.9 | 8.2 | 2.9 | 16.3 | 17 | |
South | 257 | 4.5 | 6.0 | 3.3 | 0.0 | 6.7 | 3 | |
Pneumonia | North | 252 | 1.5 | 3.1 | 0.0 | 0.0 | 1.7 | 1 |
East | 239 | 2.3 | 6.1 | 0.8 | 0.0 | 2.0 | 13 | |
South | 260 | 0.7 | 2.0 | 0.0 | 0.0 | 0.0 | 0 | |
Ketosis | North | 247 | 7.1 | 8.1 | 5.0 | 2.0 | 10.0 | 6 |
East | 234 | 6.3 | 8.3 | 3.0 | 1.0 | 9.0 | 18 | |
South | 254 | 2.8 | 4.8 | 0.0 | 0.0 | 3.9 | 6 | |
Displaced abomasum | North | 253 | 2.1 | 2.2 | 1.6 | 0.0 | 3.0 | 0 |
East | 243 | 1.8 | 2.3 | 1.0 | 0.3 | 2.5 | 9 | |
South | 260 | 0.3 | 1.1 | 0.0 | 0.0 | 0.0 | 0 | |
Foreign body disease | North | 251 | 1.4 | 2.5 | 0.0 | 0.0 | 2.0 | 2 |
East | 232 | 1.2 | 3.4 | 0.0 | 0.0 | 1.0 | 20 | |
South | 259 | 0.9 | 3.2 | 0.0 | 0.0 | 0.0 | 1 | |
Mastitis without general disorder | North | 252 | 16.3 | 11.3 | 14.8 | 8.7 | 21.5 | 1 |
East | 232 | 22.0 | 19.9 | 15.9 | 5.9 | 32.4 | 20 | |
South | 259 | 14.2 | 12.5 | 11.8 | 6.0 | 19.2 | 1 | |
Mastitis with general disorder | North | 252 | 5.0 | 5.1 | 4.0 | 1.4 | 6.5 | 1 |
East | 228 | 4.9 | 8.0 | 2.0 | 1.0 | 5.0 | 24 | |
South | 260 | 4.6 | 7.3 | 2.6 | 0.0 | 6.6 | 0 | |
Heifer mastitis | North | 253 | 3.4 | 4.6 | 2.1 | 0.0 | 4.4 | 0 |
East | 219 | 6.3 | 8.3 | 3.4 | 0.9 | 8.3 | 33 | |
South | 225 | 2.5 | 5.6 | 0.0 | 0.0 | 3.3 | 5 | |
Abortion | North | 250 | 2.8 | 2.5 | 2.2 | 1.4 | 4.0 | 3 |
East | 239 | 2.9 | 2.9 | 2.0 | 1.0 | 4.0 | 13 | |
South | 260 | 2.9 | 3.3 | 2.5 | 0.0 | 4.1 | 0 | |
Lameness | North | 252 | 12.6 | 12.1 | 9.5 | 4.8 | 16.4 | 1 |
East | 250 | 13.8 | 14.9 | 9.5 | 3.8 | 20.0 | 2 | |
South | 259 | 8.5 | 7.8 | 7.1 | 3.3 | 11.5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merle, R.; Hoedemaker, M.; Knubben-Schweizer, G.; Metzner, M.; Müller, K.-E.; Campe, A. Application of Epidemiological Methods in a Large-Scale Cross-Sectional Study in 765 German Dairy Herds—Lessons Learned. Animals 2024, 14, 1385. https://doi.org/10.3390/ani14091385
Merle R, Hoedemaker M, Knubben-Schweizer G, Metzner M, Müller K-E, Campe A. Application of Epidemiological Methods in a Large-Scale Cross-Sectional Study in 765 German Dairy Herds—Lessons Learned. Animals. 2024; 14(9):1385. https://doi.org/10.3390/ani14091385
Chicago/Turabian StyleMerle, Roswitha, Martina Hoedemaker, Gabriela Knubben-Schweizer, Moritz Metzner, Kerstin-Elisabeth Müller, and Amely Campe. 2024. "Application of Epidemiological Methods in a Large-Scale Cross-Sectional Study in 765 German Dairy Herds—Lessons Learned" Animals 14, no. 9: 1385. https://doi.org/10.3390/ani14091385
APA StyleMerle, R., Hoedemaker, M., Knubben-Schweizer, G., Metzner, M., Müller, K. -E., & Campe, A. (2024). Application of Epidemiological Methods in a Large-Scale Cross-Sectional Study in 765 German Dairy Herds—Lessons Learned. Animals, 14(9), 1385. https://doi.org/10.3390/ani14091385